JPH054604B2 - - Google Patents

Info

Publication number
JPH054604B2
JPH054604B2 JP62221538A JP22153887A JPH054604B2 JP H054604 B2 JPH054604 B2 JP H054604B2 JP 62221538 A JP62221538 A JP 62221538A JP 22153887 A JP22153887 A JP 22153887A JP H054604 B2 JPH054604 B2 JP H054604B2
Authority
JP
Japan
Prior art keywords
wafer
mask
diffraction grating
positional deviation
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62221538A
Other languages
Japanese (ja)
Other versions
JPS6463802A (en
Inventor
Ryoji Tanaka
Hidekazu Kono
Joji Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62221538A priority Critical patent/JPS6463802A/en
Priority to US07/145,355 priority patent/US4815854A/en
Publication of JPS6463802A publication Critical patent/JPS6463802A/en
Publication of JPH054604B2 publication Critical patent/JPH054604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はマスクとウエハの位置ずれ検出方法、
特に、X線露光装置に適用しうるマスクとウエハ
の位置ずれ検出方法に関する。 〔技術環境〕 近年の半導体はDRAMに代表されるように高
集積化が進む傾向にあり、超LSIのパターンの最
小線幅もミクロンからサブミクロンの領域へ突入
しようとしている。このような状況において、従
来の紫外線のg線、i線を用いた光学式の半導体
露光装置では、光の波長による解像度の限界が
0.5μm程度と言まれているので、0.5μm以下のパ
ターンに対応できる次世代の露光装置が強く望ま
れている。この次世代の露光装置として、現在、
X線露光装置が有望視されており、研究・開発が
進められている。 〔従来の技術〕 従来の技術としては、例えば特公昭55−43598
号公報に示されているようにリニアフレネルゾー
ンプレート(LFZP)を用いた光学的整列方法が
ある。 従来のマスクとウエハのアライメント方法はマ
スク用マークとしてLFZPと呼ばれる光の回折を
利用した集光レンズを用い、ウエハ用マークとし
て線状回折格子を用いて行う。この位置ずれ検出
法についてはB.Fay等によりJournal of
Vacuum Science Technology Vol.16(6)pp1954
−1958Nov/Dec1979の“Optical Alignment
System for Submicron X−ray Lithography”
に報告されている。ここでその原理について図面
を参照して説明する。 第5図はLFZPを用いたアライメント方法を示
す説明図である。ウエハ14には回折格子15が
刻印されていて、ウエハ14の上には所定のギヤ
ツプだけ離れてマスク16が対向している。マス
ク16には焦点距離がマスクとウエハのギヤツプ
量に等しく設計されたLFZP17が描かれてい
る。第6図aはマスク用マークのLFZPの構造を
示す平面図である。LFZPはいろいろな幅や間隔
の縞が並んだ構造になつていて、縞はマークの中
心からの距離をrnとすると
[Industrial Application Field] The present invention provides a method for detecting misalignment between a mask and a wafer;
In particular, the present invention relates to a method for detecting misalignment between a mask and a wafer that can be applied to an X-ray exposure apparatus. [Technological environment] In recent years, semiconductors, as exemplified by DRAM, are becoming increasingly highly integrated, and the minimum line width of VLSI patterns is moving from microns to submicrons. Under these circumstances, conventional optical semiconductor exposure equipment that uses ultraviolet g-line and i-line rays has a resolution limit due to the wavelength of the light.
Since it is said to be around 0.5 μm, there is a strong desire for next-generation exposure equipment that can handle patterns of 0.5 μm or less. Currently, as this next generation exposure equipment,
X-ray exposure equipment is seen as promising, and research and development is progressing. [Prior art] As a conventional technology, for example, Japanese Patent Publication No. 55-43598
As shown in the above publication, there is an optical alignment method using a linear Fresnel zone plate (LFZP). The conventional mask-to-wafer alignment method uses a condensing lens called LFZP that uses light diffraction as the mask mark, and a linear diffraction grating as the wafer mark. This positional deviation detection method is described in the Journal of B. Fay et al.
Vacuum Science Technology Vol.16(6)pp1954
−1958Nov/Dec1979 “Optical Alignment”
System for Submicron X-ray Lithography”
has been reported. Here, the principle will be explained with reference to the drawings. FIG. 5 is an explanatory diagram showing an alignment method using LFZP. A diffraction grating 15 is engraved on the wafer 14, and a mask 16 is opposed to the wafer 14 with a predetermined gap apart. An LFZP 17 whose focal length is designed to be equal to the gap between the mask and the wafer is drawn on the mask 16. FIG. 6a is a plan view showing the structure of the LFZP of the mask mark. LFZP has a structure in which stripes of various widths and intervals are lined up, and the distance of the stripes from the center of the mark is rn.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のマスクとウエハの位置ずれ検出
方法は、2枚のレンズと振動ミラーを含む光学系
が必要なので、装置が複雑になり、小型化が困難
になり、高価になるという欠点があつた。 また、検出器からの信号と振動ミラーの駆動信
号を位相検波して位置ずれ信号を得るため、位置
ずれ信号のサンプリング周波数は振動ミラーの周
波数によつて決まつてしまうので、サンプリング
周波数が低いという欠点があつた。 さらに、位置ずれ検出範囲が高々2μm程度と狭
いので、プリアライメントの負担が大きくなると
いう欠点があつた。 〔問題点を解決するための手段〕 本発明のマスクとウエハの位置すれ検出方法は
