JPH056340B2 - - Google Patents

Info

Publication number
JPH056340B2
JPH056340B2 JP58187391A JP18739183A JPH056340B2 JP H056340 B2 JPH056340 B2 JP H056340B2 JP 58187391 A JP58187391 A JP 58187391A JP 18739183 A JP18739183 A JP 18739183A JP H056340 B2 JPH056340 B2 JP H056340B2
Authority
JP
Japan
Prior art keywords
deflection
electron beam
exposed
height
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58187391A
Other languages
Japanese (ja)
Other versions
JPS6079722A (en
Inventor
Teruaki Okino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP18739183A priority Critical patent/JPS6079722A/en
Publication of JPS6079722A publication Critical patent/JPS6079722A/en
Publication of JPH056340B2 publication Critical patent/JPH056340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は被露光材料の表面の高さを測定し、測
定された高さに応じて被露光材料に投射される電
子線の偏向量、偏向歪や光軸方向の結像位置(投
影レンズの焦点距離)を補正して露光する方法に
関する。
Detailed Description of the Invention The present invention measures the height of the surface of a material to be exposed, and determines the amount of deflection, deflection distortion, and direction of the optical axis of the electron beam projected onto the material in accordance with the measured height. The present invention relates to a method of correcting the imaging position (focal length of a projection lens) and performing exposure.

スリツトを通つた光を被露光材料の表面に照射
し、被露光材料の表面によつて反射された光によ
つて形成されるスリツト像の位置を光電検出器を
用いた検出手段により検出することにより、被露
光材料の表面の高さ(光軸方向の位置)を表わす
信号を得、この信号により被露光材料に照射され
る電子線の偏向ゲイン等を補正して露光を行なう
ことが行なわれている(特願昭55−136161号)。
このような方法を用いれば、被露光材料表面の高
さを非接触で測定でき、且つ電子線露光系に全く
電磁的な悪影響を与えることがない。しかしなが
ら、このような従来の方法においては、一度に被
露光材料表面の一箇所の高さを測定できるだけで
あつたため、一偏向フイールド(試料を機械的に
移動させることなく露光できる領域)当り一点
(例えばフイールド中心点)の高さ測定を行ない、
このフイールド内のサブフイールドの高さは全て
この点の高さに等しいものとして露光を行なつて
いた。ところが、近時ワークデイスタンスの小さ
い電子線露光装置を用いての露光が行われるよう
になると、このような装置においては、電子線の
偏向角を大きくして露光しなければならないた
め、露光材料表面の高さが所定の高さからずれて
いると、露光精度が大きく影響され、高精度の露
光を行なうことができない。
Irradiating the surface of the material to be exposed with light passing through the slit, and detecting the position of the slit image formed by the light reflected by the surface of the material to be exposed by a detection means using a photoelectric detector. A signal representing the height (position in the optical axis direction) of the surface of the material to be exposed is obtained, and the exposure is performed by correcting the deflection gain of the electron beam irradiated to the material to be exposed using this signal. (Special Application No. 136161, 1982).
If such a method is used, the height of the surface of the material to be exposed can be measured without contact, and there will be no adverse electromagnetic influence on the electron beam exposure system. However, in such conventional methods, the height of only one point on the surface of the material to be exposed can be measured at a time, so one point ( For example, measure the height of the center point of the field,
Exposure was performed on the assumption that the heights of all subfields within this field were equal to the height of this point. However, in recent years, exposure using electron beam exposure equipment with small work distance has begun to be performed, and in such equipment, the deflection angle of the electron beam must be widened for exposure, making it difficult to If the height of the surface deviates from a predetermined height, exposure accuracy will be greatly affected, making it impossible to perform highly accurate exposure.

