JPH0618448A - Mtf measurement device for x-ray optical system - Google Patents

Mtf measurement device for x-ray optical system

Info

Publication number
JPH0618448A
JPH0618448A JP4174628A JP17462892A JPH0618448A JP H0618448 A JPH0618448 A JP H0618448A JP 4174628 A JP4174628 A JP 4174628A JP 17462892 A JP17462892 A JP 17462892A JP H0618448 A JPH0618448 A JP H0618448A
Authority
JP
Japan
Prior art keywords
ray
optical system
shield
mtf
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4174628A
Other languages
Japanese (ja)
Inventor
Satoshi Iwata
敏 岩田
Shinji Suzuki
伸二 鈴木
Yoji Nishiyama
陽二 西山
Yoshiaki Goto
善朗 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4174628A priority Critical patent/JPH0618448A/en
Publication of JPH0618448A publication Critical patent/JPH0618448A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To automatically measure MTF of an X-ray and light conversion optical system, regarding MTF measurement. CONSTITUTION:This device has an X-ray source 1, an X-ray and light conversion optical system 2 as a measurement object, an X-ray optical system comprising a variable slit 3 and a photocell 4, a stage 5 with the variable slit 3 and the photocell 4 mounted thereon, a differentiating circuit 19 for a detected signal, a Fourier conversion circuit 18, and a CPU 17 to calculate the magnifying power of the X-ray optical system, the scan rate of a screen 6 and the slit width of the variable slit 3. In this case, the magnifying power is calculated, and the slit width is adjusted to a value equal to or less than 1/2 of inspection resolution, using the result of the calculation. Furthermore, the screen 6 is inserted between the X-ray source 1 and the X-ray and light conversion optical system 2, and scanned at the prescribed speed. The image of the screen 6 so detected is differentiated and subjected to Fourier conversion, thereby measuring MTF of the concerned X-ray and light conversion optical system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線−光変換光学系の分
解能の検定のためのMTF(Modulation Transf-er Functio
n)計測装置に関する。
The present invention relates to an MTF (Modulation Transf-er Functio) for calibrating the resolution of an X-ray-optical conversion optical system.
n) Regarding measuring devices.

【0002】実装基板,プリント板の製造においては,
電子部品の微小化と高密度実装が進んできている。これ
に伴い,外観検査で検査不能な部分が多くなってきてい
る。例えば,フリップチップの接続部は半径 200μm程
度の微小なマイクロバンプにより形成されるが, この部
分はLSI パッケージ部分の陰に隠れているために光学的
な検査手法では検査することができない。このような場
合に, X線の透視による検査手法は有効な方法である。
In the manufacture of mounting boards and printed boards,
The miniaturization and high-density mounting of electronic parts are progressing. Along with this, many parts cannot be inspected by visual inspection. For example, the flip-chip connection part is formed by minute micro bumps with a radius of about 200 μm, but this part is hidden behind the LSI package part and cannot be inspected by an optical inspection method. In such a case, the inspection method by X-ray fluoroscopy is an effective method.

【0003】このような,検査システムの有効性を検証
するために,X線−光変換光学系の分解能を検定するこ
とが必要である。
In order to verify the effectiveness of such an inspection system, it is necessary to verify the resolution of the X-ray-light conversion optical system.

【0004】[0004]

【従来の技術】図4は従来例を説明する構成図である。
図において,1はマイクロフォーカスX線源,2は測定
対象のX線−光変換光学系,41は光検知器でカメラ, 42
はA/D 変換器, 43はコンピュータ, 44は疑似正弦波格子
である。
2. Description of the Related Art FIG. 4 is a block diagram for explaining a conventional example.
In the figure, 1 is a microfocus X-ray source, 2 is an X-ray conversion optical system to be measured, 41 is a photodetector, and 42 is a camera.
Is an A / D converter, 43 is a computer, and 44 is a pseudo sine wave grating.

