JPH035080Y2 - - Google Patents

Info

Publication number
JPH035080Y2
JPH035080Y2 JP1982185079U JP18507982U JPH035080Y2 JP H035080 Y2 JPH035080 Y2 JP H035080Y2 JP 1982185079 U JP1982185079 U JP 1982185079U JP 18507982 U JP18507982 U JP 18507982U JP H035080 Y2 JPH035080 Y2 JP H035080Y2
Authority
JP
Japan
Prior art keywords
charged beam
charged
detection element
hole
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982185079U
Other languages
Japanese (ja)
Other versions
JPS5988857U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18507982U priority Critical patent/JPS5988857U/en
Publication of JPS5988857U publication Critical patent/JPS5988857U/en
Application granted granted Critical
Publication of JPH035080Y2 publication Critical patent/JPH035080Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【考案の詳細な説明】 最近、電子ビームやイオンビームを使う露光装
置がLSI素子や超LSI素子の製作手段として注目
を集めている。この様な露光装置においては露光
材料上に感光レジストを塗布し、電子ビーム或い
はイオンビームで露光する訳であるが、材料から
散乱電子により最小線幅は約0.2μm程度であつ
た。最近、多層膜塗布により100Å前後の露光が
可能となり、細く集束した電子ビーム露光装置の
要求が高まりつつある。さて、この多層膜技術で
は得られる露光幅を解析するにはビームスポツト
の径を知つておく必要がある。一般にビーム径測
定はナイフエツジ法を用いるが、使用するナイフ
エツジにより測定しうるビーム径には限界があ
り、とくに測定ビーム径が小さくなると散乱電子
による影響で測定の忠実度が低下してしまう。そ
こで、例えば、前記ナイフエツジ法で使用される
ナイフエツジ体の如き遮蔽部材Sと検出素子Dと
の間に絞りPを配置して、その様な散乱電子が検
出素子Dに入るのを少しでも防ぐ様にしている
(第1図)。しかし、散乱電子の一部Bが検出素子
Dに入るのを防止出来るが、未だ可成の散乱電子
B1が検出素子に入つてしまう。
[Detailed explanation of the idea] Recently, exposure equipment that uses electron beams or ion beams has been attracting attention as a means of manufacturing LSI devices and VLSI devices. In such an exposure apparatus, a photosensitive resist is coated on an exposure material and exposed with an electron beam or an ion beam, and the minimum line width is about 0.2 μm due to electrons scattered from the material. Recently, multilayer film coating has enabled exposure of around 100 Å, and the demand for finely focused electron beam exposure equipment is increasing. Now, in order to analyze the exposure width obtained with this multilayer film technology, it is necessary to know the diameter of the beam spot. Generally, the knife edge method is used to measure the beam diameter, but there is a limit to the beam diameter that can be measured depending on the knife edge used.In particular, when the measurement beam diameter becomes small, the fidelity of the measurement decreases due to the influence of scattered electrons. Therefore, for example, an aperture P is placed between a shielding member S such as a knife edge body used in the knife edge method and the detection element D to prevent such scattered electrons from entering the detection element D. (Figure 1). However, although some of the scattered electrons B can be prevented from entering the detection element D, there are still some scattered electrons.
B 1 enters the detection element.

本考案はこの様な点に鑑み、前記第1図におい
て、絞りPを検出素子Dに密着させれば(P′参
照)、遮蔽部材Sから該絞りの孔を通過して検出
素子に入る散乱電子は著しく少なくなる点に着目
してなされたもので、荷電ビーム発生手段から射
出された荷電ビームをビーム遮蔽部材が配置され
た平面上に集束し且つ該平面上で走査させ、該走
査により荷電ビーム通路上に配置された荷電ビー
ム検出手段で検出された荷電ビームに基づいてビ
ームの持つ性質を測定する様にした装置におい
て、前記荷電ビーム検出手段の荷電ビーム入射面
に、孔を有する散乱ビーム遮蔽物を密着させ、該
孔の幅を、荷電ビームの開き角をα、前記ビーム
遮蔽部材のエツジ部と該散乱ビーム遮蔽物との距
離をLとした時に略αLなる大きさに形成した新
規な荷電ビーム測定装置を提供するものである。
In view of these points, in the present invention, as shown in FIG. 1, if the aperture P is brought into close contact with the detection element D (see P'), the scattering that passes from the shielding member S through the aperture of the aperture and enters the detection element. This method was developed with the focus on the fact that the number of electrons is significantly reduced.The charged beam emitted from the charged beam generating means is focused on a plane on which a beam shielding member is arranged and scanned on the plane, and by this scanning, the charged beam is In an apparatus for measuring properties of a charged beam based on a charged beam detected by a charged beam detection means disposed on a beam path, a scattered beam having a hole in a charged beam incident surface of the charged beam detection means is provided. A novel method in which the width of the hole is approximately αL, where the aperture angle of the charged beam is α, and the distance between the edge of the beam shielding member and the scattered beam shield is L, by closely contacting the shielding member. The present invention provides a charged beam measuring device with a high level of accuracy.

