JPS6315812Y2 - - Google Patents

Info

Publication number
JPS6315812Y2
JPS6315812Y2 JP14147881U JP14147881U JPS6315812Y2 JP S6315812 Y2 JPS6315812 Y2 JP S6315812Y2 JP 14147881 U JP14147881 U JP 14147881U JP 14147881 U JP14147881 U JP 14147881U JP S6315812 Y2 JPS6315812 Y2 JP S6315812Y2
Authority
JP
Japan
Prior art keywords
crystal
light beam
crystal orientation
sample
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14147881U
Other languages
Japanese (ja)
Other versions
JPS5846152U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981141478U priority Critical patent/JPS5846152U/en
Publication of JPS5846152U publication Critical patent/JPS5846152U/en
Application granted granted Critical
Publication of JPS6315812Y2 publication Critical patent/JPS6315812Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は結晶の方位を光学的手段によつて決定
するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for determining the orientation of a crystal by optical means.

結晶の方位を測定する手段としては、古くはへ
き開面を見出して行なう方法がとられたが、これ
は破壊試験であること、測定誤差が大きいことな
どの理由から、現在では使われることは少ない。
現在多く使われている手段は、X線ラウエ法が多
い。この方法は非破壊試験であり、測定の誤差も
0.3゜程度で、さらに測定面の面内の方位も同時に
測定できること、記録(写真)がとれることなど
の利点がある。しかしX線を使う方法は装置自体
が高価で、かつX線被曝の防止など安全上配慮し
なければならない問題がある。引上法や、フラツ
クス法によつて作製した結晶の方位を測定する場
合には、結晶の外形からその方位の概略を予め判
断できるため、ラウエ法によつても比較的簡単に
方位の測定ができる。しかし、ブリツジマン法に
よつて作製した結晶のように、方位が判断できる
特徴をもたない結晶の場合には、X線を使つて方
位を測定することには多くの困難をともなう。
In the past, the method used to measure the orientation of a crystal was to find the cleavage plane, but this is rarely used today because it is a destructive test and the measurement error is large. .
The most commonly used method at present is the X-ray Laue method. This method is a non-destructive test and there is no measurement error.
It has the advantage of being able to measure the in-plane orientation of the measurement surface at the same time, as well as being able to take records (photographs). However, the method using X-rays has problems in that the equipment itself is expensive and safety considerations must be taken, such as preventing exposure to X-rays. When measuring the orientation of a crystal produced by the pulling method or flux method, the rough orientation can be determined in advance from the external shape of the crystal, so it is relatively easy to measure the orientation using the Laue method. can. However, in the case of crystals that do not have features that allow orientation to be determined, such as crystals produced by the Bridgeman method, there are many difficulties in measuring orientation using X-rays.

これに対し、結晶の化学腐食像に光束を照射し
その光像を利用して結晶方位を測定する、いわゆ
る光像法はつぎのような特徴がある。すなわち光
像法は、結晶表面を腐食させなければならないと
いう短所はあるが、装置の構成が単純なため安価
で、迅速にかつ安全に方位測定ができるという特
徴がある。しかしながら、光像法による方位測定
方法の誤差は通常1゜程度と言われている。このた
め結晶の微細な面の測定は困難である。
On the other hand, the so-called optical imaging method, in which the chemical corrosion image of a crystal is irradiated with a light beam and the optical image is used to measure the crystal orientation, has the following characteristics. In other words, although the optical imaging method has the disadvantage that the crystal surface must be corroded, it has the advantage that the device has a simple configuration, is inexpensive, and can quickly and safely measure orientation. However, it is said that the error of the direction measurement method using the optical imaging method is usually about 1°. For this reason, it is difficult to measure the fine planes of crystals.

それ故に本考案の問題は、従来の光像法では測
定が困難な結晶の微小な面でも結晶方位を容易に
測定できる結晶方位測定装置の提供にある。
Therefore, the problem of the present invention is to provide a crystal orientation measuring device that can easily measure crystal orientation even on minute planes of crystals that are difficult to measure using conventional optical imaging methods.

本考案によれば、入射光線をスクリーンのピン
ホールを通して試料に投射し、該試料からの反射
光線に基づき上記スクリーン上に光像を得、該光
像により上記試料の結晶方位を測定するようにし
た結晶方位測定装置において、上記ピンホールを
通過した反射光線の経路に配され、上記反射光線
の向きを上記入射光線の経路からそらせるハーフ
ミラーと、該ハーフミラーによつてそらされた反
射光の強度を検出する光検出器とを備えたことを
特徴とする結晶方位測定装置が得られる。
According to the present invention, an incident light beam is projected onto a sample through a pinhole in a screen, a light image is obtained on the screen based on the reflected light beam from the sample, and the crystal orientation of the sample is measured using the light image. The crystal orientation measuring device includes: a half mirror disposed in the path of the reflected ray that has passed through the pinhole and which deflects the direction of the reflected ray from the path of the incident ray; A crystal orientation measuring device is obtained, which is characterized by being equipped with a photodetector that detects intensity.

