JPH09293477A - Charged beam adjusting method - Google Patents

Charged beam adjusting method

Info

Publication number
JPH09293477A
JPH09293477A JP8107438A JP10743896A JPH09293477A JP H09293477 A JPH09293477 A JP H09293477A JP 8107438 A JP8107438 A JP 8107438A JP 10743896 A JP10743896 A JP 10743896A JP H09293477 A JPH09293477 A JP H09293477A
Authority
JP
Japan
Prior art keywords
mark
focus position
intensity distribution
charged
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8107438A
Other languages
Japanese (ja)
Inventor
Hitoshi Sunaoshi
仁 砂押
Koji Ando
厚司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8107438A priority Critical patent/JPH09293477A/en
Publication of JPH09293477A publication Critical patent/JPH09293477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately focus electron beams and enhance the drawing accuracy of a fine pattern. SOLUTION: An electron beam drawing device irradiates an aperture mask having the pecified opening shape with electron beams 101 to generate open- shaped beams, and deflects the beams to draw a pattern in the desired position on a sample 109. The relation between the beam size and the distance between a plurality of fine marks arranged in the scanning direction of the beams is suitably selected, the electron beams 101 are scanned on at least two marks, the intensity of a reflected electron signal obtained by scanning is used as an evaluation function, the evaluation function is measured while a focal point position is varied, the relation between the evaluation function and the focusing point position is applied to a secondary function, and the focal point position becoming the external value of the secondary function is used as the optimum focal point position to adjust the focal point of the beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ULSI等の微細
パターンを試料面上に描画する荷電ビーム描画技術に係
わり、特に荷電ビームの焦点位置調整を行うための荷電
ビームの調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged beam drawing technique for drawing a fine pattern such as ULSI on a sample surface, and more particularly to a charged beam adjusting method for adjusting the focus position of the charged beam.

【0002】[0002]

【従来の技術】従来、半導体ウェハ等の試料面に所望の
微細パターンを描画するものとして、電子ビーム描画装
置が使われている。この種の電子ビーム描画装置では、
電子ビームの強度分布を測定し、電子ビームの試料面上
での焦点位置を調整する機構が一般的に備えられてい
る。
2. Description of the Related Art Conventionally, an electron beam drawing apparatus has been used for drawing a desired fine pattern on a sample surface such as a semiconductor wafer. In this type of electron beam writer,
A mechanism for measuring the intensity distribution of the electron beam and adjusting the focus position of the electron beam on the sample surface is generally provided.

【0003】例えば、試料台の一部に備えられた単−の
微細マーク上を電子ビームで走査し反射電子を検出する
と、電子ビームの形状を反映した強度分布を得ることが
できる。強度分布の波高値の10%から90%までのビ
ーム幅をビーム分解能として定義し、対物レンズの励磁
を変化させて電子ビームの焦点位置を変化させつつビー
ム分解能を測定し、ビーム分解能を対物レンズの励磁又
は焦点位置の関数として二次関数でフィッティングし、
ビーム分解能が最小となる二次関数の極値を求めれば、
試料面上での最適焦点位置を得ることができる。
For example, when a single fine mark provided on a part of the sample stage is scanned with an electron beam to detect backscattered electrons, an intensity distribution reflecting the shape of the electron beam can be obtained. The beam width from 10% to 90% of the crest value of the intensity distribution is defined as the beam resolution, and the beam resolution is measured while changing the excitation position of the objective lens to change the focal position of the electron beam. Quadratic function as a function of excitation or focus position of
If we find the extrema of the quadratic function that minimizes the beam resolution,
The optimum focus position on the sample surface can be obtained.

【0004】近年、描画パターンが微細化し、焦点深度
が浅くなるに伴つて、電子ビームの焦点位置調整の高精
度化が必要となってきた。従来の技術で述べた方法で得
られる電子ビームの強度分布は、ビーム形状と微細マー
ク形状のコンボリューションパターンとなる。よって、
マーク寸法はより小さい方が高精度なビーム形状測定が
可能である。
In recent years, as the drawing pattern has become finer and the depth of focus has become shallower, it has become necessary to improve the precision in adjusting the focal position of the electron beam. The intensity distribution of the electron beam obtained by the method described in the related art is a convolution pattern of a beam shape and a fine mark shape. Therefore,
The smaller the mark size, the more accurate the beam shape can be measured.

