JPH0217050B2 - - Google Patents

Info

Publication number
JPH0217050B2
JPH0217050B2 JP7064983A JP7064983A JPH0217050B2 JP H0217050 B2 JPH0217050 B2 JP H0217050B2 JP 7064983 A JP7064983 A JP 7064983A JP 7064983 A JP7064983 A JP 7064983A JP H0217050 B2 JPH0217050 B2 JP H0217050B2
Authority
JP
Japan
Prior art keywords
sample
particle beam
charged particle
detector
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7064983A
Other languages
Japanese (ja)
Other versions
JPS59195112A (en
Inventor
Toyoki Kitayama
Shigeru Morya
Kazuhiko Komatsu
Teruaki Okino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7064983A priority Critical patent/JPS59195112A/en
Publication of JPS59195112A publication Critical patent/JPS59195112A/en
Publication of JPH0217050B2 publication Critical patent/JPH0217050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 本発明は試料の高さ、例えば荷電粒子線露光装
置におけるマスクブランクやウエハ表面の高さを
極めて正確に検知することの可能な装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus capable of extremely accurately detecting the height of a sample, for example, the height of a mask blank or wafer surface in a charged particle beam exposure apparatus.

例えば、電子線露光装置により半導体ウエハ等
上に微細回路パターンを描画する際、該ウエハ表
面が設定した高さからずれていると、露光された
回路の位置や大きさが所定のものと異なつてしま
い、特に半導体ウエハ上(表面)に何種類もの微
細回路パターンを重ねて露光する直接露光におい
ては、描画精度は著しく低下してしまう。従つ
て、被露光材料の高さを正確に測定することは高
精度な描画のために極めて重要である。
For example, when drawing a fine circuit pattern on a semiconductor wafer etc. using an electron beam exposure device, if the wafer surface deviates from the set height, the position and size of the exposed circuit may differ from the predetermined one. In particular, in direct exposure in which multiple types of fine circuit patterns are layered and exposed on a semiconductor wafer (surface), the drawing accuracy is significantly reduced. Therefore, accurately measuring the height of the exposed material is extremely important for highly accurate drawing.

従来の高さ測定装置としては、被露光材料の表
面に対向して電極を配置し、この表面と電極との
間に形成されるコンデンサの静電容量が該表面の
上下動に伴つて変化することを利用するものが多
く使用されているが、この様な装置では電極によ
る静電界の発生があるので、測定時電子線に悪影
響を与えることになる。従つて、高さ測定点に最
も重要な電子線照射点から著しく離れた点になら
ざるを得ず、高い測定精度は望めない。
In conventional height measuring devices, an electrode is placed opposite the surface of the material to be exposed, and the capacitance of a capacitor formed between this surface and the electrode changes as the surface moves up and down. However, in such devices, an electrostatic field is generated by the electrodes, which adversely affects the electron beam during measurement. Therefore, the height measurement point must be located far away from the most important electron beam irradiation point, and high measurement accuracy cannot be expected.

これに対し、被露光材料表面にレーザ光を照射
し、その表面での反射光と照射光との干渉縞を利
用するもの、或いは任意光源からの光をエツジ部
材に照射し、そのエツジの像を材料面で反射さ
せ、これをイメージデイセクター管の結像面に投
影して該材料の高さ変位をエツジ像の位置ずれと
して検出するもの等も提案されている。これらは
光学的測定であるので、電子線照射点と測定点と
を一致させることができ、従つて前記静電容量を
利用するものに比し高い精度で高さ測定が可能で
ある。
On the other hand, there are methods that irradiate the surface of the material to be exposed with laser light and use interference fringes between the reflected light on the surface and the irradiated light, or irradiate the edge member with light from an arbitrary light source and create an image of the edge. It has also been proposed to reflect this on a material surface, project it onto the imaging plane of an image dissector tube, and detect the height displacement of the material as a positional shift of an edge image. Since these are optical measurements, it is possible to match the electron beam irradiation point with the measurement point, and therefore it is possible to measure height with higher precision than in the case of using capacitance.