マスクとウエハを対向して設置し、前記マスク上
にリニアフレネルゾーンプレートを設け、前記ウ
エハ上に互いにピツチの異なる2個の幅の広い回
折格子を隣接して設け、レーザ光を前記マスク上
の前記リニアフレネルゾーンプレートに照射し、
前記ウエハ上の前記回折格子からの反射回折光を
2個の検出器で検出し、前記検出器の出力の差を
求めることを含んで構成される。 〔実施例〕 次に、本発明の実施例について、図面を参照し
て詳細に説明する。 第1図は本発明の一実施例を示す斜視図であ
る。 第1図に示すマスクとウエハの位置ずれ検出方
法は、マスク1とウエハ2を所定のギヤツプSだ
け隔てて設置し、前記マスク1上に焦点距離がギ
ヤツプSに等しいLFZP3を設け、前記ウエハ上
に互いにピツチが異なり幅wの広い第1の回折格
子5を軸xの方向に隣接して設け、レーザビーム
6を前記マスク1上の前記LFZP3に照射し、前
記ウエハ2上の前記第1の回折格子4からの1次
反射回折光を第1の検出器7で検出し、前記第2
の回折格子5からの1次反射回折光を第2の検出
器8で検出し、前記第1の検出器7および第2の
検出器8の出力の差を求めることを含んで構成さ
れる。ピツチPの回折格子による回折角度θはθ
=sin-1(nλ/P)(n=±1,±2,……)で表わ
される。したがつて、第1の回折格子4のピツチ
P1と第2の回折格子のピツチP2は異なるため、
それぞれの1次回折角度θ1およびθ2も異なり、2
つの反射回折光は空間的に分離される。 第2図は第1図に示すマスクとウエハの位置ず
れ検出方法に用いるアライメントマークを示す平
面図である。第2図aはマスク用マークのLFZP
3であり、焦点距離はマスク1とウエハ2のギヤ
ツプSに等しく設計されている。第2図bはウエ
ハ用マークの第1の回折格子4および第2の回折
格子であり、それぞれの長さはLFZP3の長さl
に等しく、回折格子の幅wはLFZP3の幅の半分
程度、したがつて数10μmであり、ピツチはP1
よびP2である。図においては第1の回折格子4
および第2の回折格子5は接しているが、微小距
離だけ離れていても有効である。 第3図は第1図に示すマスクとウエハの位置ず
れ検出方法における信号処理系を示すブロツク図
である。ウエハ2上の第1の回折格子4からの1
次反射回折光を検出する第1の検出器7と、ウエ
ハ2上の第2の回折格子5からの1次反射回折光
を検出する第2の検出器8と、前記第1の検出器
7の出力aを増幅し第1のセンスcを発生する第
1のアンプ9と、前記第2の検出器8の出力bを
増幅し第2のセンス信号dを発生する第2のアン
プ10と、前記第2のセンス信号dから前記第1
のセンス信号cを減算し位置ずれ信号eを発生す
る減算器11と、前記第1のセンス信号cと前記
第2のセンス信号dを加算し参照信号fを発生す
る加算器12と、前記位置ずれ信号eを前記参照
信号fで除算し正規化された位置ずれ信号gを発
生する除算器13とを含んで構成される。 第1図に示すマスクとウエハの位置ずれ検出方
法は軸xの方向の位置ずれを検出するものであ
る。第4図aはマスク1とウエハ2の軸xの方向
の位置ずれと第1の検出器7の出力aと第2の検
出器8の出力bの関係を示すグラフである。
LFZP3により結像されたスリツトが第1の回折
格子4上にあるときはウエハ2からの1次反射回
折光は第1の検出器7によつて検出され、LFZP
3により結像されたスリツトが第2の回折格子5
上にあるときはウエハ2からの1次反射回折光は
第2の検出器8によつて検出される。したがつ
て、第4図aにおける第1の検出器7の出力aお
よび第2の検出器8の出力bの波形はほぼ回折格
子の幅wをもつてあらわれる。これらの信号を増
幅し差を求めることによつて位置ずれ信号eを得
る。第4図bは位置ずれ信号を示すグラフであ
る。LFZP3によつて結像されたスリツトが第1
の回折格子4と第2の回折格子5の境界にあると
き位置ずれ信号eは0となり、マスク1とウエハ
2が正しく重なつたことを示している。0点近傍
での直接性は良い。また、位置ずれ信号eは±w
の範囲で得られているので、この信号を用いてサ
ーボ系を構成すれば初期位置ずれ量が±w以内で
あるならば0点への引き込みが可能である。たと
えば回折格子の幅wを20μmで設計すれば、プリ
アライメント精度は40μm程度あればアライメン
トサーボによる自動重ね合せが可能である。この
程度の精度はオリエンテーシヨン・フラツトを基
準とした機械的な精度だけで実現できる。回折格
子の幅wを広くするほど位置ずれ検出範囲も広が
るが、マークの占有面積は小さいほうが望ましい
ので、第1の回折格子4および第2の回折格子5
を合わせた面積がLFZP3の面積に等しくなる程
度が適当である。 第1の検出器の出力aおよび第2の検出器の出
力bの信号強度はマスク1とウエハ2のギヤツプ
ずれはレジスト等の影響により変化するが、位置
ずれ信号eを除算器13で正規化しているので正
規化された位置ずれ信号gに関しては位置ずれに
対する感度が変化することはない。したがつて、
本信号処理系によつて得られる正規化された位置
ずれ信号gを用いてサーボ系を構成すれば、ギヤ
ツプすれやレジスタ等の影響による信号強度の変
動によつてサーボゲインが変化することがないの
で、安定したサーボが実現できる。 本実施例では検出器として2個の独立した検出
器を用いているが2分割検出器を用いるとそれぞ
れの検出器の特性が揃うのでさらに良い。 〔発明の効果〕 本発明のマスクとウエハの位置ずれ検出方法
は、2枚のレンズと振動ミラーを用いてレーザビ
ームを走査して位置ずれ信号を得る代りに、隣接
した2個の回折格子からの信号の差をとつて位置
ずれ信号とすることにより、2枚のレンズと振動
ミラーを含む光学系が不要になるため、装置が簡
単になり、安価になるという効果がある。 また、振動ミラーの周波数に左右されずに位置
ずれ検出信号のサンプリング周波数を上げること
ができるという効果がある。 さらに、幅の広い回折格子を用いることができ
るため、位置ずれ検出範囲を広くできるので、プ
リアライメントが不要になるため、装置が簡単に
なり、スループツトが向上する。
The conventional method for detecting misalignment between a mask and a wafer described above requires an optical system including two lenses and a vibrating mirror, which has the drawbacks of making the device complex, making it difficult to miniaturize, and making it expensive. . In addition, since the positional deviation signal is obtained by phase-detecting the signal from the detector and the drive signal of the vibrating mirror, the sampling frequency of the positional deviation signal is determined by the frequency of the vibrating mirror, so the sampling frequency is low. There were flaws. Furthermore, since the positional deviation detection range is narrow, about 2 μm at most, there is a drawback that the burden of pre-alignment becomes heavy. [Means for solving the problem] In the method for detecting misalignment between a mask and a wafer of the present invention, a mask and a wafer are placed facing each other, a linear Fresnel zone plate is provided on the mask, and a linear Fresnel zone plate is provided on the wafer so that the misalignment between the mask and the wafer is detected. Two different wide diffraction gratings are provided adjacently, and a laser beam is irradiated to the linear Fresnel zone plate on the mask,
The method includes detecting reflected and diffracted light from the diffraction grating on the wafer with two detectors, and determining a difference between the outputs of the detectors. [Example] Next, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the present invention. The method for detecting the positional deviation between a mask and a wafer shown in FIG. First diffraction gratings 5 having different pitches and having a wide width w are provided adjacent to each other in the direction of the axis The first-order reflected diffraction light from the diffraction grating 4 is detected by the first detector 7, and the second