【0005】しかしながら、マーク寸法を小さくすると
反射電子信号が弱くなりS/N比が小さくなって測定誤
差が大きくなり、高精度な焦点位置調整ができないとい
う問題があった。また、ビーム形状が左右対称でない場
合やノイズの振る舞いによって、ビーム分解能の測定値
に大きなばらつきが生じ、精度良く焦点位置調整ができ
なかった。さらに、描画パ夕一ン寸法が0.1μm程度
になると、ビーム形状の界面部分や肩の部分の強度分布
が描画パターンに微妙な影響を与えるため、ビーム分解
能を評価関数として焦点位置調整を行うと、微細パター
ン形状に多大な悪影響を及ぼすという問題点があった。
However, when the mark size is reduced, the reflected electron signal is weakened, the S / N ratio is reduced, the measurement error is increased, and the focus position cannot be adjusted with high accuracy. In addition, when the beam shape is not symmetrical and the behavior of noise causes a large variation in the measured value of the beam resolution, the focus position cannot be adjusted accurately. Further, when the drawing pattern size is about 0.1 μm, the intensity distribution at the interface portion of the beam shape and the shoulder portion has a delicate influence on the drawing pattern, so the focus position is adjusted using the beam resolution as an evaluation function. Then, there is a problem that the fine pattern shape is greatly adversely affected.

【0006】[0006]

【発明が解決しようとする課題】このように従来、電子
ビームの焦点位置を合わせるにはビームの強度分布を測
定する必要があるが、高精度なビーム強度分布測定を行
うためにマーク寸法を小さくすると、S/N比が小さく
なって高精度な焦点位置調整ができない。また、ビーム
形状の非対称性やノイズの影響によって、ビーム分解能
の測定値にばらつきが生じ、精度良く焦点位置調整がで
きない問題があった。
As described above, conventionally, it is necessary to measure the intensity distribution of the beam in order to adjust the focus position of the electron beam. However, in order to measure the beam intensity distribution with high accuracy, the mark size is made small. Then, the S / N ratio becomes small, and highly accurate focus position adjustment cannot be performed. Further, due to the asymmetry of the beam shape and the influence of noise, the measured value of the beam resolution varies, and there is a problem that the focus position cannot be adjusted accurately.

【0007】なお、上記問題は電子ビームを用いてパタ
ーンを描画する電子ビーム描画装置に限らず、イオンビ
ームを用いてパターンを描画するイオンビーム描画装置
についても同様に言えることである。
The above problem is not limited to the electron beam writing apparatus that draws a pattern by using an electron beam, and the same applies to an ion beam writing apparatus that draws a pattern by using an ion beam.

【0008】本発明は、上記の事情を考慮してなされた
もので、その目的とするところは、荷電ビームの焦点位
置を高精度に合わせることができ、微細パターンの描画
精度向上に寄与し得る荷電ビームの調整方法を提供する
ことにある。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to adjust the focal position of the charged beam with high precision, which can contribute to improvement of drawing precision of a fine pattern. It is to provide a method of adjusting a charged beam.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(構成)上記課題を解決するために本発明は、次のよう
な構成を採用している。即ち本発明は、荷電ビームの焦
点位置を合わせるための荷電ビームの調整方法におい
て、所定の間隔で配置された少なくとも2個の微細マー
クの上を荷電ビームで走査し、該走査により得られる反
射電子又は二次電子信号を検出して前記荷電ビームの強
度分布を測定し、該測定した強度分布に基づいて前記荷
電ビームの焦点位置調整を行うことを特徴とする。
(Structure) In order to solve the above problem, the present invention employs the following structure. That is, according to the present invention, in a method of adjusting a charged beam for adjusting a focal position of the charged beam, at least two fine marks arranged at a predetermined interval are scanned by the charged beam, and a reflected electron obtained by the scanning is obtained. Alternatively, the secondary electron signal is detected, the intensity distribution of the charged beam is measured, and the focus position of the charged beam is adjusted based on the measured intensity distribution.

【0010】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) マークはビーム走査方向に沿って複数個配置され、
各々のマーク間隔が全て等しいこと。 (2) マークはビーム走査方向に沿って複数個配置され、
各々のマーク間隔を徐々に長く又は短くしていること。 (3) マークは複数のマーク群に分類され、各々のマーク
群ではマーク間隔が同じであり、かつ異なるマーク群で
はマーク間隔が異なること。 (4) 荷電ビームの焦点位置調整を行うに際し、測定した
強度分布の変化が焦点位置の変化に対して最も大きくな
るマーク間隔を持つマークを用いること。 (5) 荷電ビームの焦点位置調整を行うに際し、荷電ビー
ムサイズを変化させながら該ビームの強度分布を測定
し、該測定した強度分布の変化が焦点位置の変化に対し
て最も大きくなるビームサイズの荷電ビームを用いるこ
と。 (6) 測定された荷電ビームの強度分布を評価関数とし、
該評価関数を焦点位置を変えながら測定し、該評価関数
と焦点位置との関係を二次関数に当てはめて、該二次関
数の極値となる焦点位置を最適焦点位置とすること。
Here, preferred embodiments of the present invention include the following. (1) A plurality of marks are arranged along the beam scanning direction,
All mark intervals are the same. (2) A plurality of marks are arranged along the beam scanning direction,
The distance between each mark shall be gradually increased or decreased. (3) Marks are classified into a plurality of mark groups, each mark group has the same mark interval, and different mark groups have different mark intervals. (4) When adjusting the focus position of the charged beam, use marks with a mark interval that causes the largest change in the measured intensity distribution with respect to the change in the focus position. (5) When adjusting the focus position of the charged beam, the intensity distribution of the beam is measured while changing the charged beam size, and the change in the measured intensity distribution is the largest beam size with respect to the change in the focus position. Use a charged beam. (6) Using the measured charged beam intensity distribution as an evaluation function,
The evaluation function is measured while changing the focus position, the relationship between the evaluation function and the focus position is applied to a quadratic function, and the focus position that is the extreme value of the quadratic function is set as the optimum focus position.