しかし乍ら、該測定は検出系の他に光照射系を
狭隘な試料室空間に設置しなければならず、構造
が複雑になり、且つ高価である他設置が不可能に
なる場合も生ずる。
However, in this measurement, in addition to the detection system, a light irradiation system must be installed in a narrow sample chamber space, which results in a complicated and expensive structure and may even be impossible to install.

本発明は上記欠点を解消することを目的とする
もので、加工を分析のために用いる一次荷電粒子
ビーム自体を高さ測定のツールとして利用するも
のである。
The present invention aims to eliminate the above-mentioned drawbacks, and utilizes the primary charged particle beam itself used for processing and analysis as a height measurement tool.

本発明の構成は荷電粒子ビームを試料面に照射
し、該試料を加工、分析或いは観察する装置にお
いて、前記荷電粒子ビームの軸に対し、試料面付
近で一定の角度をなして交叉する軸に沿つて少な
くとも一個の結像レンズを設け、前記試料から散
乱した荷電粒子を該レンズによつて結像せしめ、
その結像面に少なくとも一次元的な位置検出機能
をもつ検出器を設置し、該検出器の出力信号によ
り前記試料の高さ位置を検知する如く構成した荷
電粒子線装置の試料表面高さ測定装置に特徴を有
している。
The configuration of the present invention is such that in an apparatus that irradiates a sample surface with a charged particle beam and processes, analyzes or observes the sample, an axis that intersects the axis of the charged particle beam at a constant angle near the sample surface is used. at least one imaging lens is provided along the sample, and charged particles scattered from the sample are imaged by the lens;
Sample surface height measurement of a charged particle beam device configured to have a detector with at least one-dimensional position detection function installed on the imaging plane, and detect the height position of the sample based on the output signal of the detector. The device has features.

