JPS5999215A - Measuring device of surface height of body - Google Patents

Measuring device of surface height of body

Info

Publication number
JPS5999215A
JPS5999215A JP20828782A JP20828782A JPS5999215A JP S5999215 A JPS5999215 A JP S5999215A JP 20828782 A JP20828782 A JP 20828782A JP 20828782 A JP20828782 A JP 20828782A JP S5999215 A JPS5999215 A JP S5999215A
Authority
JP
Japan
Prior art keywords
light
bright
image
dark images
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20828782A
Other languages
Japanese (ja)
Other versions
JPS6253049B2 (en
Inventor
Toyoki Kitayama
北山 豊樹
Shigeru Moriya
茂 守屋
Kazuhiko Komatsu
一彦 小松
Teruaki Okino
輝昭 沖野
Shunichi Ide
俊一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Jeol Ltd
Nihon Denshi KK
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK, Nippon Telegraph and Telephone Corp filed Critical Jeol Ltd
Priority to JP20828782A priority Critical patent/JPS5999215A/en
Publication of JPS5999215A publication Critical patent/JPS5999215A/en
Publication of JPS6253049B2 publication Critical patent/JPS6253049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To expand the measurement range of the surface height of a body by irradiating the surface of the body with light at a specific angle and forming a light and dark image, and converging its reflected light for image formation on a semiconductor array and finding the distance from the reference position of the light and dark image. CONSTITUTION:The light emitted from a light source 1 is made incident to the surface of a material 2 to be exposed through a slit plate 3' and a lens 4 at the specific angle to form the light and dark image. Its reflected light is expanded by an image forming lens 5 to form an image on the semiconductor array sensor 13. Its output is sent to an arithmetic circuit 15 through an amplifier 14 to find the surface height of the material on the basis of the distance from the reference position of the light and dark image, and the height is displayed on a display device 16 and also sent as a control signal to an amplifier and the deflector 11 of an electron gun 8. The image forming light of slanting incidence is used, so the measurement range of the surface height is expanded.

Description

【発明の詳細な説明】 本発明は物体の高さ、例えば荷電粒子線露光装置におけ
るマスクブランクやウェハ表面の高さを極めて正確に検
知することの可能な装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus capable of extremely accurately detecting the height of an object, such as the height of a mask blank or wafer surface in a charged particle beam exposure apparatus.

例えば、電子線露光装置により半導体ウェハ等上に微細
回路パターンを描画する際、該ウェハ表面が設定した高
さからずれているど、露光された回路の位置や大きさが
所定のものと異なってしまい、特に半導体ウェハにおけ
る多重露光をするとぎには描画精度は著しく低下してし
まう。従って、被露光材料の高さを正確に測定すること
は高精度な描画のために極めて重要である。
For example, when drawing a fine circuit pattern on a semiconductor wafer etc. using an electron beam exposure device, the wafer surface may deviate from the set height or the position or size of the exposed circuit may differ from the predetermined one. In particular, when multiple exposure is performed on a semiconductor wafer, the drawing accuracy is significantly reduced. Therefore, accurately measuring the height of the exposed material is extremely important for highly accurate drawing.

従来の高さ測定装置としては、被露光材料の表面に対向
して電極を配置し、この表面と電極との間に形成される
コンデンサの静電容量が該表面の上下動に伴って変化す
ることを利用するもの及び被露光材料表面にレーザ光を
照射し、その表面での反射光と照射光との干渉縞を利用
するものが使用されている。
In conventional height measurement devices, an electrode is placed opposite the surface of the material to be exposed, and the capacitance of a capacitor formed between this surface and the electrode changes as the surface moves up and down. There are two types of laser beams in use: one that irradiates the surface of a material to be exposed with laser light and uses interference fringes between the reflected light on the surface and the irradiated light.

しかし乍ら、前者では静電界の発生があるので、測定特
電子線に悪影響を与えることになる。従つて、高さ測定
点は最も重要な電子線照射点から著しく頗れた点になら
ざるを得ず、高い測定精度は望めない。又、後者は光学
的測定であるので、電子線照射点と測定点とを一致させ
ることはできるが、干渉パルスの数の積算を利用してい
るので、被露光月利表面の凹凸を横切ったりして光の中
断があると、その後の測定は全く信頼性のないものとな
る。
However, in the former case, an electrostatic field is generated, which adversely affects the measured special electron beam. Therefore, the height measurement point must be located at a point that stands out from the most important electron beam irradiation point, and high measurement accuracy cannot be expected. In addition, since the latter is an optical measurement, it is possible to match the electron beam irradiation point and the measurement point, but since it uses the integration of the number of interference pulses, it is possible to traverse the unevenness of the exposed surface. If there is an interruption in the light, subsequent measurements will be completely unreliable.