【0005】従来,X線−光変換光学系の分解能を検定
するためには,多数のスリットを平行に且つ等間隔に配
列した疑似正弦波格子44を透視して,透視画像のコント
ラストを計測する方法があった。
Conventionally, in order to test the resolution of an X-ray-light conversion optical system, a pseudo sine wave grating 44 in which a large number of slits are arranged in parallel and at equal intervals is seen through, and the contrast of a see-through image is measured. There was a way.

【0006】この方法では,計測できる空間周波数は使
用した格子周波数のみに限られ,波長分解能の向上には
限度があった。また,格子の製作精度の限界から,遮蔽
に十分な厚みのある試料ではスリット幅の最小寸法に限
界があり,また,多数のスリットを平行に配列しただけ
ではX線透過率分布を完全に正弦形状にすることはでき
なかった。
In this method, the measurable spatial frequency is limited only to the used grating frequency, and there is a limit to the improvement of the wavelength resolution. In addition, due to the limit of the manufacturing accuracy of the grating, there is a limit to the minimum slit width for a sample with a sufficient thickness for shielding, and simply arranging a number of slits in parallel gives a completely sinusoidal X-ray transmittance distribution. It could not be shaped.

【0007】[0007]

【発明が解決しようとする課題】上記の従来方法では,
計測できる空間周波数は使用した格子周波数のみに限ら
れ,波長分解能の向上には限度があった。また,格子の
製作精度の限界から,遮蔽に十分な厚みのある試料では
スリット幅の最小寸法に限界があり,また,単なる矩形
スリットの配列ではX線透過率分布を完全に正弦形状に
することはできなかった。
SUMMARY OF THE INVENTION In the above conventional method,
The measurable spatial frequency was limited to the used grating frequency, and there was a limit to the improvement of wavelength resolution. In addition, due to the limit of the manufacturing accuracy of the grating, there is a limit to the minimum slit width for a sample with a sufficient thickness for shielding, and in the case of a simple rectangular slit arrangement, the X-ray transmittance distribution should be completely sinusoidal. I couldn't.

【0008】本発明は上記ように欠点の多い従来の疑似
正弦波格子を用いないで,X線−光変換光学系のMTF を
自動的に計測することを目的とする。
An object of the present invention is to automatically measure the MTF of an X-ray-optical conversion optical system without using the conventional pseudo sine wave grating having many defects as described above.

【0009】[0009]

【課題を解決するための手段】上記課題の解決は, 1)マイクロフォーカスのX線源1と,計測対象のX線
−光変換光学系2と,可変スリット3およびフォトマル
チプライヤ4からなるX線光学系と,該可変スリットお
よび光検知器4を載せて移動可能なステージ5と,該フ
ォトマルチプライヤの検知信号を微分する微分回路19
と, 微分された該検知信号のフーリエ変換回路18と,該
X線光学系の拡大率と, 後記遮蔽体のスキャンレート
と, 該可変スリットのスリット幅とを計算するCPU 17と
を有し,該拡大率を計算し, その結果を用いて該スリッ
ト幅を検査分解能の1/2 以下に相当する幅に調節し, 該
X線源と計測対象のX線−光変換光学系との間に遮蔽体
6を挿入し,該遮蔽体6を規定の速度で走査し,検知し
た遮蔽体像を微分し,フーリエ変換して該X線−光変換
光学系のMTF を計測するX線光学系用MTF 計測装置,あ
るいは 2)前記X線源1のビーム設定用電子レンズの印加電圧
を変化させてX線ビームを振動させて遮蔽体像を検知す
る前記1)記載のX線光学系用MTF 計測装置,あるいは 3)前記フォトマルチプライヤ4の代わりにCCD 素子4A
を用い, 前記可変スリット3の代わりにレンズ3Bを用い
て該CCD 素子に拡大率を適合させた前記1)あるいは
2)2記載のX線光学系用MTF 計測装置により達成され
る。
To solve the above problems, 1) an X-ray source 1 of microfocus, an X-ray conversion optical system 2 to be measured, a variable slit 3 and a photomultiplier 4 are used. A linear optical system, a movable stage 5 on which the variable slit and the photodetector 4 are mounted, and a differentiating circuit 19 for differentiating a detection signal of the photomultiplier.
A Fourier transform circuit 18 for the differentiated detection signal, a magnifying power of the X-ray optical system, a scan rate of a shield described later, and a CPU 17 for calculating the slit width of the variable slit, The magnifying power is calculated, and the result is used to adjust the slit width to a width corresponding to 1/2 or less of the inspection resolution, and between the X-ray source and the X-ray conversion optical system to be measured. For an X-ray optical system in which the shield 6 is inserted, the shield 6 is scanned at a prescribed speed, the detected shield image is differentiated, and Fourier transform is performed to measure the MTF of the X-ray-optical conversion optical system. MTF measuring device, or 2) MTF measurement for an X-ray optical system according to 1), wherein an applied voltage of a beam setting electron lens of the X-ray source 1 is changed to vibrate the X-ray beam to detect a shield image. Device, or 3) CCD element 4A instead of the photomultiplier 4
By using a lens 3B instead of the variable slit 3 and adapting the magnifying power to the CCD element, the MTF measuring device for an X-ray optical system according to 1) or 2) 2.