以下本発明の一実施例を添付図面に基づき詳述
する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

第1図は本発明の一実施例のブロツク図であ
り、1は荷電粒子源、例えば電子銃を示す。この
電子銃より出た電子は集束レンズ2により集束さ
れ、断面整形スリツト3上に投射される。該整形
スリツトを通過した電子は結像レンズ4により結
像されスリツト3の縮小像を試料(ウエハ)5上
に投影する。電子線の通路に沿つてX,Yの偏向
器(図では一方向のみ示す)6が置かれ、前記整
形された電子ビームを試料5上で走査できる。こ
の偏向器には増幅器7を介してコンピユータ8よ
りパターン信号を印加されており、試料としての
半導体ウエハ5上に所望のICパターンが描画さ
れる。9は電子銃1と集束レンズ2との間に置か
れたブランキング用の偏向器であり、スリツト1
0との組み合せにより電子ビームをパルス状に通
過させる。該偏向器9には増幅器11を介してコ
ンピユータ8よりパターンに応じてオン−オフ信
号が印加される。12は円筒型静電レンズであ
り、2つの円筒13a,13bを僅かに離間して
構成したもので、一次電子線の軸Zに対し試料面
付近で一定角度で交叉する軸Z′にそつて配置され
ている。両円筒13a,13bには直流電源14
より相互に異つて直流電圧が印加され、それによ
つて両円筒の間隙部に湾曲電界を発生せしめ、試
料5から散乱する反射電子を集束し、反射電子散
乱点(一次電子照射点)の像を結像する。その結
像面には位置検出器15が置かれ、前記反射電子
の結像スポツトの位置を検出する。該位置検出器
としては半導体位置検出器(PSD)、フオトダイ
オードアレイセンサ、固体イメージセンサ
(CCD等)或いはイメージデイセクター管等が利
用できる。該検出器からの信号は検出回路16に
送られ、試料の高さ位置に関する信号に変換さ
れ、表示装置17に送られる。その結果、表示装
置上には試料5の表面の基準位置からのずれ量が
表示される。又、検出回路16の出力の一部は偏
向器6の増幅器7にも送られ、該増幅器のゲイン
を制御する。即ち、試料5の高さずれにより生ず
る描画パターンの誤差を補正するわけである。こ
の場合点線で示す如く、検出回路16からの信号
をコンピユータ8に送り、該コンピユータ内に記
憶されている描画パターンをソフト的に補正する
ようにしても良い。尚図示はしないが、結像レン
ズ4の電源にも検出回路16の出力を供給し、試
料5の高さずれに応じて電子ビームのフオーカス
位置を制御することは望ましい。
FIG. 1 is a block diagram of an embodiment of the present invention, where 1 indicates a charged particle source, such as an electron gun. Electrons emitted from this electron gun are focused by a focusing lens 2 and projected onto a cross-sectional shaping slit 3. The electrons passing through the shaping slit are imaged by an imaging lens 4 and a reduced image of the slit 3 is projected onto a sample (wafer) 5. An X and Y deflector (only one direction is shown in the figure) 6 is placed along the path of the electron beam, so that the shaped electron beam can be scanned over the sample 5. A pattern signal is applied to this deflector from a computer 8 via an amplifier 7, and a desired IC pattern is drawn on a semiconductor wafer 5 as a sample. 9 is a blanking deflector placed between the electron gun 1 and the focusing lens 2;
In combination with 0, the electron beam passes through in a pulsed manner. An on-off signal is applied to the deflector 9 from the computer 8 via an amplifier 11 according to a pattern. Reference numeral 12 denotes a cylindrical electrostatic lens, which is composed of two cylinders 13a and 13b slightly spaced apart, and is arranged along an axis Z' that intersects at a constant angle near the sample surface with respect to the axis Z of the primary electron beam. It is located. A DC power supply 14 is connected to both cylinders 13a and 13b.
Different DC voltages are applied to each other, thereby generating a curved electric field in the gap between the two cylinders, focusing the backscattered electrons scattered from the sample 5, and forming an image of the backscattered electron scattering point (primary electron irradiation point). Form an image. A position detector 15 is placed on the imaging plane to detect the position of the imaging spot of the reflected electrons. As the position detector, a semiconductor position detector (PSD), a photodiode array sensor, a solid-state image sensor (CCD, etc.), an image dissector tube, etc. can be used. The signal from the detector is sent to a detection circuit 16, converted into a signal regarding the height position of the sample, and sent to a display device 17. As a result, the amount of deviation of the surface of the sample 5 from the reference position is displayed on the display device. A part of the output of the detection circuit 16 is also sent to the amplifier 7 of the deflector 6 to control the gain of the amplifier. That is, errors in the drawing pattern caused by the height deviation of the sample 5 are corrected. In this case, as shown by the dotted line, a signal from the detection circuit 16 may be sent to the computer 8 to correct the drawing pattern stored in the computer using software. Although not shown, it is desirable to supply the output of the detection circuit 16 to the power source of the imaging lens 4 and to control the focus position of the electron beam according to the height deviation of the sample 5.

第2図は本発明における高さ測定の原理を示す
光学図であり、試料5が5′で示すするにhだけ
高さが変つた場合を示している。試料が5の状態
での一次電子線の照射点pは検出器15上でp′に
結像されていたものが、試料が5′になると照射
点は仮想的にqとなり、その像はq′に結ばれるこ
とになる。而して、pとqの距離lはh cosθで
あり、(但し、θは試料面と軸Z′とのなす角)
p′とq′の距離Lはレンズ12の倍率をMとすると
L=M・l=M・hcosθとなる。ここで、Mとθ
は既知であり、一定であるので検出器15上にお
いてLが判れば試料の高さhは容易に判るわけで
ある。
FIG. 2 is an optical diagram showing the principle of height measurement according to the present invention, and shows a case where the height of the sample 5 has changed by h as indicated by 5'. When the sample is 5', the irradiation point p of the primary electron beam was imaged at p' on the detector 15, but when the sample is 5', the irradiation point is virtually q, and its image is q. ’. Therefore, the distance l between p and q is h cos θ (where θ is the angle between the sample surface and the axis Z')
The distance L between p' and q' is L=M·l=M·h cos θ, where M is the magnification of the lens 12. Here, M and θ
is known and constant, so if L on the detector 15 is known, the height h of the sample can be easily determined.

