JPS6372116A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPS6372116A
JPS6372116A JP61215716A JP21571686A JPS6372116A JP S6372116 A JPS6372116 A JP S6372116A JP 61215716 A JP61215716 A JP 61215716A JP 21571686 A JP21571686 A JP 21571686A JP S6372116 A JPS6372116 A JP S6372116A
Authority
JP
Japan
Prior art keywords
ray
absorber
exposure
rays
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61215716A
Other languages
Japanese (ja)
Inventor
Kozo Mochiji
広造 持地
Yasunari Hayata
康成 早田
Shinji Kuniyoshi
伸治 国吉
Takeshi Kimura
剛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61215716A priority Critical patent/JPS6372116A/en
Publication of JPS6372116A publication Critical patent/JPS6372116A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To monitor simulaneously exposure and its intensity without reducing an exposure area by providing a means for detecting electrons, especially secondary electrons which are developed through the irradiation of X-rays out of an X-rays absorber in the presence region of the X-rays. CONSTITUTION:A X-ray mask is provided by causing it to approach a sample coated with a X-ray resist 2 on a substrate 1 to be processed. The X-ray mask is composed of an absorber 4 that is made of gold having a thickness of 1mum as well as a membrane 3 for holding its absorber. The membrane is formed by laminating a polyimide film of 3mum thick on a horon nitride film (BN) of 2mum thick. A channel-thoron (gain; 10<6>) is used as a detector of the secondary electron and a tip of this probe is installed at a position about 20 mm apart from an absorber pattern located at the outmost side of the X-ray mask. Then, output pulse signals developed from the channel-thoron 5 are processed through an amplification circuit and its voltage is measured. Thus, simultaneously with an X-ray exposure to a resist, exposure intensity as well as its distribution can be so monitored that a resist pattern dimension control in a case of X-ray lithography is performed with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線リソグラフィに係り、特にSORなど、X
線強度の経時変化が大きいX線源を用いる場合の露光強
度モニターに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to X-ray lithography, and particularly to X-ray lithography such as SOR.
The present invention relates to an exposure intensity monitor when using an X-ray source with a large change in radiation intensity over time.

〔従来の技術〕[Conventional technology]

X線露光装置は現在、研究開発の段階にあり、数機種の
装置がやっと市場に出たところである。
X-ray exposure equipment is currently in the research and development stage, and several types of equipment have just arrived on the market.

しかし、これらの露光装置にもX線用の露光強度モニタ
ーは設置されていない、現在迄のところ、露光強度のモ
ニタ一方法として提案されているのは主に半導体検出器
や比例増幅器を用いるもので、いずれも入射X線を直接
受光するものである(B。
However, these exposure devices are not equipped with X-ray exposure intensity monitors; to date, the only methods proposed for monitoring exposure intensity are those that mainly use semiconductor detectors or proportional amplifiers. Both of them directly receive incident X-rays (B.

L 、Henke他、ジエー・アプライド・フィジック
ス、第52巻、 1981年、第1509頁(J 、A
ppl、Phys。
L. Henke et al., G.A. Applied Physics, Vol. 52, 1981, p. 1509 (J.A.
ppl, Phys.

Vo!、52.p、1509 (1981))参照)。Vo! , 52. p. 1509 (1981)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、入射X線を受光するために、試料レ
ジストの露光と同時にX線強度をモニターすることが困
難であること、また、同時モニターするためには検出器
を露光面に設置するため、X線の露光面積が大きく制約
されるという問題があった。
With the above conventional technology, it is difficult to monitor the X-ray intensity at the same time as the sample resist is exposed in order to receive the incident X-rays. However, there was a problem in that the area exposed to X-rays was greatly restricted.

本発明の目的は露光面積を減少させることなく、露光と
露光強度を同時にモニターすることにある。
An object of the present invention is to simultaneously monitor exposure and exposure intensity without reducing the exposed area.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、X線マスクのパターンを形成する吸収体(
X線を吸収して電子を発する物体で、フォトカソードと
呼びれることもある)など、X線の存在領域にあるX線
吸収体がX線の照射によって発する電子、特に2次電子
を検出する手段を設けることによって達成される。
The above purpose is to create an absorber (
An object that absorbs X-rays and emits electrons; an X-ray absorber such as a photocathode (sometimes called a photocathode) detects electrons, especially secondary electrons, emitted by X-ray irradiation in an area where X-rays exist. This is achieved by providing means.

なお、X線吸収体としては、Au、W、Moなどの重金
属が適用できる。
Note that heavy metals such as Au, W, and Mo can be used as the X-ray absorber.