この様な欠点を解決し1qる装置が近時提案されている
。この装置は、第1図に示す如く光源1よりの光を被露
光月利2の表面に対して斜め方向から投射し、この投射
光をアパーチャを右する部材3に照射してその通過した
光をレンズ4によって前記被露光材料表面近傍に結像せ
しめ、該材料表面で反射された光の進行方向にレンズ5
を置いて前記像をイメージディセクタ−管6の光電検出
面−1ニに結像するようになし、該像の位置に応じた信
号を発生し、それより高さ変位を演算するようになした
ものである。
Recently, devices have been proposed that solve these drawbacks. As shown in FIG. 1, this device projects light from a light source 1 obliquely onto the surface of an exposed object 2, and irradiates this projected light onto a member 3 on the right side of an aperture, so that the light that passes through it is is imaged near the surface of the material to be exposed by the lens 4, and the lens 5 is directed in the traveling direction of the light reflected by the material surface.
is placed so that the image is formed on the photoelectric detection surface 1 of the image dissector tube 6, a signal corresponding to the position of the image is generated, and the height displacement is calculated from the signal. This is what I did.

斯かる装置において、今月料2が第2図に示J如く、2
aから211こ高さhだけ変化した場合、アパーチャ像
ρのramp’ とp ″との間隔を1−、レンズ50
倍率をM、光の人1反則角をθとしたとき、検出面での
アパーチャ像のズレΦ△は△−M・1−cosθ−M・
2  hcosθで与えられる。上記M及びθは既知で
あるので、Δが求まれば容易に高さ変位りが求まること
になる。
In such a device, the monthly charge 2 is 2 as shown in FIG.
When the height changes from a by 211 times h, the distance between ramp' and p'' of the aperture image ρ is set to 1-, and the lens 50
When the magnification is M and the angle of light deviation is θ, the deviation of the aperture image on the detection surface Φ△ is △-M・1-cosθ-M・
It is given by 2hcosθ. Since M and θ are known, if Δ is found, the height displacement can be easily found.

この装置は非接触、光学式であり電子線に何等の影響を
与えることなく該電子線の照射点にお(プる表面高さを
測定でき、且つ干渉パルスの積算は用いないので、凹凸
等の光中断部があっても正確な高さ測定が可能であると
いう効果を有している。
This device is a non-contact, optical type that can measure the surface height of the electron beam at the irradiation point without affecting the electron beam in any way, and since it does not use the integration of interference pulses, it can measure unevenness, etc. This has the effect that accurate height measurement is possible even if there is a light interruption part.

しかし、前記イメージディセクタ−管は光電変換面、ア
パーヂャ板、2次電子増倍管、コレクター電極、静電レ
ンズ、偏向コイル及び各部の電源等から構成されるので
構造が複雑で大型であり、且つ非常に高価であるという
問題がある。特に、装置が大型であることは狭隘な露光
室への設置が困難となり折角の利点をもつ装置の活用が
できなくなる。ぞこで、イメージディセクタ−管に代え
て半導体アレイセンサを使用すれば−に記構進向問題は
解決覆るが、新たな問題が生ずる。即ち、半導体アレイ
センサは半導体光検出素子を10〜3Q p%のピッチ
間隔で多数配列し1ζものであるが、現在市販の最も多
い配列数は2oz+8滴である。
However, the image dissector tube is composed of a photoelectric conversion surface, an aperture plate, a secondary electron multiplier tube, a collector electrode, an electrostatic lens, a deflection coil, a power source for each part, etc., so the structure is complicated and large. Another problem is that it is very expensive. In particular, the large size of the apparatus makes it difficult to install it in a narrow exposure room, making it impossible to utilize the apparatus, which has many advantages. Now, if a semiconductor array sensor is used in place of the image dissector tube, the orientation problem can be solved, but a new problem arises. That is, the semiconductor array sensor is a 1ζ type in which a large number of semiconductor photodetecting elements are arranged at a pitch interval of 10 to 3Qp%, but the largest number of arrays currently available on the market is 2oz+8 drops.