このような問題を解決するため、特開昭57−
60205号公報に記載の従来技術においては、スリ
ツトを通過した光を第1の結像レンズに導いて被
露光材料表面に対して斜めに照射し、それにより
被露光材料表面にスリツト像を形成せしめ、被露
光材料表面によつて反射された光を第2の結像レ
ンズに導いて前記スリツト像の像を光電位置検出
器に導いて、該光電位置検出器よりの信号に基づ
いて被露光材料表面の高さを検出し、この高さ情
報に基づいて電子線の偏向量等を補正し、露光精
度を上げるようにしている。しかしながら、この
ような従来技術においては、一偏向フイールド内
の複数箇所の高さを同時に測定することは出来な
いため、一偏向フイールド内の一箇所の高さ測定
データによりその偏向フイールドの高さを代表さ
せて、即ち粗い高さ測定データに基いて不充分な
精度で露光するか、一偏向フイールド内において
複数回の測定を行つて精度は向上できるが低スル
ープツトの露光を行わざるを得なかつた。
In order to solve such problems,
In the prior art described in Publication No. 60205, the light that has passed through the slit is guided to a first imaging lens and irradiated obliquely onto the surface of the material to be exposed, thereby forming a slit image on the surface of the material to be exposed. , directing the light reflected by the surface of the material to be exposed to a second imaging lens to guide the image of the slit image to a photoelectric position detector, and detecting the material to be exposed based on the signal from the photoelectric position detector. The height of the surface is detected and the amount of deflection of the electron beam is corrected based on this height information to improve exposure accuracy. However, with such conventional technology, it is not possible to simultaneously measure the heights of multiple locations within one deflection field, so the height of the deflection field can be determined using the height measurement data of one location within one deflection field. As a representative example, it is necessary to perform exposure with insufficient accuracy based on coarse height measurement data, or to perform multiple measurements within one deflection field to improve accuracy but with low throughput exposure. .

又、実開昭57−140734号公報に記載の従来技術
においては、静電型の高さ検出器を複数設け、こ
れにより被露光材料表面の複数箇所の高さを同時
に測定できるようにしているが、静電型の高さ検
出器は比較的設置場所を必要とするため、複数個
の検出器を狭い領域に設置することは出来ず、そ
のため、一偏向フイールドのような微小領域内の
複数箇所の高さを同時に測定することはできな
い。
Furthermore, in the conventional technique described in Japanese Utility Model Application Publication No. 57-140734, a plurality of electrostatic height detectors are provided, thereby making it possible to simultaneously measure the heights of multiple locations on the surface of the material to be exposed. However, since electrostatic height detectors require a relatively large installation space, it is not possible to install multiple detectors in a narrow area. It is not possible to measure the height of a location at the same time.

本発明はこのような従来の欠点を解決し、一偏
向フイールド内の複数箇所の高さを一度に測定
し、それにより高精度で高スループツトの露光を
行うことのできる電子線露光方法を提供すること
を目的としている。
The present invention solves these conventional drawbacks and provides an electron beam exposure method that can measure the heights of multiple locations within one deflection field at once, thereby performing exposure with high precision and high throughput. The purpose is to

そのため本発明は、単一の光源よりの光を複数
のスリツトを有したスリツト板に照射し、該複数
のスリツトの各々を通過した複数の光線束を第1
の結像レンズを介して被露光材料の表面に向けて
斜めに照射して該表面近傍に前記各スリツトの像
を形成せしめ、該照射の結果該表面の1偏向フイ
ールド内において反射された複数の光線束を第2
の結像レンズに導き前記各スリツト像を投影レン
ズの物面に結像せしめ、該物面に結像された像よ
りの複数の光線束を前記投影レンズにより複数設
けられた光電位置検出器のうちの対応する検出器
の面上に結像せしめ、該各光電位置検出器よりの
各スリツト像の位置を表わす信号に基づいて被露
光材料に照射される電子線の偏向量及び若しくは
偏向歪及び若しくは光軸方向の結像位置を補正し
て電子線露光するようにしたことを特徴としてい
る。
Therefore, in the present invention, a slit plate having a plurality of slits is irradiated with light from a single light source, and a plurality of light beams passing through each of the plurality of slits are
The slits are irradiated obliquely toward the surface of the material to be exposed through an imaging lens to form an image of each of the slits near the surface. The second ray bundle
The slit images are guided to an imaging lens, and each slit image is focused on an object surface of a projection lens, and a plurality of light beams from the images formed on the object surface are transmitted by the projection lens to a plurality of photoelectric position detectors. The amount of deflection and/or deflection distortion of the electron beam that is formed on the surface of the corresponding detector and irradiated onto the material to be exposed based on the signal representing the position of each slit image from each photoelectric position detector. Alternatively, the electron beam exposure is performed by correcting the imaging position in the optical axis direction.