〔作用〕[Effect]

X線吸収体から発生する2次電子は真空中で長い飛程(
例えば10″″’Paの圧力下で1keVのエネルギー
を有する2次電子のfliting’ s range
は300m以上である)を持つため、2次電子の検出器
を露光領域より離して設置することができるt、また、
吸収体(フォトカソード)として、X線マスクの吸収体
パターンをそのまま利用するか、これに準じたX線吸収
体を露光面などX線が存在する領域に設置すれば良く、
特別のX線用センサーを必要としない。
The secondary electrons generated from the X-ray absorber have a long range (
For example, the fliting's range of secondary electrons with an energy of 1 keV under a pressure of 10''''Pa
(300 m or more), the secondary electron detector can be installed at a distance from the exposure area, and
As the absorber (photocathode), the absorber pattern of the X-ray mask can be used as is, or an X-ray absorber similar to this can be installed in the area where X-rays are present, such as on the exposure surface.
No special X-ray sensor is required.

〔実施例〕〔Example〕

実施例1 本実施例の構成概略図を第1図に示す、被加工基板1゛
にX線レジスト2を塗布した試料にX線マスクを近接さ
せて設定する。x、iaマスクは1μm厚の金で作られ
た吸収体4、および、これを保持するためのメンブレン
3より構成される。上記メンブレンは窒化ホウ素(B 
N)膜(2μm)にポリイミド膜(3μm)を積層させ
て作成した。2次電子の検出器としてチャネルトロン(
ゲイン;108)を用い、これのプローブ先端をX線マ
スクの最外側の吸収体パターンより約20国難れた位置
に設置した。チャネルトロン5よりの出力パルス信号を
増幅回路により処理して、その電圧を測定した。X線源
として回転対陰極型(陰極材にMOを用いた)を使用し
た場合、X線6を露光することにより、本モニターの出
力電圧として約2Vの信号を得ることが出来た0本実施
例では試料のX線露光は真空中(<10−’Pa)で行
った。
Embodiment 1 A schematic diagram of the structure of this embodiment is shown in FIG. 1. An X-ray mask is set in close proximity to a sample in which an X-ray resist 2 is applied to a substrate 1 to be processed. The x, ia mask is composed of an absorber 4 made of gold with a thickness of 1 μm and a membrane 3 for holding the absorber 4. The above membrane is made of boron nitride (B
N) A polyimide film (3 μm) was laminated on a film (2 μm). Channeltron (
A gain of 108) was used, and the tip of the probe was placed at a position approximately 20 mm away from the outermost absorber pattern of the X-ray mask. The output pulse signal from the channeltron 5 was processed by an amplifier circuit, and its voltage was measured. When using a rotating anticathode type (using MO as the cathode material) as an X-ray source, by exposing to X-rays 6, a signal of approximately 2V could be obtained as the output voltage of this monitor. In the example, the X-ray exposure of the sample was performed in vacuum (<10-'Pa).

本実施例によればX8@マスクをそのままセンサーとし
て用いて、露光中のX線強度をモニターすることが出来
る。
According to this embodiment, the X8@mask can be used as it is as a sensor to monitor the X-ray intensity during exposure.

実施例2 本実施例では第2図に示す如く試料の露光を1気圧のH
e中で行うことにし、このため、露光部とX線導入部を
厚さ200μmのベリリウム膜20で分離した。X線レ
ジスト、および、マスクの設置方法は実施例1と同様と
した。フォトカソードとして、上記のベリリウム膜上に
100人厚さの金30を真空蒸着法により被着した。2
次電子の検出器として2台のチャネルトロン5を露光域
の外側より20論離れた上下の位置に設置した。
Example 2 In this example, the sample was exposed to light at 1 atm H as shown in Figure 2.
Therefore, the exposure section and the X-ray introduction section were separated by a beryllium film 20 with a thickness of 200 μm. The method of installing the X-ray resist and mask was the same as in Example 1. As a photocathode, gold 30 having a thickness of 100 mm was deposited on the above beryllium film by vacuum evaporation. 2
Two channeltrons 5 were installed as secondary electron detectors at upper and lower positions 20 degrees apart from the outside of the exposure area.

それぞれのチャネルトロン7からの信号を増幅した後、
演算回路11により、これらの信号の和を測定した。X
線源にはシンクロトロン軌道放射光(電子エネルギー*
 2−5 G e V +軌道半径30m)を用い、さ
らに、回転する平面ミラー18によってこれを反射させ
ることにより、放射光ビームの光束を拡幅させた(6.
6’ )。すなわち、反射された光束6,6′がミラー
の傾きの時間変化に伴ってフォトカソード面上を掃査す
ることになる。
After amplifying the signals from each channeltron 7,
The arithmetic circuit 11 measured the sum of these signals. X
The radiation source is synchrotron orbital synchrotron radiation (electron energy*
2-5 G e V + orbital radius of 30 m), and further reflected by the rotating plane mirror 18 to widen the luminous flux of the synchrotron radiation beam (6.
6'). In other words, the reflected light beams 6 and 6' sweep over the photocathode surface as the tilt of the mirror changes over time.

