JPS6316687B2 - - Google Patents

Info

Publication number
JPS6316687B2
JPS6316687B2 JP20828882A JP20828882A JPS6316687B2 JP S6316687 B2 JPS6316687 B2 JP S6316687B2 JP 20828882 A JP20828882 A JP 20828882A JP 20828882 A JP20828882 A JP 20828882A JP S6316687 B2 JPS6316687 B2 JP S6316687B2
Authority
JP
Japan
Prior art keywords
light
image
height
bright
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20828882A
Other languages
Japanese (ja)
Other versions
JPS5999216A (en
Inventor
Toyoki Kitayama
Shigeru Morya
Kazuhiko Komatsu
Teruaki Okino
Shunichi Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20828882A priority Critical patent/JPS5999216A/en
Publication of JPS5999216A publication Critical patent/JPS5999216A/en
Publication of JPS6316687B2 publication Critical patent/JPS6316687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 本発明は物体の高さ、例えば荷電粒子線露光装
置におけるマスクブランクやウエハ表面の高さを
極めて正確に検知することの可能な装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus capable of extremely accurately detecting the height of an object, such as the height of a mask blank or wafer surface in a charged particle beam exposure apparatus.

例えば、電子線露光装置により半導体ウエハ等
上に微細回路パターンを描画する際、該ウエハ表
面が設定した高さからずれていると、露光された
回路の位置や大きさが所定のものと異なつてしま
い、特に半導体ウエハにおける多重露光をすると
きには描画精度は著しく低下してしまう。従つ
て、被露光材料の高さを正確に測定することは高
精度な描画のために極めて重要である。
For example, when drawing a fine circuit pattern on a semiconductor wafer etc. using an electron beam exposure device, if the wafer surface deviates from the set height, the position and size of the exposed circuit may differ from the predetermined one. Especially when multiple exposure is performed on a semiconductor wafer, the drawing accuracy is significantly reduced. Therefore, accurately measuring the height of the exposed material is extremely important for highly accurate drawing.

従来の高さ測定装置としては、被露光材料の表
面に対向して電極を配置し、この表面と電極との
間に形成されるコンデンサの静電容量が該表面の
上下動に伴つて変化することを利用するもの及び
被露光材料表面にレーザ光を照射し、その表面で
の反射光と照射光との干渉縞を利用するものが使
用されている。
In conventional height measuring devices, an electrode is placed opposite the surface of the material to be exposed, and the capacitance of a capacitor formed between this surface and the electrode changes as the surface moves up and down. There are two types of laser beams in use: one that irradiates the surface of a material to be exposed with laser light and uses interference fringes between the reflected light on the surface and the irradiated light.

しかし乍ら、前者では静電界の発生があるの
で、測定時電子線に悪影響を与えることになる。
従つて、高さ測定点は最も重要な電子線照射点か
ら著しく離れた点にならざるを得ず、高い測定精
度は望めない。又、後者は光学的測定であるの
で、電子線照射点と測定点とを一致させることは
できるが、干渉パルスの数の積算を利用している
ので、被露光材料表面の凹凸を横切つたりして光
の中断があると、その後の測定は全く信頼性のな
いものとなる。
However, in the former case, an electrostatic field is generated, which adversely affects the electron beam during measurement.
Therefore, the height measurement point must be located significantly away from the most important electron beam irradiation point, and high measurement accuracy cannot be expected. In addition, since the latter is an optical measurement, it is possible to match the electron beam irradiation point and the measurement point, but since it uses the integration of the number of interference pulses, it is difficult to traverse irregularities on the surface of the exposed material. If there is an interruption in the light, such as when the light is interrupted, subsequent measurements will be completely unreliable.

この様な欠点を解決し得る装置が近時提案され
ている。この装置は、第1図に示す如く光源1よ
りの光を被露光材料2の表面に対して斜め方向か
ら投射し、この投射光をアパーチヤを有する部材
3に照射してその通過した光をレンズ4によつて
前記被露光材料表面近傍に結像せしめ、該材料表
面で反射された光の進行方向にレンズ5を置いて
前記像をイメージデイセクター管6の光電検出面
上に結像するようになし、該像の位置に応じた信
号を発生し、それより高さ変位を演算するように
なしたものである。
Recently, devices have been proposed that can solve these drawbacks. As shown in FIG. 1, this device projects light from a light source 1 obliquely onto the surface of a material to be exposed 2, irradiates this projected light onto a member 3 having an aperture, and directs the passed light through a lens. 4 to form an image near the surface of the material to be exposed, and a lens 5 is placed in the traveling direction of the light reflected from the material surface to form the image on the photoelectric detection surface of the image dissector tube 6. Instead, a signal corresponding to the position of the image is generated, and the height displacement is calculated from the signal.