【0011】また本発明は、所定の開孔形状を有するア
パーチャマスクに荷電ビームを照射することにより、前
記開孔形状のビームを生成し、これを偏向して試料上の
所望位置に描画する荷電ビーム描画装置において、少な
くとも2個の微細マークを前記荷電ビームの偏向方向に
一致して並べたマーク群を試料台の一部に具備したこと
を特徴とする。
Further, according to the present invention, by irradiating an aperture mask having a predetermined aperture shape with a charged beam, a beam having the aperture shape is generated, and the beam is deflected to be drawn at a desired position on a sample. The beam drawing apparatus is characterized in that a mark group in which at least two fine marks are aligned in the deflection direction of the charged beam is provided in a part of the sample table.

【0012】ここで、マーク群内の各微細マークの間隔
が全て等しいことを特徴とする。また、マーク群間にお
いて互いに微細マークの間隔を少しずつ変えてある、少
なくとも2組のマーク群を試料台の一部に具備したこと
を特徴とする。さらに、マーク群内の各微細マークの間
隔を少しずつ変えてある少なくとも1組以上のマーク群
を試料台の一部に具備していることを特徴とする。
Here, it is characterized in that the intervals of the respective fine marks in the mark group are all the same. Further, it is characterized in that at least two sets of mark groups in which the intervals between the fine marks are slightly changed between the mark groups are provided in a part of the sample table. Further, at least one or more sets of mark groups in which the intervals between the fine marks in the mark group are slightly changed are provided in a part of the sample table.

【0013】また、微細マークの形状が点状又は線状で
あることを特徴とする。さらに、微細マークの形状が、
マーク周辺の下地に対して凸型又は凹型であることを特
徴とする。また、微細マークの問隔が、ビームサイズと
同程度であることを特徴とする。 (作用)本発明では、ビームサイズと、ビームの走査方
向に一致して並べられた複数の微細マークの間隔との間
に適切な関係を選び、少なくとも2個の微細マークの上
を荷電ビームで走査し、微細マークに荷電ビームが照射
された状態の時に得られる反射電子又は二次電子を検出
して荷電ビームの強度分布を求める。すると、反射電子
や二次電子信号のS/N比が大きくなり、測定精度を向
上させて荷電ビームの焦点位置を高精度に合わせること
ができ、これにより微細パターンの描画精度向上に寄与
することが可能となる。
Further, it is characterized in that the fine marks are dot-shaped or line-shaped. In addition, the shape of the fine mark is
It is characterized in that it is convex or concave with respect to the base around the mark. Further, it is characterized in that the gap between the fine marks is about the same as the beam size. (Operation) In the present invention, an appropriate relationship is selected between the beam size and the interval between a plurality of fine marks aligned in the scanning direction of the beam, and at least two fine marks are charged with a charged beam. The intensity distribution of the charged beam is obtained by scanning and detecting reflected electrons or secondary electrons obtained when the fine mark is irradiated with the charged beam. Then, the S / N ratio of backscattered electrons and secondary electron signals becomes large, so that the measurement accuracy can be improved and the focus position of the charged beam can be adjusted with high accuracy, which contributes to the improvement of the drawing accuracy of the fine pattern. Is possible.

【0014】さらに、求めた強度分布を評価関数とし、
該評価関数を焦点位置を変えながら測定し、該評価関数
と焦点位置との関係を二次関数に当てはめて、該二次関
数の極値となる焦点位置を最適焦点位置として焦点位置
調整を行うため、この評価関数はビーム分解能に加えて
ビームの肩と界面の情報を含んでおり、従来のビーム分
解能を評価関数とした場合に比べ、焦点位置の変化に対
する評価関数の感度が高くなり、高精度な焦点位置調整
を行うことができる。
Further, using the obtained intensity distribution as an evaluation function,
The evaluation function is measured while changing the focus position, the relationship between the evaluation function and the focus position is applied to a quadratic function, and the focus position that is the extreme value of the quadratic function is used as the optimum focus position to adjust the focus position. Therefore, this evaluation function includes information on the shoulders and interfaces of the beam in addition to the beam resolution, and the sensitivity of the evaluation function to changes in the focus position is higher than that when the conventional beam resolution is used as the evaluation function. Accurate focus position adjustment can be performed.