今、配列素子のピッチPを251111とすると素子の
長さは約50mm程度である。第1図において結像レン
ズ5の倍率Mを10倍とし、θが小さく COSθを略
1とみなすど前述の式から最大の高さ変位tiihma
xは約2.5mmとなる。つまり、測定可能高さ範囲は
2mm〜3mm程度しかないことになる。
Now, if the pitch P of the array elements is 251111, the length of the elements is about 50 mm. In Fig. 1, the magnification M of the imaging lens 5 is 10 times, θ is small, and COS θ is assumed to be approximately 1. From the above formula, the maximum height displacement tiihma
x is approximately 2.5 mm. In other words, the measurable height range is only about 2 mm to 3 mm.

又、測定精度向上のためMを100倍どすると高さ範囲
は0.25mmにしかならない。
Furthermore, if M is increased by 100 times to improve measurement accuracy, the height range becomes only 0.25 mm.

而して本発明は半導体アレイセンサを用いて測定範囲を
拡大することを目的とJ−るもので、その構成は物体の
表面に一定角度θで光を照q・1シ、且つその照射点近
傍に複数の明暗像を結ばせる光照射光学系と、前記照射
点から反射する光を集光し前記複数の明暗像を結像づ−
る光学系と、該明暗像の結像面に置かれた多数の半導体
光検出素子からなる半導体アレイセンザと、該半導体ア
レイセンサ上にお【プる明暗像の基準位置からの距離を
求める回路とを備え、前記半導体アレイセン晋す上での
複数の明暗像の配列長さは該センサの長さよりはるかに
長くなし、且つ明暗像の間隔は最低−個の明暗像がセン
サ上に存在する如き大きざとなし、更に各明暗像の幅は
相互に異なった値をもつように形成してなる物体の表面
高さ測定装置を特徴とするものである。
The purpose of the present invention is to expand the measurement range using a semiconductor array sensor, and its configuration is such that light is irradiated onto the surface of an object at a constant angle θ, and the irradiation point is a light irradiation optical system that forms a plurality of bright and dark images in the vicinity; and a light irradiation optical system that focuses light reflected from the irradiation point to form the plurality of bright and dark images.
a semiconductor array sensor consisting of a large number of semiconductor photodetecting elements placed on the imaging plane of the bright and dark images, and a circuit for determining the distance from the reference position of the bright and dark images placed on the semiconductor array sensor. The arrangement length of the plurality of bright and dark images on the semiconductor array sensor is much longer than the length of the sensor, and the interval between the bright and dark images is so large that at least - bright and dark images are present on the sensor. In short, the present invention is characterized by an apparatus for measuring the surface height of an object, in which the widths of the bright and dark images are formed to have mutually different values.