さて、電子線露光を行なうには、先ず一次電子
線を試料5上のある点(描画領域でない点)に照
射する。この照射により、試料5より反射する電
子はレンズ12により検出器15上に結像され、
その結像位置が検出される。該結像位置に関する
信号は回路16より高さ信号として表示装置17
に送られ、試料5の高さ位置が表示される。この
表示値に基づき手動により試料の高さを調整した
り、偏向器6の増幅器7のゲインを制御するよう
にしても良いが、実際上は第1図に示す如く、回
路16からの信号により増幅器7を自動的に調整
したり、コンピユータ8に記載された描画パター
ンを直接補正するようにすると便利である。
Now, in order to perform electron beam exposure, a primary electron beam is first irradiated onto a certain point on the sample 5 (a point that is not in the drawing area). Due to this irradiation, the electrons reflected from the sample 5 are imaged on the detector 15 by the lens 12,
The imaging position is detected. The signal regarding the image forming position is sent from the circuit 16 as a height signal to the display device 17.
The height position of the sample 5 is displayed. The height of the sample may be manually adjusted based on this display value, or the gain of the amplifier 7 of the deflector 6 may be controlled, but in practice, as shown in FIG. It is convenient to automatically adjust the amplifier 7 or to directly correct the drawing pattern written on the computer 8.

上記高さ測定が終了した後、コンピユータ8か
ら各部に描画パターン等の信号を送ると、試料5
上に所望のパターンが所望の寸法で露光できるわ
けである。
After the above height measurement is completed, the computer 8 sends signals such as the drawing pattern to each part, and the sample 5
A desired pattern with desired dimensions can be exposed thereon.

尚、上記は電子ビーム露光装置について述べた
が、これに限らずイオンビーム露光装置や測長装
置、分析装置、その他の粒子線装置にも同様に適
用できるものである。又、これら装置において、
描画に用いる荷電粒子線以外に別の荷電粒子線源
がある場合には、それを用いても良い。更に、前
記は反射粒子線の結像レンズとして円筒型静電レ
ンズを用いたが、他のタイプや電磁型レンズも使
用できる。
Although the above description has been made regarding an electron beam exposure apparatus, the present invention is not limited to this and can be similarly applied to an ion beam exposure apparatus, a length measuring apparatus, an analyzer, and other particle beam apparatuses. Also, in these devices,
If there is another charged particle beam source other than the charged particle beam used for drawing, it may be used. Furthermore, although a cylindrical electrostatic lens is used as the imaging lens for the reflected particle beam in the above description, other types or electromagnetic lenses can also be used.

以上詳述した如く、本発明は荷電粒子線を試料
面に照射し、その反射粒子線をとらえ、電子レン
ズにより前記照射点の像を検出器上に結像し、検
出器上の像位置から試料の高さを知るようになし
てあるので、荷電粒子線照射点そのものの高さを
測定でき、従来の静電容量型等に比べ極めて高い
精度の測定が可能となり、又露光室にはレンズ1
2のみを備えれば良いので、従来の光学式変位側
定装置に比べ装置は小型、簡易となり、且つ低コ
ストですみ、露光室への設置ができないという心
配は殆んどなくなる。
As detailed above, the present invention irradiates a sample surface with a charged particle beam, captures the reflected particle beam, forms an image of the irradiated point on a detector using an electron lens, and Since the height of the sample is known, the height of the charged particle beam irradiation point itself can be measured, making it possible to measure with extremely high accuracy compared to conventional capacitance type, etc. Also, there is a lens in the exposure room. 1
2, the device is smaller and simpler than the conventional optical displacement-side determining device, and costs less, and there is almost no worry that it cannot be installed in the exposure room.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク線
図、第2図は本発明の原理を説明する図である。 1:電子銃、2:集束レンズ、3:整形スリツ
ト、4:結像レンズ、5:試料、6,9:偏向
器、7,11:増幅器、8:コンピユータ、1
0:スリツト、12:静電レンズ、13a,13
b:円筒、14:直流電源、15:位置検出器、
16:検出回路、17:表示装置。
FIG. 1 is a block diagram showing one embodiment of the invention, and FIG. 2 is a diagram explaining the principle of the invention. 1: Electron gun, 2: Focusing lens, 3: Shaping slit, 4: Imaging lens, 5: Sample, 6, 9: Deflector, 7, 11: Amplifier, 8: Computer, 1
0: Slit, 12: Electrostatic lens, 13a, 13
b: cylinder, 14: DC power supply, 15: position detector,
16: detection circuit, 17: display device.