【0015】図13は、焦点位置を変化させたときの評
価関数の変化の割合を、従来の方法による場合と本発明
による場合で比較したものである。本発明による場合
は、従来の方法に比べ、特に焦点位置が最適焦点位置か
らずれたところでの評価関数の変化の割合が大きいた
め、二次関数のフィッティングによる誤差を小さくする
ことができる。よって、本発明による荷電ビーム調整方
法を用いれば、高精度な描画パターンを実現することが
可能となる。
FIG. 13 compares the rate of change of the evaluation function when the focus position is changed between the case of the conventional method and the case of the present invention. In the case of the present invention, the rate of change of the evaluation function is large, especially when the focus position deviates from the optimum focus position, as compared with the conventional method, so that the error due to the fitting of the quadratic function can be reduced. Therefore, by using the charged beam adjusting method according to the present invention, it is possible to realize a highly accurate drawing pattern.

【0016】[0016]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。図1は、本発明の実施形態に使
用した電子ビーム描画装置を示す概略構成図である。図
中の100は電子銃、101は電子銃100から放出さ
れた電子ビーム、102はビームの位置を制御する偏向
制御回路、103は偏向アンプ、104は偏向器、10
5は対物レンズ、106は反射電子検出器、107は反
射電子信号を処理する回路、108は可動ステージ、1
09はウェハ等の試料、110は微細マーク台、111
はステージ位置制御回路、112は制御用計算機であ
る。また、113は、電子ビーム101で微細マーク台
110上にある微細マークを走査した時に得られる反射
電子である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a schematic configuration diagram showing an electron beam drawing apparatus used in an embodiment of the present invention. In the figure, 100 is an electron gun, 101 is an electron beam emitted from the electron gun 100, 102 is a deflection control circuit for controlling the position of the beam, 103 is a deflection amplifier, 104 is a deflector, 10
5 is an objective lens, 106 is a backscattered electron detector, 107 is a circuit for processing backscattered electron signals, 108 is a movable stage, 1
Reference numeral 09 is a sample such as a wafer, 110 is a fine mark stand, and 111
Is a stage position control circuit, and 112 is a control computer. Further, 113 is a backscattered electron obtained when the fine mark on the fine mark stand 110 is scanned by the electron beam 101.

【0017】電子ビームは対物レンズ105で試料上に
焦点を結び、偏向器104で試料上の任意の位置に位置
決めすることができる。ウェハ等の試料109と微細マ
ーク台11Oは、可動ステージ108を動かして選択す
ることができ、その位置はレーザー測長系を含むステー
ジ位置制御回路111によって精度良く制御することが
可能である。
The electron beam is focused on the sample by the objective lens 105 and can be positioned at an arbitrary position on the sample by the deflector 104. The sample 109 such as a wafer and the fine mark table 110 can be selected by moving the movable stage 108, and the positions thereof can be accurately controlled by a stage position control circuit 111 including a laser length measurement system.

【0018】図2に3種類のビームサイズの定義を示し
ておく。ビームサイズAは電子ビーム強度分布の半値
幅、ビームサイズBはピーク波高値の100%部分の
幅、ビームサイズCは強度分布の界面の幅である。な
お、11をビームの左側エッジ、12を右側エッジ、1
3をビームの界面、14をビームの肩と呼ぶことにす
る。
FIG. 2 shows definitions of three types of beam sizes. The beam size A is the full width at half maximum of the electron beam intensity distribution, the beam size B is the width of the 100% portion of the peak value, and the beam size C is the width of the interface of the intensity distribution. 11 is the left side edge of the beam, 12 is the right side edge, 1
3 is called the beam interface and 14 is called the beam shoulder.

【0019】図2の強度分布において、ビーム分解能を
反映しているのはビームのエッジ11又は12の傾き
で、従来はこれを評価関数として焦点位置調整を行って
いた。これに対して本実施形態では、焦点位置の変化に
伴うビーム形状の変化を測定するため、ビームのエッジ
11及び12の傾きの変化に加えて、ビームの界面13
及びビームの肩14の強度変化を感度良く捉える。 (第1の実施形態)まず、本発明の第1の実施形態を説
明する。
In the intensity distribution of FIG. 2, it is the inclination of the edge 11 or 12 of the beam that reflects the beam resolution. Conventionally, the focus position is adjusted using this as an evaluation function. On the other hand, in the present embodiment, in order to measure the change in the beam shape due to the change in the focus position, in addition to the change in the inclinations of the edges 11 and 12 of the beam, the interface 13 of the beam is changed.
And the intensity change of the shoulder 14 of the beam is captured with high sensitivity. (First Embodiment) First, a first embodiment of the present invention will be described.