斯かる装置において、今材料2が第2図に示す
如く、2aから2bに高さhだけ変化した場合、
アパーチヤ像pの虚像p′とp″との間隔をL、レン
ズ5の倍率をM、光の入、反射角をθとしたと
き、検出面でのアパーチヤ像のズレ量Δは Δ=M・Lcosθ=M・2hcosθ で与えられる。上記M及びθは既知であるので、
Δが求まれば容易に高さ変位hが求まることにな
る。
In such an apparatus, if the material 2 changes by a height h from 2a to 2b as shown in FIG.
When the distance between the virtual images p' and p'' of the aperture image p is L, the magnification of the lens 5 is M, and the angle of incidence and reflection of light is θ, the amount of deviation Δ of the aperture image on the detection surface is Δ=M・It is given by Lcosθ=M・2hcosθ.Since the above M and θ are known,
If Δ is found, the height displacement h can be easily found.

この装置は非接触、光学式であり電子線に何等
の影響を与えることなく該電子線の照射点におけ
る表面高さを測定でき、且つ干渉パルスの積算は
用いないので、凹凸等の光中断部があつても正確
な高さ測定が可能であるという効果を有してい
る。
This device is a non-contact, optical type and can measure the surface height at the point of irradiation of the electron beam without affecting the electron beam in any way, and does not use integration of interference pulses, so it is possible to measure the surface height at the point where the electron beam is irradiated. This has the effect that accurate height measurement is possible even when there is a problem.

しかし、前記イメージデイセクター管は光電変
換面、アパーチヤ板、2次電子増倍管、コレクタ
ー電極、静電レンズ、偏向コイル及び各部の電源
等から構成されるので構造が複雑で大型であり、
且つ非常に高価であるという問題がある。特に、
装置が大型であることは狭隘な露光室への設置が
困難となり折角の利点をもつ装置の活用ができな
くなる。そこで、イメージデイセクター管に代え
て半導体アレイセンサを使用すれば上記構造的問
題は解決するが、新たな問題が生ずる。即ち、半
導体アレイセンサは半導体光検出素子を10〜30μ
mのピツチで多数(例えば2048個)配列したもの
であるが、測定精度(絶対精度)に限界があり、
高さ換算で1μm又はそれ以下の精度を得ること
は難しい。今、結像レンズ系の倍率Mを10倍と
し、半導体素子のピツチPを25μmとするとアレ
イセンサ上に結像する像に全くボケがないとして
も、原理的に2hcosθの量としてP/M=25/10
=2.5μmの測定精度しか得られない。しかも、ア
パーチヤ板を通した光をレンズで結像して材料面
に投影し、更に反射光を結像レンズで拡大して検
出器上に投影するので、検出器上の像にはかなり
のボケがあり、且つ又各半導体素子の感度は通常
20%程度のバラツキを有しているので、上記精度
は更に悪いものになる。
However, the image dissector tube is composed of a photoelectric conversion surface, an aperture plate, a secondary electron multiplier, a collector electrode, an electrostatic lens, a deflection coil, a power source for each part, etc., so the structure is complex and large.
Another problem is that it is very expensive. especially,
The large size of the device makes it difficult to install it in a narrow exposure room, making it impossible to utilize the device, which has many advantages. Therefore, if a semiconductor array sensor is used in place of the image dissector tube, the above structural problem will be solved, but a new problem will arise. In other words, a semiconductor array sensor uses a semiconductor photodetector element with a thickness of 10 to 30μ.
Although a large number (for example, 2048) are arranged at a pitch of m, there is a limit to the measurement accuracy (absolute accuracy).
It is difficult to obtain an accuracy of 1 μm or less in terms of height. Now, if the magnification M of the imaging lens system is 10 times and the pitch P of the semiconductor element is 25 μm, even if there is no blur in the image formed on the array sensor, in principle P/M = 2h cos θ 25/10
= measurement accuracy of only 2.5 μm can be obtained. Moreover, since the light passing through the aperture plate is imaged by a lens and projected onto the material surface, and the reflected light is further magnified by the imaging lens and projected onto the detector, the image on the detector is considerably blurred. , and the sensitivity of each semiconductor element is usually
Since there is a variation of about 20%, the above accuracy becomes even worse.