したがって、チャネルトロンからの検出信号強度の時間
変化を測定することにより、拡幅された光束の露光強度
分布をモニターすることができる。
Therefore, by measuring the temporal change in the intensity of the detection signal from the channeltron, it is possible to monitor the exposure intensity distribution of the broadened light beam.

第3図に放射光を露光中に測定した信号電圧の時間変化
を示す6本実施例によれば試料レジストの露光と同時に
露光面内の光強度分布をモニターすることが可能となる
FIG. 3 shows the temporal change in signal voltage measured during exposure to synchrotron radiation.According to this embodiment, it is possible to monitor the light intensity distribution within the exposed surface simultaneously with the exposure of the sample resist.

なお、本発明で適用できる吸収体の膜厚は5〜1000
人が最適である。すなわち、膜厚が5Å以下では発生す
る電子の数が少なく、よって検出することが不可能であ
り、また1000人を越えると発生する電子の数が過剰
となり、露光装置内での反射電子が多くなり、レジスト
を感応させたりして、パターン転写の性能を低下させる
The film thickness of the absorber that can be applied in the present invention is 5 to 1000.
People are the best. In other words, if the film thickness is less than 5 Å, the number of electrons generated is small and therefore cannot be detected, and if the thickness exceeds 1,000 people, the number of electrons generated becomes excessive and there are many reflected electrons in the exposure equipment. This may cause the resist to become sensitive, reducing pattern transfer performance.

また、吸収体としては、Auの他にN15Wなどの重金
属を適用することができた。
Furthermore, as the absorber, heavy metals such as N15W could be used in addition to Au.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レジストへのX線露光と同時に、露光
強度、および、その分布をモニターできるので、X線リ
ソグラフィにおけるレジストパターン寸法の高精度制御
に多大な効果がある。
According to the present invention, since the exposure intensity and its distribution can be monitored at the same time as the resist is exposed to X-rays, there is a great effect on highly accurate control of resist pattern dimensions in X-ray lithography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の強度モニタ一手段の構成図、第2図
は実施例2の強度モニタ一手段の構成図。 1・・・Siウェーハ、2・・・X線レジスト、3・・
・メンブレン、4・・・吸収体、5・・・チャネルトロ
ン、6゜6′・・・X線、7・・・アンプ、8・・・電
圧計、20・・・Be膜、30・・・Au膜、18・・
・回転ミラー、10・・・アンプ、11・・・和算回路
、12・・・電圧計、、′(□
FIG. 1 is a configuration diagram of an intensity monitor means according to a first embodiment, and FIG. 2 is a configuration diagram of an intensity monitor means according to a second embodiment. 1...Si wafer, 2...X-ray resist, 3...
・Membrane, 4...Absorber, 5...Channeltron, 6°6'...X-ray, 7...Amplifier, 8...Voltmeter, 20...Be film, 30...・Au film, 18...
・Rotating mirror, 10...Amplifier, 11...Summing circuit, 12...Voltmeter,,'(□

Claims (1)

【特許請求の範囲】 1、X線マスクのパターンを転写するX線リソグラフィ
で用いるX線露光装置において、該X線の存在領域にあ
るX線吸収体から発せられる電子を検出することによつ
て該X線の強度をモニターする手段を有することを特徴
とするX線露光装置。 2、前記X線吸収体が前記X線マスクの吸収体パターン
であることを特徴とする特許請求の範囲第1項記載のX
線露光装置。 3、前記X線吸収体が、前記X線の存在領域にある重金
属膜であることを特徴とする特許請求の範囲第1項記載
のX線露光装置。 4、前記X線吸収体の厚さが5〜1,000Åであるこ
とを特徴とする特許請求の範囲第1〜3項いずれかに記
載のX線露光装置。
[Claims] 1. In an X-ray exposure device used in X-ray lithography that transfers a pattern on an X-ray mask, by detecting electrons emitted from an X-ray absorber in an area where the X-rays exist. An X-ray exposure apparatus characterized by having means for monitoring the intensity of the X-rays. 2. The X-ray device according to claim 1, wherein the X-ray absorber is an absorber pattern of the X-ray mask.
Line exposure equipment. 3. The X-ray exposure apparatus according to claim 1, wherein the X-ray absorber is a heavy metal film located in the region where the X-rays exist. 4. The X-ray exposure apparatus according to any one of claims 1 to 3, wherein the X-ray absorber has a thickness of 5 to 1,000 Å.
JP61215716A 1986-09-16 1986-09-16 X-ray exposure device Pending JPS6372116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215716A JPS6372116A (en) 1986-09-16 1986-09-16 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215716A JPS6372116A (en) 1986-09-16 1986-09-16 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPS6372116A true JPS6372116A (en) 1988-04-01