以下、図面に基づき本発明の実施例を詳述す
る。
Embodiments of the present invention will be described in detail below based on the drawings.

第1図は、本発明を実施するための装置の一例
を示すためのもので、図中5は光源となるランプ
であり、このランプ5よりの光6は遮光板8に入
射する。この遮光板8には第2図に示すように第
1、第2、第3のスリツトSa,Sb,Scが設けら
れている。これらスリツトSa,Sb,Scを透過し
た光6a,6b,6cはフイルター9に入射す
る。このフイルター9はランプ5よりの光のう
ち、被露光材料1に塗布されたレジストを露光さ
せ易い波長成分を除くためのものである。フイル
ター9を透過した光は結像レンズ7によつて集束
され、被露光材料1の表面の近傍に前記スリツト
Sa,Sb,Scの像Pa,Pb,Pcを結ぶ。これら像
Pa,Pb,Pcよりの光線束の各々は第3図におい
てGa,Gb,Gcで示す材料1の表面の1偏向フイ
ールド内の3点Ga,Gb,Gcにおいて反射された
後、結像レンズ10に入射する。尚、第3図にお
いて、点線で区画された領域はサブフイールドを
示している。結像レンズ10は被露光材料1の表
面に対して像Pa,Pb,Pcと対称の点に形成され
る虚像Pa′,Pb′,Pc′を投影レンズ11の物面に
結像させるためのレンズである。投影レンズ11
はこれら像を各々半導体位置検出器12a,12
b,12cの検出面に結像させるためのレンズで
ある。各半導体位置検出器12a,12b,12
cの出力信号は、各々増幅器13a,13b,1
3c及びAD変換器14a,14b,14cを介
して電子計算機15に供給されている。この半導
体位置検出器としては、例えば検出器を構成する
一次元的に形成された半導体面の一点に光が入射
すると、その入射点の半導体両端部からの距離に
反比例した2つの電流が取り出され、この2つの
電流の大きさにより位置検出信号を出力する型の
ものを使用している。この電子計算機15には被
露光材料1を露光するための露光情報が蓄積され
ており、この露光情報に基づいて電子計算機15
は偏向信号を発生する。この偏向信号は偏向歪補
正メモリ4を介して前記偏向器3に供給される。
電子計算機15は前記半導体位置検出器12a,
12b,12cより供給される前記一偏向フイー
ルド内の3点Ga,Gb,Gcの高さ情報に基づいて
露光すべき1偏向フイールドの各サブフイールド
の高さを補間して計算し、この計算された各サブ
フイールドの高さを表わす情報に基づいて、各サ
ブフイールドを露光する際に、高さの基準からの
ずれに基づく露光位置ずれを補正するための補正
信号を前記偏向歪補正メモリ4に供給する。
FIG. 1 is for showing an example of an apparatus for implementing the present invention. In the figure, 5 is a lamp serving as a light source, and light 6 from this lamp 5 is incident on a light shielding plate 8. As shown in FIG. 2, this light shielding plate 8 is provided with first, second, and third slits Sa, Sb, and Sc. Light 6a, 6b, 6c transmitted through these slits Sa, Sb, Sc enters a filter 9. This filter 9 is for removing wavelength components of the light from the lamp 5 that tend to expose the resist coated on the material 1 to be exposed. The light transmitted through the filter 9 is focused by the imaging lens 7, and the slit is formed near the surface of the material 1 to be exposed.
Connect images Pa, Pb, and Pc of Sa, Sb, and Sc. these statues
Each of the light beams from Pa, Pb, and Pc is reflected at three points Ga, Gb, and Gc within one deflection field on the surface of the material 1, indicated by Ga, Gb, and Gc in FIG. incident on . Incidentally, in FIG. 3, the areas demarcated by dotted lines indicate subfields. The imaging lens 10 is used to form virtual images Pa′, Pb′, and Pc′, which are formed at points symmetrical to the images Pa, Pb, and Pc with respect to the surface of the material 1 to be exposed, on the object surface of the projection lens 11. It's a lens. Projection lens 11
These images are transmitted to semiconductor position detectors 12a and 12, respectively.
This is a lens for forming an image on the detection planes b and 12c. Each semiconductor position detector 12a, 12b, 12
The output signals of c are transmitted through amplifiers 13a, 13b, 1
3c and AD converters 14a, 14b, and 14c to the electronic computer 15. In this semiconductor position detector, for example, when light enters one point on a one-dimensionally formed semiconductor surface constituting the detector, two currents are extracted that are inversely proportional to the distance of the incident point from both ends of the semiconductor. , a type that outputs a position detection signal depending on the magnitude of these two currents is used. Exposure information for exposing the exposed material 1 is stored in this computer 15, and based on this exposure information, the computer 15
generates a deflection signal. This deflection signal is supplied to the deflector 3 via a deflection distortion correction memory 4.
The electronic computer 15 includes the semiconductor position detector 12a,
The height of each subfield of one deflection field to be exposed is interpolated and calculated based on the height information of the three points Ga, Gb, and Gc in the one deflection field supplied from 12b and 12c, and the height of each subfield of the one deflection field to be exposed is calculated by interpolation. Based on the information representing the height of each subfield, when exposing each subfield, a correction signal for correcting the exposure position deviation based on the deviation from the height reference is sent to the deflection distortion correction memory 4. supply