本発明は上記問題点を全て解消するためになさ
れたもので、構造が簡単で且つ廉価な半導体アレ
イセンサを使用して高精度の高さ測定を行う装置
を提案するものである。本発明の構成は物体表面
に一定角度θで光を照射し、その照射点の近傍に
微小間隔をなした複数の明暗像を結ばせる照射光
学系と、該照射点から反射する光を集光し、前記
複数の明暗像を結像するための結像光学系と、該
結像光学系の結像面に配置され、多数の半導体光
検出素子からなる半導体アレイセンサと、該セン
サ上における各明暗像の基準位置からの距離を求
め、それらを平均化する演算手段とを備え、前記
半導体アレイセンサ上で複数の明暗像の配列長さ
を該センサの長さより充分短く成した物体の表面
高さ測定装置を特徴とするものである。
The present invention has been made to solve all of the above problems, and proposes an apparatus that performs highly accurate height measurement using a semiconductor array sensor that has a simple structure and is inexpensive. The configuration of the present invention includes an irradiation optical system that irradiates light onto the surface of an object at a constant angle θ and forms a plurality of bright and dark images at minute intervals near the irradiation point, and condenses the light reflected from the irradiation point. and an imaging optical system for forming the plurality of bright and dark images, a semiconductor array sensor disposed on the imaging plane of the imaging optical system and consisting of a large number of semiconductor photodetecting elements, and each sensor on the sensor. a calculation means for determining the distances of the bright and dark images from a reference position and averaging them; The present invention is characterized by a distance measurement device.

以下本発明の一実施例を図面に基づき説明す
る。
An embodiment of the present invention will be described below based on the drawings.

第3図において、7は電子銃を示し、該電子銃
より出た電子線8は電子レンズ系9により集束さ
れて被露光材料2上に投射される。10は偏向器
であり、電子線8を偏向し、被露光材料2上で移
動させてパターンを描くためのもので、増幅器1
1を介してコンピユータ12よりパターン信号が
送られる。光源1と照射光学系のレンズ4との間
には微小間隔をもつて配列された複数、例えば3
個のを有するスリツト板3′が置かれており、該
スリツト板を通過した光はレンズ4で結像され、
p点にその明暗像を結んだ後、材料2上に角θで
投射される。該材料2で反射した光は結像レンズ
5により結像され、多数の半導体光検出素子を配
列した半導体アレイセンサ13上に拡大・結像さ
れる。つまり、点pの虚像p′がセンサ上に投射さ
れることになる。尚、レンズ4によるスリツト板
3′の結像位置は図の如き材料照射点の前方に限
られるものではなく、該照射点又は、それより後
方であつても良い。半導体アレイセンサ13から
の信号は増幅器14により増幅され、演算回路1
5に送られる。この演算回路において、スリツト
像の各明暗像の基準位置からの距離を求め、それ
らを平均化する。平均化された材料2の高さ信号
は表示装置16に送られ、高さ位置として表示さ
れる。又、該信号は前記偏向器の増幅器11や対
物レンズ、ビームシフト用偏向器、更にはフイー
ルド回転レンズ等に送られ、被露光材料の高さ変
位に拘わらず描画パターンの描画位置や露光フイ
ールドの大きさ、フオーカシング等が一定になる
ようにそれらを制御する。
In FIG. 3, numeral 7 indicates an electron gun, and an electron beam 8 emitted from the electron gun is focused by an electron lens system 9 and projected onto the material 2 to be exposed. 10 is a deflector for deflecting the electron beam 8 and moving it on the exposed material 2 to draw a pattern;
A pattern signal is sent from a computer 12 via 1. Between the light source 1 and the lens 4 of the irradiation optical system, a plurality of lenses, for example, three
A slit plate 3' having a number of holes is placed, and the light passing through the slit plate is imaged by a lens 4.
After forming its bright and dark image at point p, it is projected onto the material 2 at an angle θ. The light reflected by the material 2 is imaged by an imaging lens 5, and is magnified and imaged onto a semiconductor array sensor 13 in which a large number of semiconductor photodetecting elements are arranged. In other words, a virtual image p' of point p is projected onto the sensor. The position of the image of the slit plate 3' by the lens 4 is not limited to the front of the material irradiation point as shown in the figure, but may be at or behind the irradiation point. The signal from the semiconductor array sensor 13 is amplified by the amplifier 14 and sent to the arithmetic circuit 1.
Sent to 5. In this arithmetic circuit, the distances of each bright and dark image of the slit image from the reference position are determined and averaged. The averaged height signal of the material 2 is sent to the display device 16 and displayed as a height position. Further, the signal is sent to the amplifier 11 of the deflector, the objective lens, the beam shift deflector, and the field rotation lens, etc., so that the drawing position of the drawing pattern and the exposure field are adjusted regardless of the height displacement of the exposed material. Control them so that the size, focusing, etc. are constant.