【0010】[0010]

【作用】MTF は, 光学結像系が被写体を再現する能力を
表す複素数の絶対値で, 電気通信系の周波数応答関数に
対応し,点像(点光源の像)の強度分布のフーリエ変換
の絶対値である。
[Operation] MTF is an absolute value of a complex number that expresses the ability of the optical imaging system to reproduce an object. It corresponds to the frequency response function of the telecommunications system and is the Fourier transform of the intensity distribution of the point image (image of the point light source). It is an absolute value.

【0011】しかし,実際には検知面で点像を得ること
は容易ではない。そこで, エッジ像を検知して, これか
ら点像を計算により求める。光軸に垂直方向に走査する
遮蔽体によりエッジ像を形成し,これを検知系により検
知する。検知したエッジ像を微分して点像に変換する。
この点像をフーリエ変換することで, 系のMTF を求める
ことができる。
However, in reality, it is not easy to obtain a point image on the detection surface. Therefore, the edge image is detected and the point image is calculated from this. An edge image is formed by a shield that scans in the direction perpendicular to the optical axis, and this is detected by a detection system. The detected edge image is differentiated and converted into a point image.
The MTF of the system can be obtained by Fourier transforming this point image.

【0012】図1は本発明の原理説明図である。図にお
いて,1はマイクロフォーカスX線源,2は測定対象の
X線−光変換光学系,3は可変スリット,4はフォトマ
ルチプライヤ(光電子増倍管),5は可変スリットとフ
ォトマルを載せたステージ,6は遮蔽体,7は遮蔽体を
載せたステージ,8は線源コントローラ,9はD/A 変換
器, 10はカウンタ, 11はA/D 変換器, 12はステージコン
トローラ, 13はI/O, 14はスリット幅コントローラ, 15
はA/D 変換器, 16はバス, 17はCPU, 18はフーリエ変換
回路, 19は微分回路, 20は出力部である。
FIG. 1 illustrates the principle of the present invention. In the figure, 1 is a microfocus X-ray source, 2 is an X-ray-optical conversion optical system to be measured, 3 is a variable slit, 4 is a photomultiplier (photomultiplier tube), and 5 is a variable slit and a photomultiplier. A stage, 6 is a shield, 7 is a stage on which a shield is placed, 8 is a source controller, 9 is a D / A converter, 10 is a counter, 11 is an A / D converter, 12 is a stage controller, 13 is I / O, 14 is slit width controller, 15
Is an A / D converter, 16 is a bus, 17 is a CPU, 18 is a Fourier transform circuit, 19 is a differentiation circuit, and 20 is an output section.

【0013】CPU 17においては, 次に説明する拡大率の
計算, 遮蔽体のスキャンレート, 可変スリットのスリッ
ト幅の計算を行う。MTF の分解能は可変スリット3で規
定される。ステージカウンタからの信号により拡大率を
求め,これからスリット幅を求める。
The CPU 17 calculates the enlargement ratio, the scan rate of the shield, and the slit width of the variable slit, which will be described below. The resolution of MTF is defined by the variable slit 3. The magnification is calculated from the signal from the stage counter, and the slit width is calculated from this.