以F本発明の一実施例を図面に基づき説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図において、7は電子銃を示し、該電子銃より出た
電子線8は電子レンズ系9により集束されて被露光材料
2上に投射される。10は偏向器であり、電子線8を偏
向し、被露光材Y312上で移動させてパターンを描く
ためのもので、増幅器11を介してコンピュータ12よ
りパターン信号が送られる。光源1と照射光学系のレン
ズ4との間には後述するような微小間隔と配列長さを有
する複数スリットを穿ったスリット板3′が首かれてお
り、践スリット板を通過した光はレンズ4で結像ハれ、
p点にその明暗像を結/υだ後、月利2上に角Oで投射
される。該材料2で反則した光は結像レンズ5により結
像され、多数の半導体光検出素子を配列した半導体アレ
イセンサ13」二に拡大・結像される。つまり、点pの
虚像1)′ がセンサ上に投射されることになる。尚、
レンズ4によるスリン1〜板3′の結像位置は図の如き
祠別照用点の前方に限られるものではなく、該照射点又
は、それJ:り後方であっても良い。半導体アレイセン
リ゛13からの信号は増幅器14により増幅され、演脚
回路15に送られる。この演算回路において、スリット
像である明暗像の基準位置からの距−1を求め、それを
高さ(i号として表示装置16に送り、表示する。又、
該信号は前記偏向器の増幅器11や対物レンズ、ビーム
シフ1〜用偏向器、更にはフィールド回転レンズ等に送
られ、被露光月利の高さ変位に拘わらず描画パターンの
描画位置や露光フィールドの大ぎざ、フォーカシング等
が一定に′/【るようにそれらを刺部する。
In FIG. 3, numeral 7 indicates an electron gun, and an electron beam 8 emitted from the electron gun is focused by an electron lens system 9 and projected onto the material 2 to be exposed. A deflector 10 is used to deflect the electron beam 8 and move it on the exposed material Y312 to draw a pattern.A pattern signal is sent from the computer 12 via the amplifier 11. Between the light source 1 and the lens 4 of the irradiation optical system, there is a slit plate 3' having a plurality of slits with minute intervals and array lengths as will be described later. The image is formed at 4,
After forming its bright and dark image at point p, /υ, it is projected onto the moonlight 2 at an angle O. The light reflected by the material 2 is imaged by an imaging lens 5, and is magnified and imaged onto a semiconductor array sensor 13'2, which has a large number of semiconductor photodetecting elements arranged. In other words, a virtual image 1)' of point p is projected onto the sensor. still,
The position where the lenses 1 to 3' are imaged by the lens 4 is not limited to the front of the shrine illumination point as shown in the figure, but may be at or behind the illumination point. The signal from the semiconductor array sensor 13 is amplified by the amplifier 14 and sent to the performance circuit 15. In this arithmetic circuit, the distance -1 from the reference position of the bright and dark image, which is the slit image, is calculated, and it is sent to the display device 16 as the height (i) and displayed.
The signal is sent to the amplifier 11 of the deflector, the objective lens, the deflector for beam shift 1~, and further to the field rotation lens, etc., so that the drawing position of the drawing pattern and the exposure field can be adjusted regardless of the height displacement of the exposed target. They are pricked so that the serrations, focusing, etc. are constant.

第4図は本発明の詳細な説明する図であり、(a )図
は半導体アレイセンザ13の検出面を示し、半導体光検
出素子が一定間隔で多数配列されている。又(b)図は
半導体アレイセン′v13表面にお【Jるスリット像の
光強度分布を示すものでA、B、C,D・・・Nは各ス
リット像(光像)に対応する。図かられかる様に、スリ
ツ1〜像の配列長さく△からNまでの長さ)はアレイセ
ンザ13の検出面の長さに比し、はるかに長く(数倍〜
十倍位)されており、又、各光像△、B、C・・・Nの
間隔は一定であり、前記検出面の長さと同一か、又はそ
れより小さくされている。図では検出面の長さの1/2
の場合であり、従って常に2つの光像が検出面に投影さ
れている。更に、各光像Δ、B、C・・・Nの幅は相方
に異なっており、どの光像が検出面上に投影されている
かが識別できるように4丁っている。つまり、各光像の
幅を異にしておくことにより光検出素子中の出力を生ず
る素子数が異なるため、それによりどの光像が投影され
ているかを識別できるにうになしである。
FIG. 4 is a diagram explaining the present invention in detail, and FIG. 4(a) shows the detection surface of the semiconductor array sensor 13, in which a large number of semiconductor photodetecting elements are arranged at regular intervals. Further, the figure (b) shows the light intensity distribution of the slit images on the surface of the semiconductor array sensor 'v13, where A, B, C, D...N correspond to each slit image (light image). As can be seen from the figure, the array length of the slit 1 to the image (length from Δ to N) is much longer than the length of the detection surface of the array sensor 13 (several times to N).
Furthermore, the intervals between the optical images Δ, B, C, . . . , N are constant, and are equal to or smaller than the length of the detection surface. In the figure, 1/2 of the length of the detection surface
Therefore, two optical images are always projected onto the detection surface. Furthermore, the widths of each of the optical images Δ, B, C, . In other words, by making the widths of each light image different, the number of elements that produce outputs in the photodetecting element differs, so it is impossible to identify which light image is being projected.