【0020】微細マーク台110上には、図3に示すよ
うに、リソグラフィー工程によって製作された同じ大き
さの柱状マーク21が同一間隔mで、マトリックス状に
並んでいる。図3に示されたマークのうち、横方向に隣
合った2個のマーク22及び23の上を電子ビーム10
1で連続して走査すると、図4に示すような反射電子の
強度分布が得られる。このときの横方向のビームサイズ
(図2で定義される)とマーク22及び23の間隔mの
関係は、図5に示すようにB<m<Aである。なお、縦
方向のビームサイズは横方向と同じ値に設定されてい
る。
As shown in FIG. 3, on the fine mark base 110, columnar marks 21 of the same size manufactured by the lithography process are arranged in a matrix at the same intervals m. Of the marks shown in FIG. 3, the electron beam 10 passes over two marks 22 and 23 that are laterally adjacent to each other.
When the scanning is continuously performed at 1, the intensity distribution of the reflected electrons as shown in FIG. 4 is obtained. At this time, the relationship between the lateral beam size (defined in FIG. 2) and the distance m between the marks 22 and 23 is B <m <A as shown in FIG. The beam size in the vertical direction is set to the same value as that in the horizontal direction.

【0021】マーク間隔mの大きさは固定であるので、
電子ビーム101のサイズによっては、図4に示すよう
な強度分布が得られない場合がある。この場合は、電子
ビーム101のビームサイズを変えながら強度分布を測
定し、図4と同様の強度分布が得られるビームサイズを
用いれば良い。
Since the size of the mark interval m is fixed,
Depending on the size of the electron beam 101, the intensity distribution as shown in FIG. 4 may not be obtained. In this case, the intensity distribution may be measured while changing the beam size of the electron beam 101, and the beam size with which the intensity distribution similar to that in FIG. 4 is obtained may be used.

【0022】対物レンズ105の励磁を変えて電子ビー
ムの焦点位置を変化させると、図4の31,32,33
に示すように強度分布が変化する。強度分布33,3
2,31の順番でビーム分解能が小さくなり、強度分布
のピーク値が大きくなる。ここで、図6に示すように、
強度分布のピーク値を中心としてビーム偏向位置t1,
t2を設定し、t1からt2の間でしきい値It以上部
分の強度の積算値Sを強度分布の全積算値で規格化した
値SN を評価関数とする。
When the excitation of the objective lens 105 is changed to change the focal position of the electron beam, 31, 32, 33 in FIG.
The intensity distribution changes as shown in. Intensity distribution 33,3
The beam resolution decreases in the order of 2, 31 and the peak value of the intensity distribution increases. Here, as shown in FIG.
Beam deflection position t1, centered on the peak value of the intensity distribution
By setting t2, a value S N obtained by normalizing the integrated value S of the intensity of the portion equal to or larger than the threshold value It between t1 and t2 by the total integrated value of the intensity distribution is used as the evaluation function.

【0023】図7は、焦点位置を変化させながら強度分
布を測定して積算値Sを求め、規格化された積算値SN
と焦点位置を二次関数(y=ax2 +bx+c)に当て
はめてたグラフである。二次関数の極値(−b/2a)
を求め、このときの焦点位置を最適焦点値とすれば、焦
点位置調整を行うことができる。
In FIG. 7, the intensity distribution is measured while changing the focal position to obtain the integrated value S, and the standardized integrated value S N is calculated.
And the focal position are applied to a quadratic function (y = ax 2 + bx + c). Extreme value of quadratic function (-b / 2a)
Then, the focus position can be adjusted by determining the focus position at this time as the optimum focus value.

【0024】ビームサイズとマーク間隔の関係がC<m
<Bのときは、強度分布は図8に示すように凹型の形状
になる。ビーム偏向位置t3,t4を設け、t3からt
4の間の強度の積算値Sを強度分布の全積算値で規格化
した値を評価関数とすることができる。この場合、焦点
位置と評価関数の関係は下に凸の二次関数で近似するこ
とができて、二次関数の極値の時の焦点位置を最適焦点
位置として焦点位置調整を行うことができる。
The relationship between the beam size and the mark interval is C <m
When <B, the intensity distribution has a concave shape as shown in FIG. Beam deflection positions t3 and t4 are provided, and from t3 to t
A value obtained by standardizing the integrated value S of the intensity between 4 and the total integrated value of the intensity distribution can be used as the evaluation function. In this case, the relationship between the focus position and the evaluation function can be approximated by a downward convex quadratic function, and the focus position can be adjusted with the focus position at the extreme value of the quadratic function as the optimum focus position. .

【0025】本実施形態では、横方向と縦方向のビーム
サイズは同一であったが、縦方向のビームサイズ及び微
細マークを走査する時の電子ビームの縦方向の位置を変
えることで、マーク22及びマーク23が並んでいるマ
ーク列の上段、又は下段のマーク列にも電子ビームを照
射して、反射電子信号量を大きくしS/N比を上げて精
度を上げることができる。 (第2の実施形態)次に、本発明の第2の実施形態につ
いて説明する。
In the present embodiment, the beam sizes in the horizontal direction and the vertical direction are the same, but by changing the beam size in the vertical direction and the vertical position of the electron beam when scanning the fine mark, the mark 22 is changed. Also, the electron beam may be applied to the upper mark row or the lower mark row in which the marks 23 are lined up to increase the reflected electron signal amount and increase the S / N ratio to improve the accuracy. (Second Embodiment) Next, a second embodiment of the present invention will be described.