さて、前記露光材料1の表面の点Ga,Gb,Gc
において反射された光に基づいて各位置検出器1
2a,12b,12c上に形成されるスリツトの
像の位置は、各表面の測定点Ga,Gb,Gcの高さ
が変化すると、前記虚像Pa′,Pb′,Pc′の位置が
変化するため変化し、各半導体位置検出器12
a,12b,12cよりの位置検出信号は、各点
Ga,Gb,Gc(正確には高さが異なると測定点も
移動するが無視する)の高さを表わしている。各
点Ga,Gb,Gcの高さを表わす位置検出器12
a,12b,12cよりの出力信号は増幅器13
a,13b,13cにおいて増幅され、更にAD
変換器によりデジタル信号に変換された後、電子
計算機15に供給される。電子計算機15におい
ては、予め記憶されている各点Ga,Gb,Gcの座
標を表わすデータと、この供給された高さ信号に
基づいて、偏向フイールド内の各サブフイールド
の高さを補間して求め、この計算された各サブフ
イールドの高さを表わす情報に基づいて、高さの
基準からのずれに基づく露光位置ずれを相殺する
ように各サブフイールドを露光する毎に異なつた
補正信号を発生させて偏向歪補正メモリ4に供給
する。実際の露光を行なう場合には、この偏向歪
補正メモリ4よりの補正信号を読み出して、電子
線2の偏向量が補正されるため、電子線2は正し
い位置に照射され、各サブフイールドは、所定の
位置に高精度に露光される。
Now, the points Ga, Gb, Gc on the surface of the exposure material 1
Each position detector 1
The positions of the images of the slits formed on the surfaces 2a, 12b, and 12c change because the positions of the virtual images Pa', Pb', and Pc' change when the heights of the measurement points Ga, Gb, and Gc on each surface change. each semiconductor position detector 12
The position detection signals from a, 12b, and 12c are
It represents the heights of Ga, Gb, and Gc (more precisely, the measurement point will move if the height is different, but this is ignored). Position detector 12 indicating the height of each point Ga, Gb, Gc
The output signals from a, 12b, 12c are sent to the amplifier 13.
a, 13b, 13c, and further AD
After being converted into a digital signal by a converter, it is supplied to the electronic computer 15. The electronic computer 15 interpolates the height of each subfield within the deflection field based on pre-stored data representing the coordinates of each point Ga, Gb, Gc and the supplied height signal. Based on the calculated information representing the height of each subfield, a different correction signal is generated each time each subfield is exposed so as to cancel out the exposure position deviation due to the deviation from the height reference. and supplies it to the deflection distortion correction memory 4. When performing actual exposure, the correction signal from this deflection distortion correction memory 4 is read out and the deflection amount of the electron beam 2 is corrected, so that the electron beam 2 is irradiated at the correct position and each subfield is Exposed to a predetermined position with high precision.