第4図は本発明の作用を説明する図であり、a
図は半導体アレイセンサ13の検出面を示し、半
導体光検出素子が一定間隔で多数配列されてい
る。又、b図はその検出面上に投影されるスリツ
ト板3′の像(明暗像)の光強度分布を示してあ
る。この図では3個のスリツトを有するスリツト
板3′を用いた場合でA,B,Cはその像の光強
度分布である。Aの光像により、素子a1,a2から
出力が生じAの光像の両エツジに対応する該a1
a2の基準位置(ここでは左端を基準装置とした)
からの距離A1とA2が求められる。Bの光像によ
つてはb1,b2,b3の素子から出力が得られ、両エ
ツジに対応するb1,b3の基準位置からの距離B1
B2が求められる。更にCの光像によつてc1,c2
c3,c4の素子から出力が生じ、c1とc4の基準位置
からの距離C1,C2が求められる。
FIG. 4 is a diagram illustrating the operation of the present invention, and a
The figure shows the detection surface of the semiconductor array sensor 13, in which a large number of semiconductor photodetecting elements are arranged at regular intervals. Further, Figure b shows the light intensity distribution of the image (bright and dark image) of the slit plate 3' projected onto the detection surface. In this figure, a slit plate 3' having three slits is used, and A, B, and C are the light intensity distributions of the image. The light image of A produces outputs from elements a 1 and a 2 , which correspond to both edges of the light image of A.
Reference position of a 2 (Here, the left end was used as the reference device)
The distances A 1 and A 2 from are found. Depending on the optical image B , outputs are obtained from the elements b 1 , b 2 , and b 3 , and the distances B 1 ,
B 2 is required. Furthermore, by the optical image of C, c 1 , c 2 ,
Outputs are generated from elements c 3 and c 4 , and distances C 1 and C 2 from the reference positions of c 1 and c 4 are determined.