第2図は本考案の一実施例を示した荷電ビーム
測定装置の概略図である。図中1は電子銃で、該
電子銃から射出された電子ビームは集束レンズ
2,3によつて集束され、対物レンズ4によるナ
イフエツジ体5が配置された水平面上に集束され
る。該ナイフエツジ体は図示しないが実際には
X,Yの2方向に夫々配置される。尚、6は対物
レンズ4の絞りである。前記水平面上に集束され
た電子は、偏向器7により該水平面上を走査す
る。該偏向器7はDA変換器8を介してデジタル
電子計算機(以後CPUと称す)9からの指令を
受ける偏向電源10からの偏向信号に従つて作動
する。該偏向器は図示しないが実際にはX方向走
査用とY方向走査用の偏向器から成つている。前
記ナイフエツジ体5の下方には入つてきた電子ビ
ームをビーム電流として増幅する様な例えばPN
ジヤンクシヨンの如き半導体検出素子11が配置
されている。該半導体検出素子の電子ビーム入射
面上には、中央部分に小さい孔12を有する散乱
電子遮蔽用の薄い金属板13(例えば厚さ20μ
m、直径20μmモリブデンアパーチヤ)が密着さ
れている。尚、金属板を密着させる代わりに金属
層を蒸着等により半導体検出素子のビーム入射面
に付着せてもよい。もちろんこの場合もビーム入
射用の孔12の部分は蒸着してはいけない。該ビ
ーム入射用の孔の大きさは、以下のように決めら
れる。即ち、第3図に示す様に、開き角αの電子
ビームがナイフエツジ体5のエツジを含む水平面
上を走査した際に、その走査過程においてナイフ
エツジ体5に遮ぎられずに直進したビームを検出
素子11で検出するのに必要な最小の大きさに略
等しくなるように決められる。従つて、ビームが
ナイフエツジ体5のエツジを含む水平面上を走査
する長さをD、前記エツジ部と金属板13の間の
距離をL、前記散乱電子遮蔽用金属板のビーム入
射用孔の径をAとすれば、A=D+αLと表わす
事が出来る。尚、前記走査長さDは極めて小さ
く、開き角αの電子ビーム分を入射させる為に必
要な金属板13上での孔の大きさαLに比べ著し
く小さい。その為、前記散乱電子遮蔽用金属板の
ビーム入射用孔の径Aは、大略αLと見て良い。
又、半導体検出素子11のビーム入射面に密着さ
れる金属板又は金属層13の厚さは薄い程、孔1
2のエツジ部で発生する散乱電子の影響を低減で
きるが、余り薄くすると、散乱電子が透過してし
まうので、散乱電子が透過しない程度の厚さを考
慮して作成しなければならず、該厚さはビームの
加速電圧によつて決められる。尚、半導体検出素
子11のPN接合部はビーム入射面からある深さ
(例、0.2μm〜3μm)の所にあるので、該検出素
子の表面に金属板又は、金属層を密着させても検
出素子の特性への影響は全くない。
FIG. 2 is a schematic diagram of a charged beam measuring device showing an embodiment of the present invention. In the figure, reference numeral 1 denotes an electron gun, and an electron beam emitted from the electron gun is focused by focusing lenses 2 and 3, and focused by an objective lens 4 onto a horizontal plane on which a knife edge body 5 is disposed. Although the knife edge bodies are not shown, they are actually arranged in two directions, X and Y, respectively. Note that 6 is an aperture of the objective lens 4. The electrons focused on the horizontal plane are scanned by a deflector 7 on the horizontal plane. The deflector 7 operates in accordance with a deflection signal from a deflection power source 10 which receives instructions from a digital computer (hereinafter referred to as CPU) 9 via a DA converter 8. Although the deflector is not shown, it actually consists of a deflector for scanning in the X direction and for scanning in the Y direction. Below the knife edge body 5 is a PN, for example, which amplifies the incoming electron beam as a beam current.
A semiconductor detection element 11 such as a junction is arranged. On the electron beam incident surface of the semiconductor detection element, a thin metal plate 13 (for example, 20 μm thick) for shielding scattered electrons has a small hole 12 in the center.
m, 20 μm diameter molybdenum aperture) are in close contact. Note that instead of closely adhering the metal plate, a metal layer may be attached to the beam incidence surface of the semiconductor detection element by vapor deposition or the like. Of course, in this case as well, the portion of the hole 12 for beam incidence must not be vapor-deposited. The size of the beam entrance hole is determined as follows. That is, as shown in FIG. 3, when an electron beam with an opening angle α scans on a horizontal plane including the edge of the knife edge body 5, the detection element detects the beam that has gone straight without being blocked by the knife edge body 5 during the scanning process. 11 is determined to be approximately equal to the minimum size necessary for detection. Therefore, the length that the beam scans on the horizontal plane including the edge of the knife edge body 5 is D, the distance between the edge portion and the metal plate 13 is L, and the diameter of the beam incidence hole in the metal plate for shielding scattered electrons is Letting be A, it can be expressed as A=D+αL. Incidentally, the scanning length D is extremely small, and is significantly smaller than the size αL of the hole on the metal plate 13 necessary for injecting the electron beam having the aperture angle α. Therefore, the diameter A of the beam incidence hole of the scattered electron shielding metal plate can be considered to be approximately αL.
Furthermore, the thinner the metal plate or metal layer 13 that is closely attached to the beam incidence surface of the semiconductor detection element 11, the smaller the hole 1.
The influence of scattered electrons generated at the edge part 2 can be reduced, but if it is made too thin, the scattered electrons will pass through, so it must be created with a thickness that does not allow the scattered electrons to pass through. The thickness is determined by the acceleration voltage of the beam. Note that since the PN junction of the semiconductor detection element 11 is located at a certain depth (e.g. 0.2 μm to 3 μm) from the beam incidence surface, detection is possible even if a metal plate or metal layer is brought into close contact with the surface of the detection element. There is no effect on the characteristics of the element.