【0014】スリット幅を求めるには,予め得たい分解
能を設定し,上記拡大率を用いて分解能の1/2の幅あ
るいはそれ以下の幅の像がフォトマルに入射するように
スリット幅を自動設定する。
To obtain the slit width, a desired resolution is set in advance, and the slit width is automatically adjusted so that an image having a width of ½ of the resolution or less is incident on the photomultiplier by using the enlargement ratio. Set.

【0015】 W≦RM/2 (1) ここに, W:スリット幅 R:分解能 M:拡大率 また,拡大率Mは次式で与えられる。W ≦ RM / 2 (1) where: W: slit width R: resolution M: magnification ratio The magnification ratio M is given by the following equation.

【0016】M=L/(X0 +ΔX) L:線源とX線−光変換光学系内の蛍光板との距離 X0 :遮蔽板の光軸方向の基準位置 ΔX:遮蔽板の光軸方向の移動距離 また,フォトマルおよび可変スリットをステージ上で移
動し,像高方向(走査方向)のMTF を計測する。
M = L / (X 0 + ΔX) L: Distance between the radiation source and the fluorescent plate in the X-ray-light conversion optical system X 0 : Reference position in the optical axis direction of the shielding plate ΔX: Optical axis direction of the shielding plate Moving distance In addition, the MTF in the image height direction (scanning direction) is measured by moving the Photomul and variable slit on the stage.

【0017】画像取り込み用のCCD を用いるときは, CC
D の前面にMTF が既知の2倍の拡大レンズを置く。この
レンズとCCD の固有のMTF を得られた結果から差し引い
て求めるMTF を計測する。
When using a CCD for image capture, CC
Place a 2x magnifying lens with known MTF on the front of D. Measure the MTF obtained by subtracting the MTF specific to this lens and CCD from the obtained results.

【0018】[0018]

【実施例】図1を用いて,本発明の第1の実施例を説明
する。図1は本発明によるX線−光変換光学系用MTF の
構成図である。
EXAMPLE A first example of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of an MTF for an X-ray-light conversion optical system according to the present invention.

【0019】X線源1から放射されたX線は遮蔽体6に
照射し,検知光学系であるX線−光変換光学系2に入射
する。遮蔽体6は金(Au)あるいはタングステン(W) 等の
原子番号の大きいX線の遮蔽率の高いものを用いる。例
えば, 金(Au)あるいはタングステン(W) 等の重金属のナ
イフエッジを用いる。
The X-rays emitted from the X-ray source 1 irradiate the shield 6 and enter the X-ray-light conversion optical system 2 which is a detection optical system. The shield 6 is made of gold (Au), tungsten (W) or the like having a high shielding rate for X-rays having a large atomic number. For example, a knife edge of heavy metal such as gold (Au) or tungsten (W) is used.

【0020】遮蔽体6を透過した放射X線は計測対象の
光学系2を通し, さらに可変スリット3を通してフォト
マル4で検出される。ここで,計測対象の光学系2は外
部からオートフォーカスを可能にしておく。
The radiant X-ray transmitted through the shield 6 passes through the optical system 2 to be measured, and is further detected by the photomultiplier 4 through the variable slit 3. Here, the optical system 2 to be measured is capable of autofocus from the outside.

【0021】遮蔽体6を走査することでX線ビームのプ
ロファイルを計測し,また,可変スリット3およびフォ
トマル4を移動することにより像高方向でのMTF を計測
する。
The profile of the X-ray beam is measured by scanning the shield 6, and the MTF in the image height direction is measured by moving the variable slit 3 and the photomultiplier 4.

【0022】また,拡大率の計測は,予め寸法の既知の
遮蔽体を用い,されを一定速度で走査して,検知した像
の幅から算出する。図2は本発明の第2の実施例の構成
図である。
Further, the enlargement ratio is measured by using a shield having a known size in advance, scanning the shield at a constant speed, and calculating from the width of the detected image. FIG. 2 is a block diagram of the second embodiment of the present invention.

