JPH0564450B2 - - Google Patents

Info

Publication number
JPH0564450B2
JPH0564450B2 JP59195728A JP19572884A JPH0564450B2 JP H0564450 B2 JPH0564450 B2 JP H0564450B2 JP 59195728 A JP59195728 A JP 59195728A JP 19572884 A JP19572884 A JP 19572884A JP H0564450 B2 JPH0564450 B2 JP H0564450B2
Authority
JP
Japan
Prior art keywords
reduction projection
exposure area
image
substrate
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59195728A
Other languages
Japanese (ja)
Other versions
JPS6174338A (en
Inventor
Tsutomu Tanaka
Yoshitada Oshida
Nobuyuki Akyama
Minoru Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59195728A priority Critical patent/JPS6174338A/en
Publication of JPS6174338A publication Critical patent/JPS6174338A/en
Publication of JPH0564450B2 publication Critical patent/JPH0564450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、縮小投影レンズの結像面にウエハ等
の被露光基板上の露光領域表面を合わせてマスク
上に形成されたLSI等の回路パターンを縮小投影
レンズにより被露光基板上の露光領域に縮小投影
して露光する縮小投影露光装置及びその方法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a circuit pattern such as an LSI formed on a mask by aligning the image forming plane of a reduction projection lens with the surface of an exposed area on a substrate to be exposed such as a wafer. The present invention relates to a reduction projection exposure apparatus and method for reducing and projecting an image onto an exposure area on a substrate to be exposed using a reduction projection lens.

〔発明の背景〕[Background of the invention]

従来より、半導体ウエハ上のLSIパターンな
ど、被観察物の表面の焦点位置に対する位置ずれ
を検出して位置合せを行なう方法においては、被
観察物表面に断面が例えば3mm×0.1mm程度の細
長い形状をした単一の光束を斜めに照射し、被観
察物表面からのその反射光を光電変換して反射光
の光軸位置を検出している。しかしながらこのよ
うに小さな断面形状の光束を用いて被観察物表面
を検出すると、被観察物の表面形状に凹凸があつ
たり、或いは、表面の反射率が微小な領域内で異
なつていたりすると、その表面状態の影響で正確
な位置検出および位置合せが困難になるという欠
点があつた。
Conventionally, in the method of detecting and aligning the surface of an object to be observed, such as an LSI pattern on a semiconductor wafer, by detecting the positional deviation from the focal point, a long and narrow shape with a cross section of about 3 mm x 0.1 mm is placed on the surface of the object to be observed. A single beam of light is emitted obliquely, and the reflected light from the surface of the object to be observed is photoelectrically converted to detect the optical axis position of the reflected light. However, when detecting the surface of an object to be observed using a light beam with such a small cross-sectional shape, if the surface shape of the object to be observed is uneven or the reflectance of the surface differs within a minute area, The disadvantage is that accurate position detection and alignment are difficult due to the influence of the surface condition.