以下、図面を参照しながら説明する。 This will be explained below with reference to the drawings.

第1図は公知の光像法による結晶方位測定装置
の原理構成図を示す。図において、光源1からの
光線つまり入射光線2はスクリーン3のピンホー
ルを通過して試料台5上の結晶試料4に入射し、
そして反射光線6がスクリーン3に至る。これに
よりスクリーン3に映つたパターンは、結晶方位
に対応したもので、いわゆる光像と称される。
FIG. 1 shows a principle configuration diagram of a crystal orientation measuring device using a known optical imaging method. In the figure, a light beam from a light source 1, that is, an incident light beam 2 passes through a pinhole in a screen 3 and enters a crystal sample 4 on a sample stage 5.
The reflected light beam 6 then reaches the screen 3. The pattern thus projected on the screen 3 corresponds to the crystal orientation and is called a so-called optical image.

第1図の結晶方位測定装置による場合、結晶方
位の測定操作は、ピンホールの位置に光像が映る
ように試料台5の方向を調節しその調節角度を測
定することによつて行なう。即ち、入射光線2に
対して結晶試料4の方向を調整し、1つまたは複
数の光像をスクリーン3のピンホール部分に順次
一致させ、各々の場合の角度を記録・計算するこ
とによつてはじめて方位の測定ができる。
In the case of the crystal orientation measuring apparatus shown in FIG. 1, the crystal orientation is measured by adjusting the direction of the sample stage 5 so that an optical image is reflected at the position of the pinhole and measuring the adjustment angle. That is, by adjusting the orientation of the crystal sample 4 with respect to the incident light beam 2, aligning one or more optical images with the pinhole portion of the screen 3 in sequence, and recording and calculating the angle in each case. You can measure direction for the first time.

しかし第1図の結晶方位測定装置では、前述の
ように結晶の方向を調整する操作を必要とし、か
つその操作を複数の光像に対して個別に行なうた
め、容易に測定するためには被測定面が十分に広
いことが前提となる。即ち、結晶の方向を変えて
光線を入射させる操作を行なる必要があるため、
結晶試料の該当面がある程度以上の面積(たとえ
ば10mm2以上)をもたないと実用上測定が困難とな
る。
However, the crystal orientation measuring device shown in Figure 1 requires an operation to adjust the crystal direction as described above, and this operation is performed individually for multiple optical images, so it is difficult to easily measure the orientation of the crystal. The premise is that the measurement surface is sufficiently wide. In other words, it is necessary to change the direction of the crystal and make the light beam incident.
Practical measurement becomes difficult unless the relevant surface of the crystal sample has a certain area or more (for example, 10 mm 2 or more).

第2図は本考案による結晶方位測定装置の一実
施例の原理構成図を示す。図においてスクリーン
3に光像を映し出す原理および操作は、前述の公
知の装置の場合とほぼ同じである。さらに結晶試
料4の面からの反射光線6の中で、再びスクリー
ン3のピンホールを通過した光線6′をハーフミ
ラー7およびスリツトまたは絞り8によつて光検
出器9に導くように構成されている。そして結晶
方位の測定に際しては、光像をスクリーン3の上
に映し出した上で、ピンホールを通過し、ハーフ
ミラー7に反射し、光検出器9に入射する光の強
度が最大になるように試料台5の角度を微調整す
る。
FIG. 2 shows a principle configuration diagram of an embodiment of the crystal orientation measuring device according to the present invention. In the figure, the principle and operation of projecting an optical image on the screen 3 are almost the same as those of the previously-mentioned known device. Further, among the reflected light beams 6 from the surface of the crystal sample 4, the light beams 6' that have passed through the pinhole of the screen 3 again are guided to a photodetector 9 by a half mirror 7 and a slit or diaphragm 8. There is. When measuring the crystal orientation, a light image is projected onto the screen 3, passes through the pinhole, is reflected on the half mirror 7, and is directed so that the intensity of the light that enters the photodetector 9 is maximized. Finely adjust the angle of the sample stage 5.

第2図の結晶方位測定装置によれば、つぎの手
順によつて結晶の方位を測定することができる。
すなわち、結晶面で直接反射した光を光検出器9
に最も強く入射するように結晶試料4の方向を調
節した上で、スクリーン3に映し出された光像と
ピンホールとの間の距離および方向を読みとるこ
とによつて、当該箇所の結晶方位を精確に測定す
ることができる。このように結晶の微小箇所が入
射光線2に対し垂直になつていることを保証でき
るので、入射光線2と同程度の微小箇所の結晶方
位も容易に測定することができる。
According to the crystal orientation measuring device shown in FIG. 2, the crystal orientation can be measured by the following procedure.
In other words, the light directly reflected by the crystal surface is detected by the photodetector 9.
By adjusting the direction of the crystal sample 4 so that the light is most strongly incident on the pinhole, and then reading the distance and direction between the light image projected on the screen 3 and the pinhole, the crystal orientation at the relevant point can be accurately determined. can be measured. In this way, it can be ensured that the minute spot of the crystal is perpendicular to the incident light beam 2, so that the crystal orientation of a minute spot on the same level as the incident light beam 2 can be easily measured.