Family

ID=16676992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215716A Pending JPS6372116A (en) 1986-09-16 1986-09-16 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPS6372116A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100311A (en) * 1988-10-06 1990-04-12 Canon Inc Alignment device and sor-x ray exposure device provided with same
EP0987601A2 (en) * 1998-09-17 2000-03-22 Nikon Corporation An exposure apparatus and exposure method using same
JP2002141280A (en) * 2000-08-25 2002-05-17 Asm Lithography Bv Flat projector, manufacturing method for element and element manufactured thereby
EP1331519A3 (en) * 2002-01-29 2004-01-21 Canon Kabushiki Kaisha Exposure control
US7686505B2 (en) 2005-02-01 2010-03-30 Carl Zeiss Smt Ag Method and system for indirect determination of local irradiance in an optical system
US7875865B2 (en) 2005-11-10 2011-01-25 Carl Zeiss Smt Ag EUV illumination system with a system for measuring fluctuations of the light source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100311A (en) * 1988-10-06 1990-04-12 Canon Inc Alignment device and sor-x ray exposure device provided with same
EP0987601A2 (en) * 1998-09-17 2000-03-22 Nikon Corporation An exposure apparatus and exposure method using same
EP0987601A3 (en) * 1998-09-17 2001-10-04 Nikon Corporation An exposure apparatus and exposure method using same
US6842500B1 (en) 1998-09-17 2005-01-11 Nikon Corporation Exposure apparatus and exposure method using same
JP2002141280A (en) * 2000-08-25 2002-05-17 Asm Lithography Bv Flat projector, manufacturing method for element and element manufactured thereby
EP1331519A3 (en) * 2002-01-29 2004-01-21 Canon Kabushiki Kaisha Exposure control
US6825481B2 (en) 2002-01-29 2004-11-30 Canon Kabushiki Kaisha Exposure apparatus, control method thereof, and device manufacturing method using the same
US7686505B2 (en) 2005-02-01 2010-03-30 Carl Zeiss Smt Ag Method and system for indirect determination of local irradiance in an optical system
US8454230B2 (en) 2005-02-01 2013-06-04 Carl Zeiss Smt Gmbh Method and system for indirect determination of local irradiance in an optical system
US7875865B2 (en) 2005-11-10 2011-01-25 Carl Zeiss Smt Ag EUV illumination system with a system for measuring fluctuations of the light source
US8513628B2 (en) 2005-11-10 2013-08-20 Carl Zeiss Smt Gmbh EUV illumination system with a system for measuring fluctuations of the light source

Similar Documents

Publication Publication Date Title
JP4724662B2 (en) X-ray fluorescence system with an aperture mask for the analysis of patterned surfaces
Krumrey et al. Complete characterization of a Si (Li) detector in the photon energy range 0.9–5 keV
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
US6421414B1 (en) Detector for large wafer surfaces
JPS6372116A (en) X-ray exposure device
US20010024484A1 (en) Method and a device for radiography and a radiation detector
US4385238A (en) Reregistration system for a charged particle beam exposure system
US20080128643A1 (en) Projection exposure tool for microlithography having a radiation detector for spatially resolved registration of electromagnetic radiation
CN101114128A (en) System and method for measuring power of lithographic system
US5703373A (en) Alignment fiducial for improving patterning placement accuracy in e-beam masks for x-ray lithography
US6847696B2 (en) Synchrotron radiation measurement apparatus, X-ray exposure apparatus, and device manufacturing method
US6596994B1 (en) Beam position monitor
JPH07318657A (en) Method and apparatus for monitoring transmission x-ray beam
JPH06283585A (en) Semiconductor evaluation equipment
JPH035080Y2 (en)
JP2010048821A (en) Superconducting x-ray detection apparatus and superconducting x-ray analyzer using the same
US6821714B1 (en) Lithography process for patterning HgI2 photonic devices
JP4072845B2 (en) Scanning electron microscope
JP2006118917A (en) Superconducting x-ray detection apparatus and superconducting x-ray analysis system using the same
JPH09189541A (en) Method and apparatus for measuring floating gap
JPH0692946B2 (en) Method and apparatus for inspecting the structure of a diaphragm surface
JPH05206011A (en) Apparatus and method for alignment of x-ray lithographic system
JPH02195292A (en) Semiconductor radiation detector
JP2500423Y2 (en) electronic microscope
JPH05256801A (en) Instrument for measuring fine structure on surface of thin film