特開昭56−42205号公報にはその解決策のひと
つとして、被観察物表面上での光束断面の細長い
方向が、被観察物表面の表面形状に影響されない
方向を向くように光束を照射する方法が開示され
ているが、未だ十分な解決策とはなつていないの
が実情であり、検出領域が小さいと、被観察物表
面の反り、うねり、傾きなどの検出が困難で、ま
た被観察物が透光性の場合、その表面で反射する
光束と、内部に進入して下の層との境で反射して
再び出てくる光束とがあるが、これらが混じり合
うと検出光として一様のもとはならず、検出精度
が劣化するという問題も未解決のままである。
JP-A No. 56-42205 discloses one solution to this problem, in which the light beam is irradiated so that the elongated direction of the beam cross section on the surface of the object to be observed is directed in a direction that is not affected by the surface shape of the surface of the object to be observed. Although a method has been disclosed, the reality is that it has not yet become a sufficient solution.If the detection area is small, it is difficult to detect warps, undulations, inclinations, etc. on the surface of the observed object. When an object is translucent, there is a beam of light that is reflected on its surface and a beam of light that enters the interior, reflects at the boundary with the layer below, and comes out again. However, the problem of deterioration of detection accuracy remains unsolved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述の従来技術の問題点を解
決すべく、ウエハ等の被露光基板上の露光領域表
面の傾きを正確に検出して縮小投影レンズの結像
面に対してウエハ等の被露光基板上の露光領域表
面の傾きを合わせてマスク上に形成された微細な
回路パターンを縮小投影レンズにより被露光基板
上の露光領域に高解像度で縮小投影露光焼き付け
を可能にした縮小投影露光装置およびその方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to accurately detect the inclination of the surface of an exposure area on a substrate to be exposed such as a wafer, so as to solve the problems of the prior art described above. Reduction projection exposure enables high-resolution reduction projection exposure printing of a fine circuit pattern formed on a mask onto the exposure area on the exposure target substrate using a reduction projection lens by adjusting the surface inclination of the exposure area on the exposure target substrate. An object of the present invention is to provide a device and a method thereof.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するため、マスク
(レチクル)に形成された回路パターンを縮小投
影レンズにより被露光基板上の露光領域表面に縮
小投影露光する縮小投影露光装置およびその方法
において、前記被露光基板を前記縮小投影レンズ
の光軸方向に微移動させ、更に前記縮小投影レン
ズの結像面に対する前記被露光基板を微回動させ
るステージ手段と、前記縮小投影レンズと前記被
露光基板との間の側方より複数の光束を前記被露
光基板上の露光領域表面の異なる照射位置に縮小
投影レンズの光軸方向に対して70°以上の傾斜角
度で照射する照射手段と、該照射手段で照射され
て露光領域表面の異なる照射位置の各々から反射
する光像を、前記縮小投影レンズと前記被露光基
板との間の側方より検出して少なくとも位置検出
方向について像面に結像させる検出結像光学系
と、該検出結像光学系により像面に結像された露
光領域表面の各照射位置の高さに対応した各光像
の位置を検出して該各照射位置の高さに対応した
信号を出力する少なくとも一次元のイメージセン
サと、該イメージセンサから出力される各照射位
置の高さに対応した信号に基づいて露光領域表面
の前記結像面に対する傾きを算出し、該算出され
た露光領域表面の傾きに基づいて前記ステージ手
段を微回動駆動制御する制御手段とを備えたこと
を特徴とする縮小投影露光装置およびその方法で
ある。また本発明は、上記縮小投影露光装置およ
びその方法において、前記制御手段は、イメージ
センサから出力される各照射位置の高さに対応し
た信号に基づいて露光領域表面の前記結像面に対
する平均的な変位を算出し、該算出された変位に
基づいて前記ステージ手段を縮小投影レンズの光
軸方向に微移動駆動制御する制御手段を有するこ
とを特徴とする。また本発明は、上記縮小投影露
光装置およびその方法において、前記照射手段
は、前記複数の光束を、前記被露光基板上の露光
領域表面の異なる照射位置に対してS偏光で照射
するように構成したことを特徴とする。
In order to achieve the above object, the present invention provides a reduction projection exposure apparatus and method for reducing and exposing a circuit pattern formed on a mask (reticle) onto the surface of an exposure area on an exposure target substrate using a reduction projection lens. stage means for slightly moving the exposure substrate in the optical axis direction of the reduction projection lens and further slightly rotating the exposure substrate with respect to the imaging plane of the reduction projection lens; an irradiation means for irradiating a plurality of light beams from the sides between them at different irradiation positions on the surface of the exposure area on the substrate to be exposed at an inclination angle of 70° or more with respect to the optical axis direction of the reduction projection lens; Detecting a light image irradiated and reflected from each of different irradiation positions on the surface of the exposure area from a side between the reduction projection lens and the substrate to be exposed, and forming the image on an image plane at least in the position detection direction. The imaging optical system and the detection imaging optical system detect the position of each light image corresponding to the height of each irradiation position on the surface of the exposure area that is imaged on the image plane, and adjust the height of each irradiation position. Calculating the inclination of the surface of the exposure area with respect to the imaging plane based on the at least one-dimensional image sensor outputting a corresponding signal and the signal corresponding to the height of each irradiation position output from the image sensor; A reduction projection exposure apparatus and a method thereof, characterized in that the apparatus further comprises a control means for controlling the stage means to rotate slightly based on the tilt of the surface of the exposure area. Further, the present invention provides the reduction projection exposure apparatus and method thereof, wherein the control means is configured to adjust the average of the surface of the exposure area relative to the image forming plane based on a signal corresponding to the height of each irradiation position output from the image sensor. The present invention is characterized by comprising a control means that calculates a displacement and controls the stage means to move finely in the optical axis direction of the reduction projection lens based on the calculated displacement. Further, the present invention provides the reduction projection exposure apparatus and method thereof, wherein the irradiation means is configured to irradiate the plurality of light beams with S-polarized light onto different irradiation positions on the surface of the exposure area on the substrate to be exposed. It is characterized by what it did.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係る縮小投影露光装置について図
面を参照して説明する。第1図は本発明に係る縮
小投影露光装置において、縮小レンズ(縮小投影
レンズ)1の焦点位置(結像面)にウエハ2の露
光領域の表面を焦点合わせする光学・機械系を示
す補足説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A reduction projection exposure apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a supplementary explanation showing an optical/mechanical system for focusing the surface of an exposure area of a wafer 2 on the focal position (imaging plane) of a reduction lens (reduction projection lens) 1 in a reduction projection exposure apparatus according to the present invention. It is a diagram.

第1図において、レーザ光源3からのレーザ光
束をビームエキスパンダ4により図の紙面表裏方
向に拡げて偏平な光束にし、スリツト5に入射さ
せる。スリツト5を通過した断面が細長い形状の
光を第1レンズ6を介して第1反射ミラー7に入
射させ、ミラー7で前記光束断面の細長い方向と
直交する方向に光路を曲げて、ウエハ2上に斜め
上方から照射することによりウエハ2上にスリツ
ト5の像5′を投影結像させる。このスリツト像
5′は第2反射ミラー8で光路を曲げて第2レン
ズ9により対物レンズ10の手前に結像させる。
この位置におけるスリツト像はスリツト5の位置
の像と同形状である。対物レンズ10はこのスリ
ツト像をさらに拡大するためのものであるが、対
物レンズ10の視野には限界があるため、スリツ
ト像の長手方向を圧縮するためにこの例では第1
円筒レンズ11を配置してある。対物レンズ10
で拡大したスリツト像をCCDの如きリニアイメ
ージセンサ12上に投影結像させるが、この場合
もセンサ12の受光部は細幅の窓であるため、第
2円筒レンズ13を配置し、スリツト像の全てを
圧縮してセンサ12の受光画素列上に投影結像さ
せている。
In FIG. 1, a laser beam from a laser light source 3 is expanded by a beam expander 4 in the direction of the plane of the drawing to form a flat beam, and the beam is made incident on a slit 5. The light having an elongated cross section that has passed through the slit 5 is incident on the first reflecting mirror 7 via the first lens 6, and the optical path is bent by the mirror 7 in a direction perpendicular to the elongated direction of the cross section of the light beam, and the light is directed onto the wafer 2. An image 5' of the slit 5 is projected onto the wafer 2 by irradiating the slit 5 obliquely from above. The optical path of this slit image 5' is bent by a second reflecting mirror 8, and an image is formed in front of the objective lens 10 by a second lens 9.
The slit image at this position has the same shape as the image at the slit 5 position. The objective lens 10 is for further enlarging this slit image, but since the field of view of the objective lens 10 is limited, in this example, the first lens is used to compress the slit image in the longitudinal direction.
A cylindrical lens 11 is arranged. Objective lens 10
The magnified slit image is projected onto a linear image sensor 12 such as a CCD, but in this case as well, the light receiving part of the sensor 12 is a narrow window, so a second cylindrical lens 13 is placed to capture the slit image. All are compressed and projected onto the light-receiving pixel array of the sensor 12.