【0026】図9は、本発明の第2の実施形態を説明す
るための微細マーク配置を示す図である。第1の実施形
態で説明した方法では、一括露光方式の電子ビーム装置
のようにビームサイズを任意に変化できない場合、強度
分布の測定に最適なビームサイズを得ることができな
い。
FIG. 9 is a diagram showing a fine mark arrangement for explaining the second embodiment of the present invention. According to the method described in the first embodiment, if the beam size cannot be changed arbitrarily as in the electron beam apparatus of the batch exposure method, the optimum beam size for measuring the intensity distribution cannot be obtained.

【0027】そこで本実施形態では、マークの間隔を少
しずつ違えた複数のマーク群M1(マーク間隔ml)、
M2(マーク間隔m2)、M3(マーク間隔m3)、を
用意する(一つのマーク群内ではマーク間隔は同一であ
る)。そして、各マーク群のマーク上を電子ビーム10
1で走査して強度分布測定を行い、第1の実施形態に示
した焦点位置調整を行うに最適なマーク群を選択して、
第1の実施形態に記した方法で最適焦点位置を得ること
ができる。 (第3の実施形態)次に、本発明の第3の実施形態につ
いて説明する。
Therefore, in the present embodiment, a plurality of mark groups M1 (mark intervals ml) in which the mark intervals are slightly different,
M2 (mark interval m2) and M3 (mark interval m3) are prepared (the mark interval is the same in one mark group). Then, the electron beam 10 passes over the marks of each mark group.
1, the intensity distribution is measured by scanning at 1, and the optimum mark group for performing the focus position adjustment shown in the first embodiment is selected,
The optimum focus position can be obtained by the method described in the first embodiment. (Third Embodiment) Next, a third embodiment of the present invention will be described.

【0028】図10は、本発明の第3の実施形態を説明
するための微細マークの配置を示す図である。図10に
示すように、マーク間隔をml<m2<m3<m4<m
5<m6<m7<mx のように少しずつ変えて配置し、
そのマーク列の上を電子ビーム101で走査すれば、マ
ーク検出に最適なマーク間隔とビームサイズの関係を簡
単に選択することができる。
FIG. 10 is a diagram showing the arrangement of fine marks for explaining the third embodiment of the present invention. As shown in FIG. 10, the mark spacing is ml <m2 <m3 <m4 <m.
5 <m6 <m7 to changing little by little as <m x Place,
By scanning the mark row with the electron beam 101, the optimum relationship between the mark interval and the beam size for mark detection can be easily selected.

【0029】前記図2に示すような形状を持つ電子ビー
ムで図10のマーク上を連続して走査すると、マーク間
隔ml〜m7と図2に定義されるビームサイズA〜Cの
関係に応じて、図11(a)から(g)に示す強度分布
が得られる。第1の実施形態の説明と同様に、図11
(c)の強度分布、若しくは図11(e)の強度分布を
用いて第1の実施形態で説明した方法で、焦点位置調整
を行うことができる。 (第4の実施形態)次に、本発明の第4の実施形態につ
いて説明する。
When the marks shown in FIG. 10 are continuously scanned by the electron beam having the shape shown in FIG. 2, the mark intervals ml to m7 and the beam sizes A to C defined in FIG. The intensity distributions shown in FIGS. 11A to 11G are obtained. Similar to the description of the first embodiment, FIG.
The focus position can be adjusted by the method described in the first embodiment using the intensity distribution of (c) or the intensity distribution of FIG. 11 (e). (Fourth Embodiment) Next, a fourth embodiment of the present invention will be described.

【0030】第1〜第3の実施形態においては、強度分
布を観測するためのマークとして、ドット状の柱状マー
クを用いたが、ドットマークでS/N比が小さい場合に
は、図12に示すように、ラインマーク25を格子状に
並べて、その上を電子ビームで走査して反射電子信号を
強くして検出しても良い。ラインマーク上を電子ビーム
で走査したときに得られる強度分布の形状は、ドット状
の柱状マーク上を走査したときに得られる強度分布の形
状と同じである。よって、ラインマークの間隔をL1=
L2=L3=…とすれば、第1の実施形態と同じ方法で
焦点位置調整を行うことができる。
In the first to third embodiments, a dot-shaped columnar mark is used as a mark for observing the intensity distribution, but when the dot mark has a small S / N ratio, it is shown in FIG. As shown, the line marks 25 may be arranged in a grid pattern, and the electron beams may be scanned over the line marks 25 to intensify the reflected electron signal for detection. The shape of the intensity distribution obtained when scanning the line mark with the electron beam is the same as the shape of the intensity distribution obtained when scanning the dot-shaped columnar mark. Therefore, the line mark interval is L1 =
If L2 = L3 = ..., Focus position adjustment can be performed by the same method as in the first embodiment.