The first-order reflected diffraction light from the diffraction grating 5 is detected by a second detector 8, and the difference between the outputs of the first detector 7 and the second detector 8 is determined. The diffraction angle θ due to the diffraction grating of pitch P is θ
It is expressed as = sin -1 (nλ/P) (n = ±1, ±2, ...). Therefore, the pitch of the first diffraction grating 4
Since P 1 and the pitch P 2 of the second diffraction grating are different,
The respective first-order diffraction angles θ 1 and θ 2 are also different, and 2
The two reflected and diffracted lights are spatially separated. FIG. 2 is a plan view showing an alignment mark used in the method of detecting a positional deviation between a mask and a wafer shown in FIG. Figure 2 a shows the mask mark LFZP.
3, and the focal length is designed to be equal to the gap S between the mask 1 and the wafer 2. Figure 2b shows the first diffraction grating 4 and the second diffraction grating of the wafer mark, each having a length l equal to the length l of LFZP3.
The width w of the diffraction grating is approximately half the width of the LFZP3, which is several tens of micrometers, and the pitches are P1 and P2 . In the figure, the first diffraction grating 4
Although the second diffraction grating 5 and the second diffraction grating 5 are in contact with each other, it is effective even if they are separated by a minute distance. FIG. 3 is a block diagram showing a signal processing system in the method for detecting misalignment between a mask and a wafer shown in FIG. 1 from the first diffraction grating 4 on the wafer 2
A first detector 7 that detects the second-order reflected diffraction light, a second detector 8 that detects the first-order reflected diffraction light from the second diffraction grating 5 on the wafer 2, and the first detector 7 a first amplifier 9 that amplifies the output a of the second detector 8 and generates a first sense signal c; a second amplifier 10 that amplifies the output b of the second detector 8 and generates a second sense signal d; from the second sense signal d to the first sense signal d.
a subtracter 11 that subtracts the sense signal c of , and generates a position deviation signal e; an adder 12 that adds the first sense signal c and the second sense signal d, and generates a reference signal f; A divider 13 divides the deviation signal e by the reference signal f to generate a normalized positional deviation signal g. The method for detecting misalignment between a mask and a wafer shown in FIG. 1 detects misalignment in the direction of the axis x. FIG. 4a is a graph showing the relationship between the positional deviation of the mask 1 and the wafer 2 in the direction of the axis x, the output a of the first detector 7, and the output b of the second detector 8.
When the slit imaged by the LFZP 3 is on the first diffraction grating 4, the first reflected diffraction light from the wafer 2 is detected by the first detector 7, and the LFZP
The slit imaged by 3 is the second diffraction grating 5
When it is above the wafer 2, the first-order reflected diffraction light from the wafer 2 is detected by the second detector 8. Therefore, the waveforms of the output a of the first detector 7 and the output b of the second detector 8 in FIG. 4a appear to have approximately the width w of the diffraction grating. A positional deviation signal e is obtained by amplifying these signals and determining the difference. FIG. 4b is a graph showing the positional deviation signal. The slit imaged by LFZP3 is the first
At the boundary between the diffraction grating 4 and the second diffraction grating 5, the positional deviation signal e becomes 0, indicating that the mask 1 and the wafer 2 are correctly overlapped. Directness near the 0 point is good. Also, the positional deviation signal e is ±w