該検出素子11で検出される電子ビームは電流
増幅され、増幅器14を介して表示装置15へ、
増幅器14とAD変換器16を介してCPUへ夫々
送られる。該表示装置15には前記偏向電源10
から偏向信号が送られて来ており、又CPU9から
DA変換器17を介して指令信号が送られて来て
いる。
The electron beam detected by the detection element 11 is current amplified and sent to the display device 15 via the amplifier 14.
The signals are sent to the CPU via the amplifier 14 and AD converter 16, respectively. The display device 15 includes the deflection power source 10.
A deflection signal is being sent from CPU9.
A command signal is sent via the DA converter 17.

斯くの如き装置において、CPU9の指令によ
り矩形断面のビームでナイフエツジ体5が配置さ
れた水平面上を走査すると、金属板13の孔12
を通して半導体検出素子11に入つてきた電子ビ
ームはビーム電流信号として増幅器14とAD変
換器16を介してCPU9に、又増幅器14を介
して表示装置15に送られる。そして該CPUは
該ビーム電流信号からビーム寸法やフオーカシン
グ具合等を算出する。この場合CPU内で該ビー
ム電流信号を一回又は二回微分してビーム寸法等
を算出すればより正確さを増す(特願昭52−
157027号及び特願昭55−523137号参照。) さて、本考案においては、前記荷電ビーム検出
手段の荷電ビーム入射面に、孔を有する金属板1
3を密着させ、該孔の幅を、荷電ビームの開き角
をa、前記ナイフエツジ体6のエツジ部と該金属
板13との距離をLとした時に略aLなる大きさ
に形成しているため、電子銃からの電子がナイフ
エツジ体5に衝突することにより散乱した電子の
大部分は半導体検出素子11のビーム入射面に密
着された金属板13に当るので、半導体検出素子
11に入るナイフエツジ体6からの散乱電子が著
しく少なくなる。しかも、該検出素子に入る散乱
電子が少ない状態で、ビーム径を測定する為に十
分な量の電子が該検出素子で検出出来るので、ビ
ーム径の測定が極めて精度よくなされる。
In such a device, when the horizontal plane on which the knife edge body 5 is arranged is scanned with a beam having a rectangular cross section according to a command from the CPU 9, the hole 12 of the metal plate 13 is scanned.
The electron beam that enters the semiconductor detection element 11 through the detector is sent as a beam current signal to the CPU 9 via the amplifier 14 and the AD converter 16, and to the display device 15 via the amplifier 14. Then, the CPU calculates beam dimensions, focusing conditions, etc. from the beam current signal. In this case, the accuracy can be increased by differentiating the beam current signal once or twice in the CPU to calculate the beam dimensions, etc.
See No. 157027 and Japanese Patent Application No. 55-523137. ) In the present invention, a metal plate 1 having a hole is provided on the charged beam incident surface of the charged beam detecting means.
3 are brought into close contact with each other, and the width of the hole is formed to be approximately aL when the opening angle of the charged beam is a and the distance between the edge portion of the knife edge body 6 and the metal plate 13 is L. Most of the electrons scattered when the electrons from the electron gun collide with the knife edge body 5 hit the metal plate 13 that is in close contact with the beam incidence surface of the semiconductor detection element 11, so that the knife edge body 6 that enters the semiconductor detection element 11 The number of scattered electrons from Moreover, since a sufficient amount of electrons can be detected by the detection element to measure the beam diameter even when the number of scattered electrons entering the detection element is small, the beam diameter can be measured with extremely high accuracy.

尚、本案はスポツトビームだけではなく、正方
形ビームでも矩形状ビームでも応用出来る。又、
電子ビームの測定だけでなくイオンビームの測定
にも応用できる。又、半導体検出素子の代わりに
別のビーム検出素子でもよいが、検出精度を考慮
すると増幅作用を有する検出素子(光電変換素
子、例えばシンチレータとホトマルチチユーブの
組み合せたもの等)が選択される。又、前記ナイ
フエツジ体を、市販されている高分子材料のマイ
クログリツドに金等の金属を蒸着或いはスパツタ
して作成すると都合がいい。即ちこのマイクログ
リツドは3mm径の銅メツシユ(メツシユ孔は
200μm〜300μm)に0.3μm〜5μm程度の孔が無数
に明けた高分子材料を乗せたもので、該孔の何れ
かを使えば半導体検出素子11上の金属板の孔1
2(孔径は例えば100μm〜200μm)との軸合わ
せが出来、都合良い。