この様にして得られたA1,A2,B1,B2,C1
C2は演算回路15において互いに加算され平均
化される。この平均化された距離信号(従つて、
材料2の高さに対応する信号)は表示装置16に
送られ、例えば数字により高さ表示される。又、
この距離信号は基準値と比較され、その差信号が
例えば増幅器11に送られ、コンピユータ12か
らのパターン信号等が補正される。被露光材料2
の高さが変化した場合には、光像A,B,Cの半
導体アレイセンサ13上での位置が変化(第4図
において、右又は左へシフト)するので、前記平
均化した信号値が変化し、表示は変り、且つ補正
信号もそれに応じて変化する。尚、第4図a,b
から分る様に、3個のスリツトの光像(各々A,
B,Cに対応)の配列長さ(AからC迄の長さ)
はアレイセンサ13の検出面に比べ、材料2の通
常の高さ変位に対応した分以上短くされている。
この様に短くしないと、材料2の変位によつて3
個のスリツト光像A,B,Cの内何れか1個以上
のスリツト光像がアレイセンサ検出面から外れて
投影されてしまう事がある。その様な事が起こる
と、該外れたスリツト光像から距離の信号が得ら
れないので、演算回路15での演算値が3個のス
リツト光像A,B,Cからの距離の信号に基づく
それ迄の演算値に対し狂つたものとなる 以上の如く、本発明においては複数の光像A,
B,Cの両エツジの基準位置からの距離を求め、
それらを平均化して材料面の高さとなしているの
で、半導体素子の配列間隔や各素子の感度のバラ
ツキ、更には像のボケ等による測定精度の限界を
突破でき、単一のアパーチヤ像を用いる場合に比
し、数倍(5倍程度)の精度向上が達成でき、従
つてサブミクロンの精度で高さ測定が可能とな
る。
A 1 , A 2 , B 1 , B 2 , C 1 , obtained in this way,
C 2 are added together and averaged in the arithmetic circuit 15. This averaged distance signal (therefore,
A signal corresponding to the height of the material 2) is sent to a display device 16, where the height is displayed, for example numerically. or,
This distance signal is compared with a reference value, and the difference signal is sent to, for example, an amplifier 11, and the pattern signal from the computer 12 is corrected. Material to be exposed 2
When the height of the optical images A, B, and C changes, the positions of the optical images A, B, and C on the semiconductor array sensor 13 change (shift to the right or left in FIG. 4), so that the averaged signal value changes. The display changes, and the correction signal changes accordingly. In addition, Fig. 4 a, b
As can be seen, there are three slit optical images (A, A, and A, respectively).
(corresponding to B and C) array length (length from A to C)
is made shorter than the detection surface of the array sensor 13 by an amount corresponding to the normal height displacement of the material 2.
If it is not shortened like this, the displacement of material 2 will cause 3
One or more of the slit light images A, B, and C may be projected off the array sensor detection surface. If such a thing occurs, the distance signal cannot be obtained from the deviated slit light image, so the calculated value in the calculation circuit 15 is based on the distance signal from the three slit light images A, B, and C. As described above, in the present invention, a plurality of optical images A,
Find the distance of both edges B and C from the reference position,
Since these are averaged and determined as the height of the material surface, it is possible to overcome the limits of measurement accuracy due to variations in the array spacing of semiconductor elements, variations in sensitivity of each element, and blurring of the image, and use a single aperture image. The accuracy can be improved several times (approximately 5 times) compared to the conventional case, and therefore height measurement can be performed with submicron accuracy.