第2図は第1図の例においてスリツトが各結像
位置でどの様な形状になるかを示しており、図の
紙面表裏方向に細長い一本のスリツト5の像が、
ウエハ2上では、で示すように幅方向に拡大さ
れたスリツト像5aとして、投影結像され、対物
レンズ10の手前では、で示す如く円筒レンズ
11によつて長手方向が圧縮されたスリツト像
5′aとして結像され、またリニアイメージセン
サ12上では、に示すように対物レンズ10で
拡大されたスリツト像5′aの長手方向を円筒レ
ンズ13によつて圧縮したスリツト像5″aとし
て投影結像されている。
FIG. 2 shows the shape of the slit at each imaging position in the example of FIG.
On the wafer 2, a slit image 5a enlarged in the width direction as shown in is projected and imaged, and in front of the objective lens 10, a slit image 5 compressed in the longitudinal direction by a cylindrical lens 11 as shown in is formed. 'a', and on the linear image sensor 12, the slit image 5'a, which has been enlarged by the objective lens 10 in the longitudinal direction, is compressed by the cylindrical lens 13 and projected as a slit image 5'a. imaged.

第3図にウエハ2上に結像される一本のスリツ
ト像5aの照射位置の違いによる検出位置の差を
示す。例えばウエハ2の表面形状が第3図に示す
ような凹凸形状となつているものとすると、その
上に塗布されたフオトレジスト14もその凹凸状
にならつた表面形状になる。このレジスタ14の
表面を検出する際、スリツト像5aが小さいと、
実線で示す光束で凹部を検出して縮小レンズ1の
焦点位置に合せ、これによつて露光を行なつた場
合に、表面部(凸部)は焦点位置からずれること
になるので、部分的に解像状態が悪いというよう
な事態が生じる恐れがあり、また逆に一転鎖線で
示す光束で凸部を検出すれば凹部で焦点ずれを起
こすことになる。さらにウエハ2が縮小レンズ1
の光軸に対して傾斜していると、焦点検出位置で
は高解像度で露光できるが、その他の箇所は焦点
ずれを起こし、解像しないという課題が生じる恐
れがある。
FIG. 3 shows the difference in detection position due to the difference in the irradiation position of one slit image 5a formed on the wafer 2. For example, if the surface of the wafer 2 has an uneven shape as shown in FIG. 3, the photoresist 14 applied thereon also has a surface that follows the same unevenness. When detecting the surface of this register 14, if the slit image 5a is small,
When the concave part is detected with the light beam shown by the solid line and aligned with the focal position of the reduction lens 1, and exposure is performed using this, the surface part (convex part) will be shifted from the focal position, so it will be partially There is a possibility that a situation such as poor resolution may occur, and conversely, if a convex portion is detected with the light beam shown by the dashed line, a defocus will occur at the concave portion. Furthermore, the wafer 2 is attached to the reduction lens 1.
If the lens is tilted with respect to the optical axis of the lens, exposure can be performed with high resolution at the focus detection position, but other locations may be out of focus and may not be resolved.

本発明は、上記課題を解決すべく、第4図に示
すように、ウエハ2の表面にスリツト像5aを複
数同時に投影結像させ、各々のスリツト像の平均
高さを縮小ンズの合焦位置とすることにより前述
の焦点ずれを解消することができる。第5図は本
発明の実施例を示すもので、第1図の装置におい
てスリツト5を複数並べて本発明を適用した場合
の要部の構成を示している。このようにスリツト
5を複数平行に並べた多重スリツト15を配置す
ると、第1レンズ6によつてウエハ2上の露光領
域にはスリツト5の幅方向が拡大された平行スリ
ツト像5bが投影結像される。この平行スリツト
像5bは、第2レンズ9で対物レンズの手前にス
リツト長手方向に縮小された像5′bとして結像
される。前述と同様に対物レンズ10により拡大
され第2円筒レンズ13でスリツト長さ方向に圧
縮されたスリツト像5′bは、第6図上部に示す
ようにリニアイメージセンサ12上に平行なスリ
ツト像5″bの列として投影結像され、そのとき
のセンサ12の出力は第6図下部に示す様にな
る。
In order to solve the above problems, the present invention projects and forms a plurality of slit images 5a on the surface of the wafer 2 at the same time, as shown in FIG. By doing so, the above-mentioned defocus can be eliminated. FIG. 5 shows an embodiment of the present invention, and shows the configuration of essential parts when the present invention is applied to the apparatus shown in FIG. 1 by arranging a plurality of slits 5. When multiple slits 15 in which a plurality of slits 5 are arranged in parallel are arranged in this way, a parallel slit image 5b, in which the width direction of the slits 5 is enlarged, is projected onto the exposure area on the wafer 2 by the first lens 6. be done. This parallel slit image 5b is formed by the second lens 9 in front of the objective lens as an image 5'b reduced in the longitudinal direction of the slit. The slit image 5'b, which has been enlarged by the objective lens 10 and compressed in the longitudinal direction of the slit by the second cylindrical lens 13 in the same way as described above, forms a parallel slit image 5 on the linear image sensor 12, as shown in the upper part of FIG. It is projected and imaged as a column "b", and the output of the sensor 12 at that time is as shown in the lower part of FIG.