【0023】この例は,ビームの電子レンズを周期的に
変化させるビームステア20によりビームを遮蔽体に垂直
に走査してプロファイルを計測を行っている。この際,
線源焦点の位置は, 予め電子レンズに印加する電圧とビ
ーム位置の関係を計測し,テーブル化したものを参照す
る。
In this example, the beam is steered by periodically changing the electron lens of the beam, the beam is scanned perpendicularly to the shield, and the profile is measured. On this occasion,
For the position of the source focal point, refer to a table that is obtained by measuring the relationship between the voltage applied to the electron lens and the beam position beforehand.

【0024】図3は本発明の第3の実施例の構成図であ
る。この例は,第2の実施例の可変スリット3およびフ
ォトマル4の代わりに×2拡大レンズ3AとCCD カメラ4A
を用いた構成である。
FIG. 3 is a block diagram of the third embodiment of the present invention. In this example, instead of the variable slit 3 and the photomultiplier 4 of the second embodiment, a × 2 magnifying lens 3A and a CCD camera 4A are used.
It is a configuration using.

【0025】実施例において,遮蔽体はエッジを用いる
だけであり,その幅は広い方がよい。最小幅は光学系の
ボケが及ばないだけの幅が必要である。光学系にもよる
が,焦点数μm, 拡大率10倍程度ならば10mm程度であれ
ば十分である。
In the embodiment, the shield only uses edges, and the width should be wide. The minimum width needs to be wide enough to prevent blurring of the optical system. Although it depends on the optical system, if the focal point is several μm and the magnification is about 10 times, it is sufficient if it is about 10 mm.

【0026】また,遮蔽体の移動速度vはフォトマルの
立ち上がり時間tと,計測MTF の分解能Δμと, 拡大率
Mと,光学系の拡大率M0 とから次式により計算され
る。 v=Δμ/t・M・M0 また,可変スリットおよびフォトマルの移動は1点のMT
F 計測中は勿論移動は行わない。これらを載せたステー
ジの移動は他点のMTF を計測するために移動させるもの
でこの場合位置精度が必要であり, その位置精度が0.1
μmの場合は,移動速度は数mm/sぐらいである。
The moving speed v of the shield is calculated by the following equation from the rising time t of the photomultiplier, the resolution Δμ of the measured MTF, the magnifying power M, and the magnifying power M 0 of the optical system. v = Δμ / t ・ M ・ M 0 In addition, the variable slit and the movement of Photomul are MT of 1 point.
Of course, no movement is performed during F measurement. The movement of the stage on which these are moved is to move the MTF of another point, and in this case positional accuracy is required.
In the case of μm, the moving speed is about several mm / s.

【0027】光学系に対してコントラストを 0〜1.0 間
の相対値で表すMTF の計測値は線幅値(線幅と間隔とが
等しい図形で, 1mm中に線が何本あるかを示す)の増加
とともに増加し,各線幅値に対するMTF を求める必要が
ある。例えば, 或る光学系での計測結果は線幅75μm
(6.7本/mm)に対して MTF=0.35 となる。また, 線幅が
40μmで MTF=0 となり,線幅が 130μmで MTF=0.8
となる。
The measured value of MTF, which expresses the contrast as a relative value between 0 and 1.0 with respect to the optical system, is a line width value (a figure in which the line width and the interval are equal, and shows how many lines are in 1 mm). It is necessary to find the MTF for each line width value, which increases with increasing. For example, the measurement result with a certain optical system shows a line width of 75 μm.
MTF = 0.35 for (6.7 lines / mm). Also, if the line width is
MTF = 0 at 40 μm, MTF = 0.8 at 130 μm line width
Becomes

【0028】次に実施例の効果を示す具体例を説明す
る。 (1) 実施例を用いると連続値が計測可能である。すなわ
ち,すべての線幅値に対する値が求められる。 (2) 実施例の計測値は,MTF の定義そのものであるのに
対し,従来例の疑似正弦波格子を用いる場合では完全な
周波数再現が行われない。
Next, a specific example showing the effect of the embodiment will be described. (1) Continuous values can be measured by using the embodiment. That is, the values for all line width values are obtained. (2) The measured value in the embodiment is the definition of MTF itself, but in the case of using the pseudo sine wave grating of the conventional example, complete frequency reproduction is not performed.