尚、上記は本発明の一実施例であり、幾多の変
更が可能である。例えば、スリツトの数は図示の
如き3個に限られるものではなく、センサ13上
にその像が2個以上投影されるものであれば幾つ
でも良い。但し、複数のスリツトの光像の配列長
さはアレイセンサの検出面に比べ、材料の通常の
高さ変位に対応した分以上短くされる。勿論、ス
リツトの数は多い方が精度は良くなる。又、第4
図では明るい部分、つまり光の照射された部分の
素子の位置を検出する様にしたが、逆に暗い部
分、つまり光の当らない部分の素子の位置を検出
する様にしても良い。更に、第3図は電子ビーム
露光装置に適用した場合であるが、適用装置に特
別な制限はない。更に又、各スリツトの幅、つま
り光像A,B,Cの幅は同一でも良く、第4図の
如く夫々異つた幅であつても良い。更に、各スリ
ツトの間隔は一定の場合を示したが、異つた間隔
にしても良い。
Note that the above is one embodiment of the present invention, and many modifications are possible. For example, the number of slits is not limited to three as shown in the figure, but may be any number as long as two or more images of the slits are projected onto the sensor 13. However, the array length of the optical images of the plurality of slits is made shorter than the detection surface of the array sensor by an amount corresponding to the normal height displacement of the material. Of course, the greater the number of slits, the better the accuracy. Also, the fourth
In the figure, the position of the element in a bright part, ie, a part irradiated with light, is detected, but conversely, the position of the element in a dark part, ie, a part not irradiated with light, may be detected. Furthermore, although FIG. 3 shows the case where the present invention is applied to an electron beam exposure apparatus, there is no particular restriction on the applicable apparatus. Furthermore, the width of each slit, that is, the width of the optical images A, B, and C, may be the same or may be different widths as shown in FIG. Furthermore, although the case where the intervals between the slits are constant is shown, the intervals between the slits may be different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の高さ測定を説明する
ための図、第3図は本発明の一実施例を示すブロ
ツク線図、第4図は本発明の作用を説明する図で
ある。 1:光源、2:被露光材料、3′:スリツト板、
4,5:光学レンズ、7:電子銃、8:電子線、
9:電子レンズ系、10:偏向器、11:増幅
器、12:コンピユータ、13:半導体アレイセ
ンサ、14:増幅器、15:演算回路、16:表
示装置。
Fig. 1 and Fig. 2 are diagrams for explaining conventional height measurement, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a diagram for explaining the operation of the present invention. . 1: light source, 2: exposed material, 3': slit plate,
4, 5: optical lens, 7: electron gun, 8: electron beam,
9: Electronic lens system, 10: Deflector, 11: Amplifier, 12: Computer, 13: Semiconductor array sensor, 14: Amplifier, 15: Arithmetic circuit, 16: Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 物体表面に一定角度θで光を照射し、その照
射点の近傍に微小間隔をなした複数の明暗像を結
ばせる照射光学系と、該照射点から反射する光を
集光し、前記複数の明暗像を結像するための結像
光学系と、該結像光学系の結像面に配置され、多
数の半導体光検出素子からなる半導体アレイセン
サと、該センサ上における各明暗像の基準位置か
らの距離を求め、それらを平均化する演算手段と
を備え、前記半導体アレイセンサ上での複数の明
暗像の配列長さを該センサの長さより充分短く成
した物体の表面高さ測定装置。
1. An irradiation optical system that irradiates the surface of an object with light at a constant angle θ and forms a plurality of bright and dark images at minute intervals in the vicinity of the irradiation point, and condenses the light reflected from the irradiation point and an imaging optical system for forming bright and dark images, a semiconductor array sensor that is arranged on the imaging plane of the imaging optical system and is composed of a large number of semiconductor photodetecting elements, and a reference for each bright and dark image on the sensor. An apparatus for measuring the surface height of an object, comprising calculation means for determining distances from a position and averaging them, and in which the array length of a plurality of bright and dark images on the semiconductor array sensor is sufficiently shorter than the length of the sensor. .
JP20828882A 1982-11-27 1982-11-27 Measuring device of surface height of body Granted JPS5999216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20828882A JPS5999216A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20828882A JPS5999216A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Publications (2)

Publication Number Publication Date
JPS5999216A JPS5999216A (en) 1984-06-07
JPS6316687B2 true JPS6316687B2 (en) 1988-04-11

Family

ID=16553762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20828882A Granted JPS5999216A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Country Status (1)

Country Link
JP (1) JPS5999216A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820230B2 (en) * 1984-06-08 1996-03-04 オリンパス光学工業株式会社 Measuring endoscope
JPS6174338A (en) * 1984-09-20 1986-04-16 Hitachi Ltd Optical alignment device
JP2728368B2 (en) * 1994-09-05 1998-03-18 株式会社 日立製作所 Exposure method

Also Published As

Publication number Publication date
JPS5999216A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
US4725722A (en) Automatic focusing method and apparatus utilizing contrasts of projected pattern
JP3288794B2 (en) Charge beam correction method and mark detection method
JP4269393B2 (en) Alignment mark and alignment method
JP2938187B2 (en) Pattern forming method and apparatus for performing the method
US9366524B2 (en) Alignment sensor and height sensor
JPS6341401B2 (en)
JPS6316687B2 (en)
JPS587823A (en) Alignment method and device thereof
JPS60237347A (en) Apparatus for inspecting foreign matter
JPS6253049B2 (en)
JP3146568B2 (en) Pattern recognition device
JPH0474644B2 (en)
JPH0317282B2 (en)
JPH026709A (en) Surface displacement detector
JPS603502A (en) Non-contacting type distance measuring method
JP2513281B2 (en) Alignment device
JPH056340B2 (en)
JPS6142408B2 (en)
JP2797053B2 (en) X-ray exposure equipment
JPS5826325Y2 (en) position detection device
JPH0464453B2 (en)
JPS6236508A (en) Method of matching position of mask with position of wafer
JPH01293518A (en) Aligner having device for detecting variation of height of substrate
JPH05288544A (en) Displacement measuring device
JPH05231834A (en) Device for measuring three-dimensional shape