ここで一般に縮小投影露光装置における焦点合
せは、試し焼きを行なつて縮小レンズの合焦位置
(結像面の高さ位置)を求めておき、これを基準
位置としてウエハ2を位置決めすることにより行
なわれる。即ち、ウエハ2を微小距離(0.5μm程
度)ずつ上下させて試し焼きを行ない、最も解像
状態が良い時のウエハ2の位置をセンサ12上の
スリツト像5″bの位置X1,X2,X3…Xnのデー
タとして、適当な記憶装置に記憶させておく。次
いで新たにセツトしたウエハ2上にスリツト像5
bを投影結像し、それによつてセンサ12上に結
像されるスリツト像5″bが前記記憶装置内の位
置データX1,X2,X3…Xnで表わされる位置に来
るようにウエハステージ16を上下させ、焦点合
せを行なう。尚、スリツト像5″bの位置は、第
7図に拡大して示すように、センサ12の出力に
対して閾値Thを設定し、その閾値に相当するセ
ンサ12の画素20を求め、その中央値をスリツ
ト像5″bの位置と設定するようにしてもよい。
In general, focusing in a reduction projection exposure apparatus is performed by performing trial printing to determine the focus position (height position of the image plane) of the reduction lens, and then positioning the wafer 2 using this as a reference position. It is done. That is, test printing is performed by moving the wafer 2 up and down by a minute distance (approximately 0.5 μm), and the position of the wafer 2 when the resolution is the best is determined by the positions of the slit image 5''b on the sensor 12, X 1 and X 2 . , X 3 ...
The wafer is projected and imaged so that the slit image 5''b formed on the sensor 12 is located at the position represented by the position data X 1 , X 2 , X 3 . . . Xn in the storage device. Focusing is performed by moving the stage 16 up and down.The position of the slit image 5''b is determined by setting a threshold value Th for the output of the sensor 12, as shown in an enlarged view in FIG. The pixels 20 of the sensor 12 may be determined, and the median value thereof may be set as the position of the slit image 5''b.

第5図の実施例では複数のスリツト5がX方向
のみに並んでいたが、第8図はXYの2方向に複
数のスリツト5が並んでいる多重スリツト17を
用いた実施例をしめしている。この場合、光電変
換器としてはエリアイメージセンサ17を用い
る。このように、XY方向にスリツト5を設ける
と、ウエハ2の傾きまでも検出し位置合せできる
ようになる。この場合においても前述と同様に縮
小レンズの合焦位置(結像面の高さ位置)を予め
試し焼きによつて求めておき、そのときのエリア
イメージセンサ17上のスリツト像5″cの位置
をメモリーに記憶しておく。このようにすれば、
第9図a〜dに示すように、ウエハ2に投影結像
されたスリツト像5cの位置(これはセンサ17
上に投影結像されたスリツト像5″cの位置と同
等)により、ウエハ2の傾き即ち姿勢も検出する
ことができる。第9図において、aは合焦位置に
ある時、bはX方向に上下の傾きがあり、Y方向
について合焦している時、cはX方向について合
焦しており、Y方向について上下の傾きがある
時、dはXY両方向について上下の傾きがある場
合をしめしている。
In the embodiment shown in Fig. 5, a plurality of slits 5 are lined up only in the X direction, but Fig. 8 shows an embodiment using a multiple slit 17 in which a plurality of slits 5 are lined up in two directions, XY. . In this case, the area image sensor 17 is used as the photoelectric converter. By providing the slits 5 in the XY directions in this way, even the inclination of the wafer 2 can be detected and aligned. In this case as well, the focusing position (height position of the imaging surface) of the reduction lens is determined in advance by trial printing in the same manner as described above, and the position of the slit image 5''c on the area image sensor 17 at that time is determined in advance. is stored in memory.In this way,
As shown in FIGS. 9a to 9d, the position of the slit image 5c projected onto the wafer 2 (this is the position of the slit image 5c projected on the wafer 2)
The inclination or posture of the wafer 2 can also be detected from the position of the slit image 5''c projected and formed above. In FIG. 9, a is at the focused position, b is the X direction has a vertical tilt and is focused in the Y direction, c is focused in the X direction and has a vertical tilt in the Y direction, and d indicates a case where there is a vertical tilt in both the X and Y directions. It's showing.

以上のような検出系に加えてウエハを傾き調整
自在なホルダー付きのステージに載置すれば、縮
小レンズの結像面へのウエハの傾き調整ができ、
極めて高精度の焦点検出と焦点合せを実現し得る
ものである。
In addition to the detection system described above, if the wafer is placed on a stage with a holder whose tilt can be adjusted, the tilt of the wafer to the imaging plane of the reduction lens can be adjusted.
This makes it possible to achieve extremely high precision focus detection and focusing.

次にウエハ2上へ照射する光束の入射角と偏光
方向について第10図と第11図によつて説明す
る。
Next, the incident angle and polarization direction of the light beam irradiated onto the wafer 2 will be explained with reference to FIGS. 10 and 11.