Therefore, if a servo system is constructed using this signal, it is possible to pull in to the 0 point if the initial positional deviation is within ±w. For example, if the width w of the diffraction grating is designed to be 20 μm, automatic superposition using an alignment servo is possible if the pre-alignment accuracy is about 40 μm. This level of accuracy can only be achieved with mechanical accuracy based on orientation flats. The wider the width w of the diffraction grating, the wider the positional deviation detection range, but it is desirable that the area occupied by the mark be small.
It is appropriate that the combined area is equal to the area of LFZP3. Although the signal strength of the output a of the first detector and the output b of the second detector changes due to the influence of the resist etc., the gap deviation between the mask 1 and the wafer 2 is normalized by the divider 13. Therefore, the sensitivity to positional deviation does not change regarding the normalized positional deviation signal g. Therefore,
By configuring a servo system using the normalized positional deviation signal g obtained by this signal processing system, the servo gain will not change due to fluctuations in signal strength due to gaps or the effects of registers, etc. Therefore, stable servo can be realized. In this embodiment, two independent detectors are used as the detectors, but it is even better to use a two-split detector because the characteristics of each detector are the same. [Effects of the Invention] The method for detecting misalignment between a mask and a wafer of the present invention uses two lenses and a vibrating mirror to scan a laser beam to obtain a misalignment signal, but instead of scanning a laser beam using two lenses and a vibrating mirror to obtain a misalignment signal, the method detects misalignment from two adjacent diffraction gratings. By calculating the difference between the signals and using it as a positional deviation signal, an optical system including two lenses and a vibrating mirror is not required, which has the effect of simplifying the apparatus and reducing its cost. Further, there is an effect that the sampling frequency of the positional deviation detection signal can be increased without being affected by the frequency of the vibrating mirror. Furthermore, since a wide diffraction grating can be used, the positional deviation detection range can be widened, and pre-alignment is no longer necessary, which simplifies the apparatus and improves throughput.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2
図aは第1図に示すマスクとウエハの位置ずれ検
出方法に用いるマスク用マークであるLFZPの構
造を示す平面図、第2図bは第1図に示すマスク
とウエハの位置ずれ検出方法に用いるウエハ用マ
ークである回折格子の構造を示す平面図、第3図
は信号処理系を示すブロツク図、第4図aは位置
ずれ量と検出器の出力の関係を示すグラフ、第4
図bは位置ずれ信号を示すグラフ、第5図は従来
のアライメント方法を示す説明図、第6図aは
LFZPの構造を示す平面図、第6図bは回折格子
の構造を示す平面図、第7図は従来のアライメン
ト方法を用いた自動重ね合せ装置を示す斜視図で
ある。 1,16……マスク、2,14……ウエハ、
3,17……LFZP、4……第1の回折格子、5
……第2の回折格子、6,18……レーザビー
ム、7……第1の検出器、8……第2の検出器、
11……減算器、12……加算器、13……除算
器、22……第1のレンズ、23……ジエネレー
タ、25……振動ミラー、26……第2のレン
ズ、28……位相検波器。
Fig. 1 is a perspective view showing one embodiment of the present invention;
Figure a is a plan view showing the structure of LFZP, which is a mask mark used in the method for detecting misalignment between a mask and a wafer shown in Figure 1, and Figure 2 b is a plan view showing the structure of the LFZP, which is a mask mark used in the method for detecting misalignment between a mask and a wafer shown in Figure 1. FIG. 3 is a block diagram showing the signal processing system; FIG. 4 a is a graph showing the relationship between the amount of positional deviation and the detector output;
Figure b is a graph showing the positional deviation signal, Figure 5 is an explanatory diagram showing the conventional alignment method, and Figure 6 a is a graph showing the positional deviation signal.
FIG. 6b is a plan view showing the structure of the LFZP, FIG. 6b is a plan view showing the structure of the diffraction grating, and FIG. 7 is a perspective view showing an automatic alignment device using a conventional alignment method. 1, 16... mask, 2, 14... wafer,
3, 17...LFZP, 4...First diffraction grating, 5
... second diffraction grating, 6, 18 ... laser beam, 7 ... first detector, 8 ... second detector,
11... Subtractor, 12... Adder, 13... Divider, 22... First lens, 23... Generator, 25... Oscillating mirror, 26... Second lens, 28... Phase detection vessel.