【0029】[0029]

【発明の効果】本発明によれば,欠点の多い従来の疑似
正弦波格子を用いないで,X線−光変換光学系のMTF を
自動的に空間周波数の再現性良くすべての線幅値に対し
て計測することが可能となった。
According to the present invention, the MTF of the X-ray-optical conversion optical system can be automatically adjusted to all line width values with good spatial frequency reproducibility without using the conventional pseudo sine wave grating having many defects. It became possible to measure it.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図(本発明の第1の実施例
の構成図)
FIG. 1 is an explanatory view of the principle of the present invention (configuration diagram of the first embodiment of the present invention)

【図2】 本発明の第2の実施例の構成図FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】 本発明の第3の実施例の構成図FIG. 3 is a configuration diagram of a third embodiment of the present invention.

【図4】 従来例を説明する構成図FIG. 4 is a configuration diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1 マイクロフォーカスX線源 2 測定対象のX線−光変換光学系 3 可変スリット 4 フォトマルチプライヤ 5 可変スリットとフォトマルを載せたステージ 6 遮蔽体 7 遮蔽体を載せたステージ 8 線源コントローラ 9 D/A 変換器 10 カウンタ 11 A/D 変換器 12 ステージコントローラ 13 I/O, 14 スリット幅コントローラ 15 A/D 変換器 16 バス 17 CPU 18 フーリエ変換回路 19 微分回路 20 出力部 1 Micro-focus X-ray source 2 X-ray-light conversion optical system to be measured 3 Variable slit 4 Photomultiplier 5 Stage with variable slit and Photomal 6 Stage 6 Shield 7 Stage with shield 8 Source controller 9 D / A converter 10 Counter 11 A / D converter 12 Stage controller 13 I / O, 14 Slit width controller 15 A / D converter 16 Bus 17 CPU 18 Fourier transform circuit 19 Differentiator circuit 20 Output section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 善朗 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Goto 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マイクロフォーカスのX線源(1) と,計
測対象のX線−光変換光学系(2) と,可変スリット(3)
およびフォトマルチプライヤ(4)からなるX線光学系
と,該可変スリットおよびフォトマルチプライヤを載せ
て移動可能なステージ(5) と,該フォトマルチプライヤ
の検知信号を微分する微分回路(19)と,微分された該検
知信号のフーリエ変換回路(18)と,該X線光学系の拡大
率と, 後記遮蔽体(6) のスキャンレートと, 該可変スリ
ットのスリット幅とを計算するCPU (17)とを有し,該拡
大率を計算し, その結果を用いて該スリット幅を検査分
解能の1/2 以下に相当する幅に調節し, 該X線源と計測
対象のX線−光変換光学系との間に遮蔽体(6) を挿入
し,該遮蔽体を規定の速度で走査し,検知した遮蔽体像
を微分し,フーリエ変換して該X線−光変換光学系のMT
F を計測することを特徴とするX線光学系用MTF 計測装
置。
1. A microfocus X-ray source (1), an X-ray conversion optical system (2) to be measured, and a variable slit (3).
And an X-ray optical system composed of a photomultiplier (4), a stage (5) movable by mounting the variable slit and the photomultiplier, and a differentiating circuit (19) for differentiating a detection signal of the photomultiplier. A CPU (17) for calculating the Fourier transform circuit (18) of the differentiated detection signal, the magnifying power of the X-ray optical system, the scan rate of the shield (6) described later, and the slit width of the variable slit. ) And calculate the magnification rate, and use the result to adjust the slit width to a width corresponding to 1/2 or less of the inspection resolution, and convert the X-ray source and the X-ray conversion of the measurement target. The shield (6) is inserted between the shield and the optical system, the shield is scanned at a prescribed speed, and the detected shield image is differentiated and Fourier-transformed to perform MT of the X-ray-optical conversion optical system.
An MTF measuring device for X-ray optics, which measures F.
【請求項2】 前記X線源(1) のビーム設定用電子レン
ズの印加電圧を変化させてX線ビームを振動させて遮蔽
体像を検知することを特徴とする請求項1記載のX線光
学系用MTF 計測装置。
2. The X-ray according to claim 1, wherein an applied voltage of a beam setting electron lens of the X-ray source (1) is changed to vibrate the X-ray beam to detect a shield image. MTF measuring device for optical system.
【請求項3】 前記フォトマルチプライヤ(4)の代わり
にCCD 素子(4A)を用い, 前記可変スリット(3)の代わり
にレンズ(3B)を用いて該CCD 素子に拡大率を適合させた
ことを特徴とする請求項1あるいは2記載のX線光学系
用MTF 計測装置。
3. A CCD device (4A) is used in place of the photomultiplier (4), and a lens (3B) is used in place of the variable slit (3) to adapt the magnification to the CCD device. The MTF measuring device for an X-ray optical system according to claim 1 or 2.
JP4174628A 1992-07-02 1992-07-02 Mtf measurement device for x-ray optical system Withdrawn JPH0618448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174628A JPH0618448A (en) 1992-07-02 1992-07-02 Mtf measurement device for x-ray optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174628A JPH0618448A (en) 1992-07-02 1992-07-02 Mtf measurement device for x-ray optical system