ウエハ2にフオトレジスタ14を塗布した場合
の光の進行方向は、第10図に示すように、レジ
スト14の表面で反射するものと、レジスタ14
の中に入り込んで下地層19で反射して再び出て
くる光、レジスト14内で反射する光、下地層1
9に入り込む光などがある。レジスト14表面だ
けで光が反射すれば、リニアイメージセンサ12
やエリアイメージセンサ17でそのレジスト表面
の合焦位置検出が可能となる。しかしながら、下
地層19からの反射光があると、前記センサ上で
はどこの位置を検出しているのか正確に判断でき
ない場合が生じる。そこで出来るだけレジスト1
4表面での反射率を高くする必要があり、このた
め好ましくはウエハ2への光束の入射角を70°以
上に大きくし、また入射光束をS偏光とするのが
よい。
When the photoresist 14 is coated on the wafer 2, the traveling direction of the light is as shown in FIG.
Light that enters the inside, reflects on the base layer 19 and comes out again, light that is reflected within the resist 14, base layer 1
There is light that enters 9. If light is reflected only on the surface of the resist 14, the linear image sensor 12
The area image sensor 17 can detect the focused position on the resist surface. However, if there is reflected light from the base layer 19, it may not be possible to accurately determine which position is being detected on the sensor. So resist 1 as much as possible
It is necessary to increase the reflectance on the wafer 4 surface, and for this reason, it is preferable that the angle of incidence of the light beam onto the wafer 2 be made larger than 70°, and that the incident light beam be S-polarized.

〔発明の効果〕〔Effect of the invention〕

以上の述べたように本発明によれば、縮小投影
露光装置およびその方法において、複数の光束を
被露光基板上の露光領域表面の異なる照射位置に
縮小投影レンズの光軸方向に対して70°以上の傾
斜角度で照射し、露光領域表面の異なる照射位置
の各々から反射する光像を少なくとも位置検出方
向について像面に結像させ、像面に結像された露
光領域表面の各照射位置の高さに対応した各光像
の位置を少なくとも一次元のイメージセンサで検
出し、該イメージセンサから出力される各照射位
置の高さに対応した信号に基づいて被露光基板上
の露光領域表面の縮小投影レンズの結像面に対す
る傾きを算出し、該算出された被露光基板表面上
の露光領域の傾きに基づいて被露光基板の傾きを
調整するようにしたので、被露光基板上の露光領
域表面を縮小投影レンズの結像面に高精度に合ら
せることができ、マスク(レチクル)上に形成さ
れた微細な回路パターンを縮小投影レンズにより
被露光基板上の露光領域に高解像度で縮小投影露
光焼き付けを可能にして、LSI製品歩留りの一層
の向上と高集積化とをはかることができる効果を
奏する。
As described above, according to the present invention, in the reduction projection exposure apparatus and its method, a plurality of light beams are directed at different irradiation positions on the surface of the exposure area on the substrate to be exposed at an angle of 70° with respect to the optical axis direction of the reduction projection lens. The light images reflected from each of the different irradiation positions on the surface of the exposure area are focused on an image plane at least in the position detection direction, and each irradiation position on the surface of the exposure area that is imaged on the image plane is The position of each light image corresponding to the height is detected by at least a one-dimensional image sensor, and the surface of the exposure area on the exposed substrate is detected based on the signal corresponding to the height of each irradiation position output from the image sensor. The inclination of the reduction projection lens with respect to the imaging plane is calculated, and the inclination of the exposed substrate is adjusted based on the calculated inclination of the exposed area on the surface of the exposed substrate. The surface can be aligned with the imaging plane of the reduction projection lens with high precision, and the fine circuit pattern formed on the mask (reticle) can be reduced to the exposure area on the exposed substrate with high resolution using the reduction projection lens. By making projection exposure printing possible, it is possible to further improve the yield of LSI products and achieve higher integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る縮小投影露光装置におい
て、焦点合わせする光学・機械系を示す補足説明
図、第2図は第1図における各部スリツト像の形
状を示す構成図、第3図は検出領域が微小な場合
の焦点検出位置のずれを示す概念図、第4図は本
発明に従つて複数のスリツト像を用いた平均的焦
点位置の検出を示す概念図、第5図は本発明にか
かる多重スリツト方式を示す要部の構成図、第6
図はリニアイメージセンサの受光面上に投影結像
されたスリツト像を添画したセンサ画素位置に対
する出力の分布を示す線図、第7図は第6図の1
スリツト分を幅方向に拡大して同様に受光面上の
スリツト像を添画したセンサ画素位置に対する出
力の分布を拡大して示す線図、第8図はスリツト
をXYの二方向に設けた焦点合せ装置の全体構成
図、第9図a〜dは第8図の方式による被観察物
の姿勢状態を示す概念図、第10図はウエハに塗
布したフオトレジストに照射した光束の進行方向
とセンサの出力を示す概念図、第11図は入射角
と偏光の違いによるレジスト上での反射率の変化
を示す線図である。 1……縮小レンズ、2……ウエハ、3……レー
ザ光源、5……スリツト、6……第1レンズ、9
……第2レンズ、10……対物レンズ、12……
リニアイメージセンサ、13……第2円筒レン
ズ、14……フオトレジスト、15……多重スリ
ツト、16……ウエハステージ、17……多重ス
リツト、18……エリアイメージセンサ。
Fig. 1 is a supplementary explanatory diagram showing the optical and mechanical system for focusing in the reduction projection exposure apparatus according to the present invention, Fig. 2 is a configuration diagram showing the shape of the slit image of each part in Fig. 1, and Fig. 3 is a detection diagram. FIG. 4 is a conceptual diagram showing the deviation of the focus detection position when the area is minute. FIG. 4 is a conceptual diagram showing the detection of the average focal point position using a plurality of slit images according to the present invention. FIG. A configuration diagram of the main parts showing such a multiple slit system, No. 6
The figure is a line diagram showing the output distribution with respect to the sensor pixel position with the slit image projected and formed on the light-receiving surface of the linear image sensor.
A line diagram showing an enlarged distribution of output with respect to the sensor pixel position with the slit portion enlarged in the width direction and the slit image on the light-receiving surface similarly attached. Figure 8 shows the focal point with the slit provided in the two directions of X and Y. The overall configuration of the alignment device, Figures 9a to 9d are conceptual diagrams showing the posture of the object to be observed using the method shown in Figure 8, and Figure 10 shows the traveling direction of the light beam irradiated onto the photoresist coated on the wafer and the sensor. FIG. 11 is a diagram showing the change in reflectance on the resist due to the difference in incident angle and polarization. DESCRIPTION OF SYMBOLS 1... Reduction lens, 2... Wafer, 3... Laser light source, 5... Slit, 6... First lens, 9
...Second lens, 10...Objective lens, 12...
Linear image sensor, 13... second cylindrical lens, 14... photoresist, 15... multiple slits, 16... wafer stage, 17... multiple slits, 18... area image sensor.