図ではDとEの光像が投影されており、該光像の2Ht
卑イQ置(例えば検出素子の左端)からの距IWld及
びeが求められ、これらの距ば(信号から高さく相対高
さ)が求められ、表示装置16及び例えば偏向器10の
増幅器11に制御信号として送り込まれる。
In the figure, optical images D and E are projected, and the 2Ht of the optical images is
The distances IWld and e from the base Q position (for example, the left end of the detection element) are determined, and these distances (relative height from the signal) are determined and sent to the display device 16 and, for example, the amplifier 11 of the deflector 10. Sent as a control signal.

前記被露光月利の高さが変化した場合には、光像り、E
が検出面上で右方、又は左方に移動し、卑準怜胃からの
距離(j及びeが変化する。従って、表示も変り、更に
制御信号も変化する。前記高さ変位が著しく大きい場合
には、半導体アレイセンサ13の検出面上に前記光像り
、Eとは異なった光像、例えばAやB等が投影されるこ
とになり、それに応じた高さ値が表示される。尚、上記
基準位置からの距1flld及びeはいずれか一方のみ
を使用しても良いが、両者を加算し、その平均値を求め
るようにすると測定精麻が向上する。この場合、各光像
の一方のエツジだけでなく、両エツジを検出し、基準位
置からの距離を求めて平均化すると更に良い。
When the height of the monthly exposure rate changes, the light image and E
moves to the right or left on the detection surface, and the distances (j and e) from the base level stomach change.Therefore, the display also changes, and the control signal also changes.The height displacement is significantly large. In this case, a light image different from the light image E, such as A or B, is projected onto the detection surface of the semiconductor array sensor 13, and a corresponding height value is displayed. Note that either one of the distances 1flld and e from the reference position may be used, but if the two are added and the average value is determined, the measurement accuracy will be improved.In this case, each optical image It is even better if not only one edge but both edges are detected, and the distance from the reference position is calculated and averaged.

以上詳述した如き構成となせば限られた艮ざの半導体ア
レイセンサを用いて、その数倍の長さに匹敵する範囲の
高さ測定が可能となり、広汎に利用できる。
With the configuration described in detail above, it becomes possible to measure heights in a range comparable to several times the length using a semiconductor array sensor with a limited size, and it can be widely used.

尚、上記は本発明の一実施例であり、実施に当っては幾
多の変形が可能である。例えば、半導体アレイセンザの
検出面に投影されるスリット像は図では2個示したが、
最低1個あれば良い。又、第4図では明るい部分、つま
り光の照射された部分の素子の位置を検出する様にした
が、逆に1合い部分、つまり光の当らない部分の素子の
位置を検出する様にしても良い。従って、スリット板3
′に代えて複数本のワイヤや帯状体を並置しても良い。
It should be noted that the above is one embodiment of the present invention, and many modifications are possible in implementation. For example, although the figure shows two slit images projected onto the detection surface of a semiconductor array sensor,
It is good to have at least one. Also, in Fig. 4, the position of the element in the bright part, that is, the part irradiated with light, was detected, but conversely, the position of the element in the part 1, that is, the part not hit by light, was detected. Also good. Therefore, the slit plate 3
′ may be replaced by a plurality of wires or strips arranged side by side.

更に、第百図は電子ビーム露光装置に適用した場合であ
るが、適用装置に特別な制限はない。
Furthermore, although FIG. 100 shows a case where the present invention is applied to an electron beam exposure apparatus, there is no particular restriction on the applicable apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の高さ測定を説明するだめの図
、第3図は本発明の一実施例を示ずブロック線図、第4
図は本発明の詳細な説明する図である。 1:光源、2:被露光月利、3′ ニスリット板、4.
5:光学レンズ、7:電子銃、8:電子線、9:電子レ
ンズ系、10:偏向器、11:増幅器、12:コンピュ
ータ、13:半導体アレイセンナ、14:増幅器、15
:演算回路、16二表示装置。 特許出願人 日本電子株式会社 代表者 伊藤 −夫 日本電信電話公社 代表者 真藤  恒 第1図 −11− の 憾 θコ N才 = (nq −区9 qコ −h 区7 寸          へ t ゛〜
1 and 2 are diagrams for explaining conventional height measurement, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG.
The figure is a diagram for explaining the present invention in detail. 1: light source, 2: monthly exposure rate, 3' Nislit plate, 4.
5: Optical lens, 7: Electron gun, 8: Electron beam, 9: Electron lens system, 10: Deflector, 11: Amplifier, 12: Computer, 13: Semiconductor array sensor, 14: Amplifier, 15
: Arithmetic circuit, 162 display device. Patent Applicant JEOL Ltd. Representative Ito - Husband Nippon Telegraph and Telephone Public Corporation Representative Hisashi Shindo