The present invention can be applied not only to spot beams but also to square beams and rectangular beams. or,
It can be applied not only to electron beam measurements but also to ion beam measurements. Further, another beam detection element may be used instead of the semiconductor detection element, but in consideration of detection accuracy, a detection element having an amplifying effect (a photoelectric conversion element, such as a combination of a scintillator and a photomultitube, etc.) is selected. It is also convenient to create the knife edge body by vapor depositing or sputtering a metal such as gold on a microgrid made of a commercially available polymeric material. In other words, this microgrid has a copper mesh with a diameter of 3 mm (the mesh holes are
200 μm to 300 μm) on which a polymer material with countless holes of about 0.3 μm to 5 μm is placed, and if any of the holes is used, hole 1 of the metal plate on the semiconductor detection element
2 (pore diameter is, for example, 100 μm to 200 μm), which is convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の問題点と本考案の着眼点の説明
を補足する為の図、第2図は本考案の一実施例を
示した電子ビーム測定装置の概略図、第3図は、
ビーム入射用の孔12を説明するための図であ
る。 2,3……集束レンズ、4……対物レンズ、5
……ナイフエツジ体、7……偏向器、9……電子
計算機(CPU)、11……半導体検出素子、12
……孔、13……金属板、15……表示装置。
Fig. 1 is a diagram to supplement the explanation of conventional problems and points of view of the present invention, Fig. 2 is a schematic diagram of an electron beam measuring device showing an embodiment of the present invention, and Fig. 3
FIG. 3 is a diagram for explaining a hole 12 for beam incidence. 2, 3...Focusing lens, 4...Objective lens, 5
... knife edge body, 7 ... deflector, 9 ... electronic computer (CPU), 11 ... semiconductor detection element, 12
... hole, 13 ... metal plate, 15 ... display device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 荷電ビーム発生手段から射出された荷電ビーム
をビーム遮蔽部材が配置された平面上に集束し且
つ該平面上で走査させ、該走査により荷電ビーム
通路上に配置された荷電ビーム検出手段で検出さ
れた荷電ビームに基づいてビームの持つ性質を測
定する様にした装置において、前記荷電ビーム検
出手段の荷電ビーム入射面に、孔を有する散乱ビ
ーム遮蔽物を密着させ、該孔の幅を、荷電ビーム
の開き角をα、前記ビーム遮蔽部材のエツジ部と
該散乱ビーム遮蔽物との距離をLとした時に略
αLなる大きさに形成した事を特徴とする荷電ビ
ーム測定装置。
A charged beam emitted from a charged beam generating means is focused on a plane on which a beam shielding member is disposed and scanned on the plane, and as a result of the scanning, a charged beam is detected by a charged beam detecting means disposed on a charged beam path. In an apparatus for measuring the properties of a charged beam based on the charged beam, a scattered beam shielding member having a hole is brought into close contact with the charged beam incident surface of the charged beam detecting means, and the width of the hole is set to the width of the charged beam. A charged beam measuring device characterized in that the charged beam measuring device is formed to have a size approximately αL, where α is an opening angle and L is a distance between the edge portion of the beam shielding member and the scattered beam shielding object.
JP18507982U 1982-12-07 1982-12-07 Charged beam measuring device Granted JPS5988857U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18507982U JPS5988857U (en) 1982-12-07 1982-12-07 Charged beam measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18507982U JPS5988857U (en) 1982-12-07 1982-12-07 Charged beam measuring device