Claims (1)

【特許請求の範囲】 1 マスクに形成された回路パターンを縮小投影
レンズにより被露光基板上の露光領域に縮小投影
露光する縮小投影露光装置において、前記被露光
基板を前記縮小投影レンズの光軸方向に微移動さ
せ、更に前記縮小投影レンズの結像面に対する前
記被露光基板を微回動させるステージ手段と、前
記縮小投影レンズと前記被露光基板との間の側方
より複数の光束を前記被露光基板上の露光領域表
面の異なる照射位置に縮小投影レンズの光軸方向
に対して70°以上の傾斜角度で照射する照射手段
と、該照射手段で照射されて露光領域表面の異な
る照射位置の各々から反射する光像を、前記縮小
投影レンズと前記被露光基板との間の側方より検
出して少なくとも位置検出方向について像面に結
像させる検出結像光学系と、該検出結像光学系に
より像面に結像された露光領域表面の各照射位置
の高さに対応した各光像の位置を検出して該各照
射位置の高さに対応した信号を出力する少なくと
も一次元のイメージセンサと、該イメージセンサ
から出力される各照射位置の高さに対応した信号
に基づいて露光領域表面の前記結像面に対する傾
きを算出し、該算出された露光領域表面の傾きに
基づいて前記ステージ手段を微回動駆動制御する
制御手段とを備えたことを特徴とする縮小投影露
光装置。 2 前記制御手段は、前記イメージセンサから出
力される各照射位置の高さに対応した信号に基づ
いて露光領域表面の前記結像面に対する平均的な
変位を算出し、該算出された変位に基づいて前記
ステージ手段を縮小投影レンズの光軸方向に微移
動駆動制御する制御手段を有することを特徴とす
る特許請求の範囲第1項記載の縮小投影露光装
置。 3 前記照射手段は、前記複数の光束を、前記露
光領域表面の異なる照射位置に対してS偏光で照
射するように構成したことを特徴とする特許請求
の範囲第1項記載の縮小投影露光装置。 4 前記照射手段には、前記複数の光束を、前記
位置検出方向に対してほぼ直角方向に延べたスリ
ツト状光束で形成する光学手段を有することを特
徴とする特許請求の範囲第1項記載の縮小投影露
光装置。 5 更に前記検出結像光学系には、照射位置の
各々から反射するスリツト状光像を、前記位置検
出方向に対してほぼ直角方向に集光させて像面に
結像させる集光光学系を有することを特徴とする
特許請求の範囲第4項記載の縮小投影露光装置。 6 マスクに形成された回路パターンを縮小投影
レンズにより被露光基板上の露光領域表面に縮小
投影露光する縮小投影露光方法において、照射手
段により前記縮小投影レンズと前記被露光基板と
の間の側方より複数の光束を前記被露光基板上の
露光領域表面の異なる照射位置に縮小投影レンズ
の光軸方向に対して70°以上の傾斜角度で照射し、
該照射されて露光領域表面の異なる照射位置の
各々から反射する光像を、前記縮小投影レンズと
前記被露光基板との間の側方より検出して結像光
学系により少なくとも位置検出方向について像面
に結像させ、該像面に結像された露光領域表面の
各照射位置の高さに対応した各光像の位置を少な
くとも一次元のイメージセンサにより検出して該
各照射位置の高さに対応した信号を出力し、該出
力される各照射位置の高さに対応した信号に基づ
いて露光領域表面の前記結像面に対する傾きを算
出し、該算出された露光領域表面の傾きに基づい
て被露光基板を載置したステージ手段を微回動駆
動制御して露光領域表面の前記結像面に対する傾
きを補正することを特徴とする縮小投影露光方
法。 7 前記複数の光束を、前記露光領域表面の異な
る照射位置に対してS偏光で照射することを特徴
とする特許請求の範囲第6項記載の縮小投影露光
方法。 8 マスクに形成された回路パターンを縮小投影
レンズにより被露光基板上の露光領域表面に縮小
投影露光する縮小投影露光装置において、照射手
段により前記縮小投影レンズと前記被露光基板と
の間の側方より複数の光束を前記被露光基板上の
露光領域表面の異なる照射位置に縮小投影レンズ
の光軸方向に対して70°以上の傾斜角度で照射し、
該照射されて露光領域表面の異なる照射位置の
各々から反射する光像を、前記縮小投影レンズと
前記被露光基板との間の側方より検出して結像光
学系により少なくとも位置検出方向について像面
に結像させ、該像面に結像された露光領域表面の
各照射位置の高さに対応した各光像の位置を少な
くとも一次元のイメージセンサにより検出して該
各照射位置の高さに対応した信号を出力し、該出
力される各照射位置の高さに対応した信号に基づ
いて露光領域表面の前記結像面に対する傾きを算
出し、該算出された露光領域表面の傾きに基づい
て被露光基板を載置したステージ手段を微回動駆
動制御して露光領域表面の前記結像面に対する傾
きを補正し、更に前記イメージセンサから出力さ
れる各照射位置の高さに対応した信号に基づいて
露光領域表面の前記結像面に対する平均的な変位
を算出し、該算出された変位に基づいて前記ステ
ージ手段を縮小投影レンズの光軸方向に微移動駆
動制御して露光領域表面を前記結像面に合わせる
ことを特徴とする縮小投影露光方法。 9 前記複数の光束を、前記露光領域の異なる照
射位置に対してS偏光で照射することを特徴とす
る特許請求の範囲第8項記載の縮小投影露光方
法。
[Scope of Claims] 1. In a reduction projection exposure apparatus that performs reduction projection exposure of a circuit pattern formed on a mask onto an exposure area on a substrate to be exposed using a reduction projection lens, the substrate to be exposed is positioned in the optical axis direction of the reduction projection lens. stage means for slightly moving the substrate to be exposed relative to the image forming surface of the reduction projection lens; An irradiation means that irradiates different irradiation positions on the surface of the exposure area on the exposure substrate at an angle of inclination of 70° or more with respect to the optical axis direction of the reduction projection lens; a detection and imaging optical system that detects a light image reflected from each from a side between the reduction projection lens and the substrate to be exposed and forms the image on an image plane at least in the position detection direction; At least one-dimensional image that detects the position of each light image corresponding to the height of each irradiation position on the surface of the exposure area formed on the image plane by the system and outputs a signal corresponding to the height of each irradiation position. Based on the sensor and a signal corresponding to the height of each irradiation position output from the image sensor, calculate the inclination of the exposure area surface with respect to the image forming plane, and based on the calculated inclination of the exposure area surface, 1. A reduction projection exposure apparatus comprising: a control means for controlling a stage means in a fine rotational manner. 2. The control means calculates an average displacement of the exposure area surface with respect to the imaging plane based on a signal corresponding to the height of each irradiation position output from the image sensor, and calculates an average displacement of the exposure area surface with respect to the imaging plane based on the calculated displacement. 2. The reduction projection exposure apparatus according to claim 1, further comprising control means for finely moving and controlling the stage means in the optical axis direction of the reduction projection lens. 3. The reduction projection exposure apparatus according to claim 1, wherein the irradiation means is configured to irradiate the plurality of light beams as S-polarized light onto different irradiation positions on the surface of the exposure area. . 4. The method according to claim 1, wherein the irradiation means includes an optical means for forming the plurality of light beams into a slit-like light beam extending in a direction substantially perpendicular to the position detection direction. Reduction projection exposure equipment. 