Claims (1)

【特許請求の範囲】[Claims] 1 マスクとウエハを対向して設置し、前記マス
ク上にリニアフレネルゾーンプレートを設け、前
記ウエハに互いにピツチの異なる2個の幅の広い
回折格子を隣接して設け、レーザ光を前記マスク
上の前記リニアフレネルゾーンプレートに照射
し、前記ウエハ上の前記回折格子からの反射回折
光を2個の検出器で検出し、前記検出器の出力の
差を求めること含むことを特徴とするマスクとウ
エハの位置ずれ検出方法。
1. A mask and a wafer are placed facing each other, a linear Fresnel zone plate is provided on the mask, two wide diffraction gratings with different pitches are provided adjacent to each other on the wafer, and a laser beam is directed onto the mask. A mask and a wafer comprising: irradiating the linear Fresnel zone plate, detecting the reflected diffracted light from the diffraction grating on the wafer with two detectors, and determining the difference between the outputs of the detectors. positional deviation detection method.
JP62221538A 1987-01-19 1987-09-03 Detecting method for positional slippage of mask and wafer Granted JPS6463802A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62221538A JPS6463802A (en) 1987-09-03 1987-09-03 Detecting method for positional slippage of mask and wafer
US07/145,355 US4815854A (en) 1987-01-19 1988-01-19 Method of alignment between mask and semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62221538A JPS6463802A (en) 1987-09-03 1987-09-03 Detecting method for positional slippage of mask and wafer