【0031】また、L1=L2=L3=…のマーク間隔
を持つラインマークを一つのマーク群として、マーク間
隔を互いに少しずつ違えた複数のマーク群を用いれば、
第2の実施形態の方法で焦点位置調整を行うことができ
る。さらに、L1<L2<L3<…のマーク間隔を持つ
ラインマークを用いれば、第3の実施形態と同様の方法
で焦点位置調整を行うことができる。 (その他の実施形態)第1〜第4の実施形態では、微細
マーク上を電子ビームで1回走査して強度分布を得た
が、同一位置を2回以上走査して平均加算処理を行うこ
とによって精度をより向上させることができる。さら
に、第1及び第2の実施形態においては、3個以上のマ
ークを1回で連続して走査し平均加算処理を行うことに
よって、精度をより向上させることができる。
If line marks having a mark interval of L1 = L2 = L3 = ... Are set as one mark group and a plurality of mark groups having slightly different mark intervals are used,
The focus position can be adjusted by the method of the second embodiment. Furthermore, by using line marks having a mark interval of L1 <L2 <L3 <..., Focus position adjustment can be performed by the same method as in the third embodiment. (Other Embodiments) In the first to fourth embodiments, the electron beam scans the fine mark once to obtain the intensity distribution, but the same position is scanned twice or more to perform the average addition process. The accuracy can be further improved by. Furthermore, in the first and second embodiments, the accuracy can be further improved by scanning three or more marks continuously at one time and performing the average addition process.

【0032】前記実施形態で説明した微細マークは、微
細マーク周辺の下地に対して凸型の柱状ドットマーク又
はラインマークであったが、凹型のホールマーク又は凹
型の溝状のラインマークを用いても凸型マークと同様の
強度分布が得られるので、前記実施形態と同様の効果が
得ることができる。
Although the fine marks described in the above embodiments are convex columnar dot marks or line marks with respect to the base around the fine marks, a concave hole mark or a concave groove line mark is used. Also, since the intensity distribution similar to that of the convex mark can be obtained, the same effect as that of the above-described embodiment can be obtained.

【0033】前記実施形態における電子ビームの走査方
向は、実施形態で説明した横方向だけでなく、縦方向の
微細マーク列を用いて縦方向に電子ビームを走査して焦
点位置調整を行っても良い。また、検出は反射電子だけ
でなく、二次電子を利用しても良い。
The scanning direction of the electron beam in the above-described embodiment is not limited to the horizontal direction described in the above embodiment, but the electron beam may be scanned in the vertical direction using the fine mark rows in the vertical direction to adjust the focus position. good. Further, not only the reflected electrons but also the secondary electrons may be used for the detection.

【0034】なお、本実施形態は電子ビームの焦点位置
調整に付いて説明したが、これに限らずイオンビーム描
画装置等の荷電ビーム露光装置、さらにはレーザー光を
走査したり光を照射してマーク像を検出する場合にも適
応可能である。さらには、ビームの非点調整等にも応用
可能である。
Although the present embodiment has been described with respect to the adjustment of the focal position of the electron beam, the present invention is not limited to this, and a charged beam exposure device such as an ion beam drawing device, and further, a laser beam is scanned or a light beam is irradiated. It is also applicable when detecting a mark image. Further, it can be applied to beam astigmatism adjustment.

【0035】本実施形態を実施するに当たり、ビームの
走査方向とマークの配置方向が一致していることが前提
である。よって、焦点調整を行う前に、電子ビームの偏
向位置を制御する偏向位置制御回路102によって、偏
向位置の回転補正を行う必要がある。偏向位置の回転補
正は、偏向器の各電極に印加する電圧のバランスを違え
ることで行うことができる。または、微細マーク台11
0を回転させて、マークの配置方向をビームの走査方向
に一致させても良い。その他、本発明の要旨を逸脱しな
い範囲で、種々変形して実施することができる。
In carrying out this embodiment, it is premised that the scanning direction of the beam and the arrangement direction of the marks are the same. Therefore, before performing the focus adjustment, it is necessary to perform the rotation correction of the deflection position by the deflection position control circuit 102 that controls the deflection position of the electron beam. The rotation correction of the deflection position can be performed by changing the balance of the voltage applied to each electrode of the deflector. Alternatively, the fine mark stand 11
It is also possible to rotate 0 to match the arrangement direction of the marks with the scanning direction of the beam. In addition, various modifications can be made without departing from the scope of the present invention.