以上、実施例を用いて説明したように、本考案
によれば、従来の光像法では測定が困難な結晶の
微小な面であつても結晶方位を容易に測定できる
方位測定装置が得られる。
As described above using examples, the present invention provides an orientation measuring device that can easily measure crystal orientation even on minute planes of crystals that are difficult to measure using conventional optical imaging methods. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光像法による結晶方位測定装置
の原理構成図、第2図は本考案の一実施例による
結晶方位測定装置の原理構成図である。 1……光源、2……入射光線、3……スクリー
ン、4……結晶試料、5……試料台、6,6′…
…反射光線、7……ハーフミラー、8……スリツ
トまたは絞り、9……光検出器。
FIG. 1 is a diagram showing the basic structure of a crystal orientation measuring device using a conventional optical imaging method, and FIG. 2 is a diagram showing the basic structure of a crystal orientation measuring device according to an embodiment of the present invention. 1... Light source, 2... Incident light beam, 3... Screen, 4... Crystal sample, 5... Sample stage, 6, 6'...
...Reflected light beam, 7...Half mirror, 8...Slit or aperture, 9...Photodetector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入射光線をスクリーンのピンホールを通して試
料に投射し、該試料からの反射光線に基づき上記
スクリーン上に光像を得、該光像により上記試料
の結晶方位を測定するようにした結晶方位測定装
置において、上記ピンホールを通過した反射光線
の経路に配され、上記反射光線の向きを上記入射
光線の経路からそらせるハーフミラーと、該ハー
フミラーによつてそらされた反射光の強度を検出
する光検出器とを備えたことを特徴とする結晶方
位測定装置。
In a crystal orientation measuring device, an incident light beam is projected onto a sample through a pinhole in a screen, an optical image is obtained on the screen based on the reflected light beam from the sample, and the crystal orientation of the sample is measured using the optical image. , a half mirror disposed in the path of the reflected light beam passing through the pinhole to deflect the direction of the reflected light beam from the path of the incident light beam; and a photodetector for detecting the intensity of the reflected light deflected by the half mirror. A crystal orientation measuring device characterized by being equipped with a device.
JP1981141478U 1981-09-25 1981-09-25 Crystal orientation measuring device Granted JPS5846152U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981141478U JPS5846152U (en) 1981-09-25 1981-09-25 Crystal orientation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981141478U JPS5846152U (en) 1981-09-25 1981-09-25 Crystal orientation measuring device

Publications (2)

Publication Number Publication Date
JPS5846152U JPS5846152U (en) 1983-03-28
JPS6315812Y2 true JPS6315812Y2 (en) 1988-05-06

Family

ID=29934576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981141478U Granted JPS5846152U (en) 1981-09-25 1981-09-25 Crystal orientation measuring device

Country Status (1)

Country Link
JP (1) JPS5846152U (en)

Also Published As

Publication number Publication date
JPS5846152U (en) 1983-03-28

Similar Documents

Publication Publication Date Title
KR920008464A (en) Apparatus and method for measuring horizontal position of proximity lithographic system
JPS5946026A (en) Measuring method for position of sample
JP2672563B2 (en) Device for measuring display screen contrast as a function of viewing direction.
US4976543A (en) Method and apparatus for optical distance measurement
JPS6315812Y2 (en)
Moore et al. Adaptation of combined interferometric and phaseplate gradient optics to electrophoresis
JPS60222756A (en) Foreign matter inspector
JP2565274B2 (en) Height measuring device
JPH0227811B2 (en)
JPH0128403Y2 (en)
JPS6311631Y2 (en)
JP3202322B2 (en) Mask inspection equipment
JP2865263B2 (en) Test object flatness measuring device
JPS60181627A (en) Tension measurement of thin film
JPS61290414A (en) Focusing device
JPH01242905A (en) Method for measuring actual size of visual device
JPS6360324B2 (en)
JPH0658204B2 (en) Sample plane position measuring device
JPH056340B2 (en)
JPS6170405A (en) Measuring instrument of spherical shape
JPH0621876B2 (en) Surface condition measuring device
JPH0239738B2 (en) MENHOISOKUTEIHOHO
JPS61162703A (en) Apparatus for inspecting foreign matter
JPH1130583A (en) Polarization analyzer
JPH07167623A (en) Measuring device for height of ic lead