Publications (2)

Publication Number Publication Date
JPS5988857U JPS5988857U (en) 1984-06-15
JPH035080Y2 true JPH035080Y2 (en) 1991-02-08

Family

ID=30400124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18507982U Granted JPS5988857U (en) 1982-12-07 1982-12-07 Charged beam measuring device

Country Status (1)

Country Link
JP (1) JPS5988857U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008174C2 (en) * 2012-01-24 2013-08-21 Mapper Lithography Ip Bv Device for spot size measurement at wafer level using a knife edge and a method for manufacturing such a device.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780730A (en) * 1980-11-07 1982-05-20 Hitachi Ltd Semiconductor observing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780730A (en) * 1980-11-07 1982-05-20 Hitachi Ltd Semiconductor observing device

Also Published As

Publication number Publication date
JPS5988857U (en) 1984-06-15

Similar Documents

Publication Publication Date Title
JP2842879B2 (en) Surface analysis method and device
US4843246A (en) Apparatus for detecting the position of incidence of a beam of charge carriers on a target
JPS6127899B2 (en)
US5594246A (en) Method and apparatus for x-ray analyses
US4385238A (en) Reregistration system for a charged particle beam exposure system
JPS6184510A (en) Length measuring device using particle beam and method thereof
JP2004071445A (en) Electron beam measuring sensor, and electron beam measuring method
JPH035080Y2 (en)
JPH05182625A (en) Objective lens
JPS6341401B2 (en)
JPH0754687B2 (en) Pattern inspection method and apparatus
US4983864A (en) Electronic beam drawing apparatus
JPS6372116A (en) X-ray exposure device
JPS584314B2 (en) Electron beam measuring device
JP2701764B2 (en) Apparatus and method for measuring size of charged particle beam
US4073990A (en) Apparatus for adjusting a semiconductor wafer by electron beam illumination
JPS5878356A (en) Scanning electron microscope
JPS5999215A (en) Measuring device of surface height of body
JPH0580158A (en) Charged particle beam measuring device
JPH04163931A (en) Measurement of mask pattern
JPS6316687B2 (en)
JP2500423Y2 (en) electronic microscope
JPS58168906A (en) Device for measuring surface height of object
JPH07111946B2 (en) X-ray exposure mask pattern inspection method
JPH1125899A (en) Secondary electron detector and mark detector