Claims (1)

【特許請求の範囲】[Claims] 物体の表面に一定角度θで光を照射し・、且つその照射
点近傍に複数の明暗像を結ばせる光照射光学系と、前記
照射点から反射する光を集光し前記複数の明暗像を結像
する光学系と、該明暗像の結像面に置かれた多数の半導
体光検出素子からなる半導体アレイセンサと、該半導体
アレイセンサ上における明暗像の基準位置からの距離を
求める回路とを備え、前記半導体アレイセンサ上での複
数の明暗像の配列長さは該センサの長さよりはるかに長
くなし、且つ明暗像の間隔は最低−個の明暗像がセンサ
上に存在する如き大きさとなし、更に各明暗像の幅は相
互に異なった値をもつように形成しであることを特徴と
する物体の表面高さ測定装置
A light irradiation optical system that irradiates the surface of an object with light at a constant angle θ and forms a plurality of bright and dark images near the irradiation point, and a light irradiation optical system that collects light reflected from the irradiation point to form the plurality of bright and dark images. An optical system for forming an image, a semiconductor array sensor consisting of a large number of semiconductor photodetecting elements placed on an imaging plane of the bright and dark images, and a circuit for determining the distance of the bright and dark images from a reference position on the semiconductor array sensor. The arrangement length of the plurality of bright and dark images on the semiconductor array sensor is much longer than the length of the sensor, and the interval between the bright and dark images is such that at least - bright and dark images are present on the sensor. , and further characterized in that the widths of the bright and dark images are formed to have mutually different values.
JP20828782A 1982-11-27 1982-11-27 Measuring device of surface height of body Granted JPS5999215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20828782A JPS5999215A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20828782A JPS5999215A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Publications (2)

Publication Number Publication Date
JPS5999215A true JPS5999215A (en) 1984-06-07
JPS6253049B2 JPS6253049B2 (en) 1987-11-09

Family

ID=16553745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20828782A Granted JPS5999215A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Country Status (1)

Country Link
JP (1) JPS5999215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174338A (en) * 1984-09-20 1986-04-16 Hitachi Ltd Optical alignment device
JPS6266112A (en) * 1985-09-19 1987-03-25 Tokyo Optical Co Ltd Position detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174338A (en) * 1984-09-20 1986-04-16 Hitachi Ltd Optical alignment device
JPH0564450B2 (en) * 1984-09-20 1993-09-14 Hitachi Ltd
JPS6266112A (en) * 1985-09-19 1987-03-25 Tokyo Optical Co Ltd Position detector

Also Published As

Publication number Publication date
JPS6253049B2 (en) 1987-11-09

Similar Documents

Publication Publication Date Title
JPH0754684B2 (en) electronic microscope
KR20120138695A (en) Pattern measurement apparatus and pattern measurement method
CA1103813A (en) Apparatus for electron beam lithography
JPS6184510A (en) Length measuring device using particle beam and method thereof
JPH04132909A (en) Size measuring apparatus with electron beam
JPS5999215A (en) Measuring device of surface height of body
JPS6130689B2 (en)
JPS6341401B2 (en)
JPS63269007A (en) Detector for measuring position of substrate
CN107168018B (en) A kind of focusing alignment device and alignment methods
JPS60237347A (en) Apparatus for inspecting foreign matter
JPS5999216A (en) Measuring device of surface height of body
JPS6341402B2 (en)
JPS587136A (en) Method and device for projection type exposure
JPS58168906A (en) Device for measuring surface height of object
JP3430788B2 (en) Sample image measuring device
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
WO2023119816A1 (en) Solid-state imaging device, shape-measuring device, and shape-measuring method
JPH035080Y2 (en)
JPS59195112A (en) Apparatus for measuring surface height of sample in charged particle ray apparatus
JPH0552517A (en) Speckle displacement meter
JPH0575050B2 (en)
JPS5826325Y2 (en) position detection device
JPH04137720A (en) Charged beam strength profile measuring instrument, and measuring method using same
JPH03249517A (en) Optical ring type noncontact length measuring sensor