Claims (1)

【特許請求の範囲】 1 荷電粒子ビームを試料面に照射し、該試料を
加工、分析或いは観察する装置において、前記荷
電粒子ビームの軸に対し、試料面付近で一定の角
度をなして交叉する軸に沿つて少なくとも一個の
結像レンズを設け、前記試料から散乱した荷電粒
子を該レンズによつて結像せしめ、その結像面に
少なくとも一次元的な位置検出機能をもつ検出器
を設置し、該検出器の出力信号により前記試料の
高さ位置を検知する如く構成したことを特徴とす
る荷電粒子線装置の試料表面高さ測定装置。 2 前記検出器の出力に基づき試料の高さを表示
する手段を備えている特許請求の範囲第1項記載
の荷電粒子線装置の試料表面高さ測定装置。 3 前記検出器の出力に基づき荷電粒子ビームの
偏向信号を補正する特許請求の範囲第1項記載の
荷電粒子線装置の試料表面高さ測定装置。
[Scope of Claims] 1. In an apparatus for irradiating a sample surface with a charged particle beam and processing, analyzing or observing the sample, the charged particle beam intersects the axis of the charged particle beam at a certain angle near the sample surface. At least one imaging lens is provided along the axis, the charged particles scattered from the sample are imaged by the lens, and a detector having at least one-dimensional position detection function is installed on the imaging plane. A sample surface height measuring device for a charged particle beam device, characterized in that the height position of the sample is detected by the output signal of the detector. 2. A sample surface height measuring device for a charged particle beam device according to claim 1, further comprising means for displaying the height of the sample based on the output of the detector. 3. A sample surface height measuring device for a charged particle beam device according to claim 1, wherein the deflection signal of the charged particle beam is corrected based on the output of the detector.
JP7064983A 1983-04-21 1983-04-21 Apparatus for measuring surface height of sample in charged particle ray apparatus Granted JPS59195112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064983A JPS59195112A (en) 1983-04-21 1983-04-21 Apparatus for measuring surface height of sample in charged particle ray apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064983A JPS59195112A (en) 1983-04-21 1983-04-21 Apparatus for measuring surface height of sample in charged particle ray apparatus

Publications (2)

Publication Number Publication Date
JPS59195112A JPS59195112A (en) 1984-11-06
JPH0217050B2 true JPH0217050B2 (en) 1990-04-19

Family

ID=13437703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064983A Granted JPS59195112A (en) 1983-04-21 1983-04-21 Apparatus for measuring surface height of sample in charged particle ray apparatus

Country Status (1)

Country Link
JP (1) JPS59195112A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788431A (en) * 1987-04-10 1988-11-29 The Perkin-Elmer Corporation Specimen distance measuring system

Also Published As

Publication number Publication date
JPS59195112A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
US20100193686A1 (en) Electron Beam Exposure Or System Inspection Or Measurement Apparatus And Its Method And Height Detection Apparatus
JP2001202912A (en) Method of aligning opening in a charged particle beam system, having optical axis
JP2548834B2 (en) Electron beam dimension measuring device
JPH04299821A (en) Converged ion beam device
US4857742A (en) Position detecting device using variable radiation
JPS6341401B2 (en)
JPS63269007A (en) Detector for measuring position of substrate
JP3494068B2 (en) Charged particle beam equipment
JPH0217050B2 (en)
JPH077653B2 (en) Observation device by scanning electron microscope
JP4081700B2 (en) Electron beam analyzer
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JP2002245960A (en) Charged particle beam device and device manufacturing method using the same
JPH0652650B2 (en) Alignment method of charged beam
JPH09293477A (en) Charged beam adjusting method
JPH09119825A (en) Method and apparatus for measurement of pattern coordinates
JPH04105010A (en) Method and device for shape and dimension measurement
JP3430788B2 (en) Sample image measuring device
JPH0221553A (en) Electron ray length-measuring device
CN113340927B (en) Charged particle beam device with interferometer for height measurement and method for operating the same
JPS6253049B2 (en)
JP2005098703A (en) Electron beam measuring apparatus
JPH04242919A (en) Charged beam drawing apparatus
JPH07286842A (en) Method and device for inspecting dimension
JPS6316687B2 (en)