Publications (2)

Publication Number Publication Date
JPS6463802A JPS6463802A (en) 1989-03-09
JPH054604B2 true JPH054604B2 (en) 1993-01-20

Family

ID=16768288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62221538A Granted JPS6463802A (en) 1987-01-19 1987-09-03 Detecting method for positional slippage of mask and wafer

Country Status (1)

Country Link
JP (1) JPS6463802A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151999A (en) * 2000-11-09 2002-05-24 Nec Corp Surface acoustic wave filter and package containing the surface acoustic wave filter

Also Published As

Publication number Publication date
JPS6463802A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
US5343292A (en) Method and apparatus for alignment of submicron lithographic features
KR100577107B1 (en) Multi-channel grating interference alignment sensor
JP3364382B2 (en) Sample surface position measuring device and measuring method
JPH039403B2 (en)
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
JP3428705B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
JP2808619B2 (en) Positioning apparatus, exposure apparatus, and element manufacturing method
JPH054604B2 (en)
JPH01107102A (en) Optical automatic positioning apparatus
JPH054603B2 (en)
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JPH0548929B2 (en)
JP3111556B2 (en) Fine pattern forming equipment
JPH06105679B2 (en) Exposure equipment
JPH0295203A (en) Aligning device
JP2554626B2 (en) Positioning method and positioner using diffraction grating
JP2623757B2 (en) Positioning device
JP2836180B2 (en) Position detection device
JP2723502B2 (en) Positioning method
JP3106490B2 (en) Positioning apparatus and exposure apparatus having the same
JPS63159705A (en) Measuring method for gap between mask and wafer
JP2610324B2 (en) Positioning method
JP2683409B2 (en) Positioning device
JPH10270347A (en) Method and device for detecting alignment offset