尚、上述した実施例においては、各サブフイー
ルドの位置の高さを表わす信号に基づいて、電子
線の照射位置を補正するようにしたが、光軸方向
の結像位置を補正する場合にも本発明は同様に適
用できる。
In the above-mentioned embodiment, the electron beam irradiation position is corrected based on the signal representing the height of each subfield position, but this also applies when correcting the imaging position in the optical axis direction. The invention is equally applicable.

更に又、上述した実施例においては、補正信号
を偏向歪補正メモリに供給して露光位置を調節し
て電子線照射位置の補正を行なうようにしたが、
電子計算機より出力される偏向信号そのものを補
正するようにしても良い。
Furthermore, in the embodiments described above, the correction signal is supplied to the deflection distortion correction memory to adjust the exposure position to correct the electron beam irradiation position.
The deflection signal itself output from the electronic computer may be corrected.

又、スリツト像の位置を測定するための光電位
置測定手段は、半導体位置検出器に限らず、例え
ば、フオトセンサーアレイを用いても良い。更に
又、遮光板に設けられたスリツトは必ずしも、遮
光板で囲まれている必要は無く、位置検出器上に
スリツト像又はエツジ像を結ばせることができる
ようなものなら良い。
Further, the photoelectric position measuring means for measuring the position of the slit image is not limited to a semiconductor position detector, and for example, a photo sensor array may be used. Furthermore, the slit provided in the light-shielding plate does not necessarily need to be surrounded by the light-shielding plate, and may be any slit that can form a slit image or an edge image on the position detector.

上述した説明より明らかなように、本発明にお
いては、1偏向フイールド内の複数の点の高さを
1度に測定して、露光位置に応じて電子線の照射
位置及び若しくは光軸方向の結像位置を細かく補
正して露光することができるため、ワークデイス
タンスの短い電子光学系を有する露光装置を使用
して露光を行なう場合にも、短時間に高精度の露
光を行なうことができる。
As is clear from the above explanation, in the present invention, the heights of multiple points within one deflection field are measured at once, and the irradiation position of the electron beam and/or the optical axis direction is determined according to the exposure position. Since the image position can be finely corrected for exposure, even when exposure is performed using an exposure apparatus having an electron optical system with a short work distance, exposure can be performed with high precision in a short time.

更に又、上述した本発明においては、単一の光
学系で複数のスリツト像を各位置検出器上に投影
するようにしているため、一偏向フイールド内の
複数箇所同時高さ測定のための装置を比較的小さ
なスペースに配置することができる。
Furthermore, in the present invention described above, since a plurality of slit images are projected onto each position detector using a single optical system, an apparatus for simultaneous height measurement at multiple locations within one deflection field is required. can be placed in a relatively small space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の一例を
示すための図、第2図は第1図に示した遮光板を
詳細に示すための図、第3図は露光すべき一偏向
フイールドと複数の高さ測定点を説明するための
図である。 1:被露光材料、2:電子線、3:偏向器、
4:偏向歪補正メモリ、5:ランプ、6a,6
b,6c:光線、7,10:結像レンズ、8:遮
光板、Sa,Sb,Sc:スリツト、9:フイルター、
11:投影レンズ、12a,12b,12c:半
導体位置検出器、13a,13b,13c:増幅
器、14a,14b,14c:AD変換器、1
5:電子計算機、Ga,Gb,Gc:位置検出点。
FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention, FIG. 2 is a diagram showing details of the light shielding plate shown in FIG. 1, and FIG. 3 is a diagram showing one deflection field to be exposed. FIG. 3 is a diagram for explaining a plurality of height measurement points. 1: material to be exposed, 2: electron beam, 3: deflector,
4: Deflection distortion correction memory, 5: Lamp, 6a, 6
b, 6c: ray, 7, 10: imaging lens, 8: light shielding plate, Sa, Sb, Sc: slit, 9: filter,
11: Projection lens, 12a, 12b, 12c: Semiconductor position detector, 13a, 13b, 13c: Amplifier, 14a, 14b, 14c: AD converter, 1
5: Electronic computer, Ga, Gb, Gc: Position detection point.