5. The detection and imaging optical system further includes a condensing optical system that condenses the slit-shaped light images reflected from each of the irradiation positions in a direction substantially perpendicular to the position detection direction to form an image on an image plane. A reduction projection exposure apparatus according to claim 4, characterized in that the reduction projection exposure apparatus comprises: 6 In a reduction projection exposure method in which a circuit pattern formed on a mask is subjected to reduction projection exposure on the surface of an exposure area on a substrate to be exposed using a reduction projection lens, an irradiation means is used to expose a side surface between the reduction projection lens and the substrate to be exposed. irradiating a plurality of light beams to different irradiation positions on the surface of the exposure area on the substrate to be exposed at an inclination angle of 70° or more with respect to the optical axis direction of the reduction projection lens,
The irradiated light images reflected from different irradiation positions on the surface of the exposure area are detected from the side between the reduction projection lens and the substrate to be exposed, and an image is formed at least in the position detection direction by an imaging optical system. The image is formed on a surface, and the position of each light image corresponding to the height of each irradiation position on the surface of the exposure area formed on the image surface is detected by at least one-dimensional image sensor, and the height of each irradiation position is detected by using at least one-dimensional image sensor. output a signal corresponding to the height of each irradiation position, calculate the inclination of the exposure area surface with respect to the imaging plane based on the output signal corresponding to the height of each irradiation position, and based on the calculated inclination of the exposure area surface. 1. A reduction projection exposure method, comprising controlling a stage means on which a substrate to be exposed is placed to rotate slightly to correct the inclination of the surface of the exposure area with respect to the image forming plane. 7. The reduction projection exposure method according to claim 6, wherein the plurality of light beams are irradiated with S-polarized light onto different irradiation positions on the surface of the exposure area. 8 In a reduction projection exposure apparatus that performs reduction projection exposure of a circuit pattern formed on a mask onto the surface of an exposure area on a substrate to be exposed using a reduction projection lens, an irradiation means is used to expose a side surface between the reduction projection lens and the substrate to be exposed. irradiating a plurality of light beams to different irradiation positions on the surface of the exposure area on the substrate to be exposed at an inclination angle of 70° or more with respect to the optical axis direction of the reduction projection lens,
The irradiated light images reflected from different irradiation positions on the surface of the exposure area are detected from the side between the reduction projection lens and the substrate to be exposed, and an image is formed at least in the position detection direction by an imaging optical system. The image is formed on a surface, and the position of each light image corresponding to the height of each irradiation position on the surface of the exposure area formed on the image surface is detected by at least one-dimensional image sensor, and the height of each irradiation position is detected by using at least one-dimensional image sensor. output a signal corresponding to the height of each irradiation position, calculate the inclination of the exposure area surface with respect to the imaging plane based on the output signal corresponding to the height of each irradiation position, and based on the calculated inclination of the exposure area surface. The stage means on which the substrate to be exposed is mounted is controlled to rotate slightly to correct the inclination of the surface of the exposure area with respect to the image forming plane, and furthermore, a signal corresponding to the height of each irradiation position is output from the image sensor. An average displacement of the surface of the exposure area with respect to the image forming plane is calculated based on the calculated displacement, and the stage means is controlled to be finely moved in the optical axis direction of the reduction projection lens based on the calculated displacement to change the surface of the exposure area. A reduction projection exposure method characterized by aligning the image plane with the image forming plane. 9. The reduction projection exposure method according to claim 8, wherein the plurality of light beams are irradiated with S-polarized light to different irradiation positions in the exposure area.
JP59195728A 1984-09-20 1984-09-20 Optical alignment device Granted JPS6174338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195728A JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195728A JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6211247A Division JP2728368B2 (en) 1994-09-05 1994-09-05 Exposure method