Publications (1)

Publication Number Publication Date
JPH0618448A true JPH0618448A (en) 1994-01-25

Family

ID=15981922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174628A Withdrawn JPH0618448A (en) 1992-07-02 1992-07-02 Mtf measurement device for x-ray optical system

Country Status (1)

Country Link
JP (1) JPH0618448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083177A (en) * 2014-07-08 2014-10-08 天津大学 Resolution performance evaluation method for digital X-ray imaging system
CN104931239A (en) * 2015-06-12 2015-09-23 北京理工大学 MTF test apparatus and method for small off-axis optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083177A (en) * 2014-07-08 2014-10-08 天津大学 Resolution performance evaluation method for digital X-ray imaging system
CN104931239A (en) * 2015-06-12 2015-09-23 北京理工大学 MTF test apparatus and method for small off-axis optical system

Similar Documents

Publication Publication Date Title
US6236057B1 (en) Method of inspecting pattern and apparatus thereof with a differential brightness image detection
US6753518B2 (en) Electron beam exposure or system inspection or measurement apparatus and its method and height detection apparatus
KR100435108B1 (en) Radiation inspection system and method thereof
US4253112A (en) Process for automatic alignment of two objects to be adjusted with respect to one another
US5473426A (en) Defect inspection apparatus
JPH02501411A (en) Automatic laminography system for testing electronics
JPH0666241B2 (en) Position detection method
JP2000252203A (en) Alignment mark and alignment method
US4659936A (en) Line width measuring device and method
US6907103B2 (en) Capturing images of moving objects with a moving illumination point source
US4884890A (en) Method for normalizing the detection signals of magnified images of fluorescing materials
JPH0324965B2 (en)
JPH0618448A (en) Mtf measurement device for x-ray optical system
US5590169A (en) Radiation imaging system
JP3432739B2 (en) Pattern inspection device and inspection method
JP3391030B2 (en) Electronic device manufacturing method and pattern exposure method
JP2776823B2 (en) Optical detector
JP4025049B2 (en) Gap adjustment device
JPH0661115A (en) Gap detection and setting device
WO2019225360A1 (en) Photomask inspection device and photomask inspection method
JPS6316687B2 (en)
Kakinoki et al. Wide-Area, High Dynamic Range 3-D Imager
JPH0640539B2 (en) Pattern detection method and projection optical apparatus using the method
JPH0618446A (en) Adjustment method for x-ray optical system
JPH0694651A (en) Substrate inspector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005