Claims (1)

【特許請求の範囲】[Claims] 1 単一の光源よりの光を複数のスリツトを有し
たスリツト板に照射し、該複数のスリツトの各々
を通過した複数の光線束を第1の結像レンズを介
して被露光材料の表面に向けて斜めに照射して該
表面近傍に前記各スリツトの像を形成せしめ、該
照射の結果該表面の1偏向フイールド内において
反射された複数の光線束を第2の結像レンズに導
き前記各スリツト像を投影レンズの物面に結像せ
しめ、該物面に結像された像よりの複数の光線束
を前記投影レンズにより複数設けられた光電位置
検出器のうちの対応する検出器の面上に結像せし
め、該各光電位置検出器よりの各スリツト像の位
置を表わす信号に基づいて被露光材料に照射され
る電子線の偏向量及び若しくは偏向歪及び若しく
は光軸方向の結像位置を補正して電子線露光する
ようにしたことを特徴とする電子線露光方法。
1 Light from a single light source is irradiated onto a slit plate having a plurality of slits, and a plurality of light beams passing through each of the plurality of slits are directed onto the surface of the material to be exposed through a first imaging lens. A plurality of light beams reflected within one deflection field of the surface as a result of the irradiation are guided to a second imaging lens to form an image of each of the slits near the surface. A slit image is formed on the object surface of the projection lens, and a plurality of light beams from the image formed on the object surface are directed by the projection lens to the surface of a corresponding one of the plurality of photoelectric position detectors. The amount of deflection and/or deflection distortion of the electron beam and/or the imaging position in the optical axis direction of the electron beam that is irradiated onto the material to be exposed based on the signal representing the position of each slit image from each photoelectric position detector. An electron beam exposure method characterized in that electron beam exposure is performed by correcting.
JP18739183A 1983-10-06 1983-10-06 Electron beam exposing method Granted JPS6079722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18739183A JPS6079722A (en) 1983-10-06 1983-10-06 Electron beam exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18739183A JPS6079722A (en) 1983-10-06 1983-10-06 Electron beam exposing method

Publications (2)

Publication Number Publication Date
JPS6079722A JPS6079722A (en) 1985-05-07
JPH056340B2 true JPH056340B2 (en) 1993-01-26

Family

ID=16205200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18739183A Granted JPS6079722A (en) 1983-10-06 1983-10-06 Electron beam exposing method

Country Status (1)

Country Link
JP (1) JPS6079722A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091225A (en) 1998-07-16 2000-03-31 Advantest Corp Device and method for charged particle beam exposure
KR100334636B1 (en) * 1998-07-16 2002-04-27 히로시 오우라 Charged particle beam exposure apparatus and exposure method capable of highly accurate exposure in the presence of partial unevenness on the surface of exposed specimen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760205A (en) * 1980-09-30 1982-04-12 Jeol Ltd Exposure be electron beam
JPS58119642A (en) * 1981-12-31 1983-07-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Automatic electron beam focusing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140734U (en) * 1981-02-27 1982-09-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760205A (en) * 1980-09-30 1982-04-12 Jeol Ltd Exposure be electron beam
JPS58119642A (en) * 1981-12-31 1983-07-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Automatic electron beam focusing device

Also Published As

Publication number Publication date
JPS6079722A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
US4289400A (en) Apparatus for measuring a gradient of a surface
JPH0324771B2 (en)
JPH0135493B2 (en)
US5030986A (en) Film printing and reading system
JPS6341401B2 (en)
JPH056340B2 (en)
JP2910151B2 (en) Position detection device
JPS6316687B2 (en)
JPH054603B2 (en)
JPH01164031A (en) Alignment device
JPS6253049B2 (en)
JP2000182925A (en) Beam radiation device and electron beam aligner
KR970004476B1 (en) Measurement apparatus of wafer position in altgner
JP2692890B2 (en) Positional relationship detector
JP3202322B2 (en) Mask inspection equipment
JPS61134605A (en) Measuring device of surface height of object
JPH10227617A (en) Mocroline width measuring method and apparatus
JPH07120618B2 (en) Particle beam drawing method
JPS6327642B2 (en)
JPS6315812Y2 (en)
JPH054604B2 (en)
JPH0618448A (en) Mtf measurement device for x-ray optical system
JPH077742B2 (en) Electron beam exposure method
JPH0474644B2 (en)
JPH0312451B2 (en)