Publications (2)

Publication Number Publication Date
JPS6174338A JPS6174338A (en) 1986-04-16
JPH0564450B2 true JPH0564450B2 (en) 1993-09-14

Family

ID=16345973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195728A Granted JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Country Status (1)

Country Link
JP (1) JPS6174338A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336526A (en) * 1986-07-30 1988-02-17 Oki Electric Ind Co Ltd Wafer exposure equipment
JP2556015B2 (en) * 1986-12-25 1996-11-20 株式会社ニコン Position shift detector
US6094268A (en) * 1989-04-21 2000-07-25 Hitachi, Ltd. Projection exposure apparatus and projection exposure method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516565A (en) * 1974-06-06 1976-01-20 Ibm KOGAKUTEKIFUKUSHAKINIOITE BUTSUTAIHYOMENOYOBI * MOSHIKUHAZOHYOMENOJIDOTEKINIICHITSUKERUTAMENO HOHO
JPS55134812A (en) * 1979-04-02 1980-10-21 Optimetrix Corp Optical collection system
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system
JPS5696203A (en) * 1979-12-27 1981-08-04 Fujitsu Ltd Detection device for optical position
JPS56101112A (en) * 1980-01-16 1981-08-13 Fujitsu Ltd Exposure method
JPS58156937A (en) * 1982-03-12 1983-09-19 Hitachi Ltd Exposing device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS5999216A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS5999215A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS59121932A (en) * 1982-12-28 1984-07-14 Fujitsu Ltd Automatic focusing control unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516565A (en) * 1974-06-06 1976-01-20 Ibm KOGAKUTEKIFUKUSHAKINIOITE BUTSUTAIHYOMENOYOBI * MOSHIKUHAZOHYOMENOJIDOTEKINIICHITSUKERUTAMENO HOHO
JPS55134812A (en) * 1979-04-02 1980-10-21 Optimetrix Corp Optical collection system
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system
JPS5696203A (en) * 1979-12-27 1981-08-04 Fujitsu Ltd Detection device for optical position
JPS56101112A (en) * 1980-01-16 1981-08-13 Fujitsu Ltd Exposure method
JPS58156937A (en) * 1982-03-12 1983-09-19 Hitachi Ltd Exposing device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS5999216A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS5999215A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS59121932A (en) * 1982-12-28 1984-07-14 Fujitsu Ltd Automatic focusing control unit

Also Published As

Publication number Publication date
JPS6174338A (en) 1986-04-16

Similar Documents

Publication Publication Date Title
US4677301A (en) Alignment apparatus
JP3555230B2 (en) Projection exposure equipment
JP3374413B2 (en) Projection exposure apparatus, projection exposure method, and integrated circuit manufacturing method
JP3572430B2 (en) Exposure method and apparatus
US6057908A (en) Exposure condition measurement method
KR100471524B1 (en) Exposure method
JP3880155B2 (en) Positioning method and positioning device
US5361122A (en) Autofocusing device and projection exposure apparatus with the same
JPH08145645A (en) Inclination detector
US7072027B2 (en) Exposure apparatus, method of controlling same, and method of manufacturing devices
JPH09223650A (en) Aligner
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
JPH0564450B2 (en)
JP3754743B2 (en) Surface position setting method, wafer height setting method, surface position setting method, wafer surface position detection method, and exposure apparatus
JP2728368B2 (en) Exposure method
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JPH104055A (en) Automatic focusing device and manufacture of device using it
JP3376219B2 (en) Surface position detecting device and method
KR20190036511A (en) Apparatus for aligning dmd of exposure optics and method thereof
JPH0744138B2 (en) Alignment device
JP3197629B2 (en) Light projection exposure equipment
JP3673625B2 (en) Method for forming fine pattern
JP2691229B2 (en) Projection exposure apparatus and alignment method using the apparatus
JP2671784B2 (en) Projection exposure equipment
JPH0556014B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term