【0036】[0036]

【発明の効果】以上詳述したように本発明によれば、少
なくとも2個の微細マークの上を荷電ビームで走査し、
該走査により得られる反射電子又は二次電子信号を検出
してビーム強度分布を測定し、該測定した強度分布に基
づいてビームの焦点位置調整を行うことにより、荷電ビ
ームの焦点位置を高精度に合わせることができ、微細パ
ターンの描画精度向上に寄与することが可能となる。
As described above in detail, according to the present invention, at least two fine marks are scanned with a charged beam,
The reflected electron or secondary electron signal obtained by the scanning is detected to measure the beam intensity distribution, and the focus position of the beam is adjusted based on the measured intensity distribution, so that the focus position of the charged beam can be accurately adjusted. It is possible to match them, and it is possible to contribute to improvement of drawing accuracy of a fine pattern.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に使用した電子ビーム描画装
置を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an electron beam writing apparatus used in an embodiment of the present invention.

【図2】ビームサイズの定義を示す図。FIG. 2 is a diagram showing the definition of beam size.

【図3】間隔を同じくして並べた微細マーク配列を示す
図。
FIG. 3 is a view showing a fine mark array arranged at the same intervals.

【図4】2個の微細マークを焦点位置を変えて電子ビー
ムで走査したときに得られる強度分布を示す図。
FIG. 4 is a diagram showing an intensity distribution obtained by scanning two fine marks with an electron beam while changing the focal position.

【図5】2個の微細マークの間隔とビームサイズとの関
係を示す図。
FIG. 5 is a diagram showing a relationship between a space between two fine marks and a beam size.

【図6】最適焦点位置を得るための積算値Sを求める方
法例を示す図。
FIG. 6 is a diagram showing an example of a method of obtaining an integrated value S for obtaining an optimum focus position.

【図7】最適焦点位置を得るための焦点位置と積算値と
の関係を示す図。
FIG. 7 is a diagram showing a relationship between a focus position for obtaining an optimum focus position and an integrated value.

【図8】最適焦点位置を得るための積算値Sを求める方
法例を示す図。
FIG. 8 is a diagram showing an example of a method for obtaining an integrated value S for obtaining an optimum focus position.

【図9】マーク間隔が同じマーク群を複数並べた例を示
す図。
FIG. 9 is a diagram showing an example in which a plurality of mark groups having the same mark interval are arranged.

【図10】マーク間隔を変えて複数個のマークを並べた
例を示す図。
FIG. 10 is a diagram showing an example in which a plurality of marks are arranged with different mark intervals.

【図11】間隔の違いマーク列を連続して電子ビームで
走査した時に得られる強度分布を示す図。
FIG. 11 is a diagram showing an intensity distribution obtained when the mark rows having different intervals are continuously scanned with an electron beam.

【図12】ライン状の微細マークを格子状に並べた例を
示す図。
FIG. 12 is a view showing an example in which line-shaped fine marks are arranged in a grid pattern.

【図13】従来の方法と本発明による方法の評価関数の
変化の割合を比較して示す図。
FIG. 13 is a diagram showing a comparison of the rate of change in the evaluation function between the conventional method and the method according to the present invention.

【符号の説明】[Explanation of symbols]

11…ビームの左側エッジ 12…ビームの右側エッジ 13…ビームの界面 14…ビームの肩 21,22,23…微細柱状マーク 25…微細ラインマーク 31,32,33…反射電子信号の強度分布 100…電子銃 101…電子ビーム 102…偏向制御回路 103…偏向アンプ 104…偏向器 105…対物レンズ 106…反射電子検出器 107…反射電子信号を処理する回路 108…可動ステージ 109…試料 110…微細マーク台 111…ステージ位置制御回路 112…制御用計算機 113…反射電子 11 ... left edge of beam 12 ... right edge of beam 13 ... interface of beam 14 ... shoulder of beam 21, 22, 23 ... fine columnar mark 25 ... fine line mark 31, 32, 33 ... intensity distribution of reflected electron signal 100 ... Electron gun 101 ... Electron beam 102 ... Deflection control circuit 103 ... Deflection amplifier 104 ... Deflector 105 ... Objective lens 106 ... Reflection electron detector 107 ... Circuit for processing reflected electron signal 108 ... Movable stage 109 ... Sample 110 ... Fine mark stand 111 ... Stage position control circuit 112 ... Control computer 113 ... Backscattered electron

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】所定の間隔で配置された少なくとも2個の
微細マークの上を荷電ビームで走査し、該走査により得
られる反射電子又は二次電子信号を検出して前記荷電ビ
ームの強度分布を測定し、該測定した強度分布に基づい
て前記荷電ビームの焦点位置調整を行うことを特徴とす
る荷電ビームの調整方法。
1. An intensity distribution of the charged beam is obtained by scanning at least two fine marks arranged at a predetermined interval with a charged beam and detecting backscattered electrons or secondary electron signals obtained by the scanning. A method for adjusting a charged beam, which comprises measuring and adjusting a focus position of the charged beam based on the measured intensity distribution.
【請求項2】前記マークはビーム走査方向に沿って複数
個配置され、各々のマーク間隔を徐々に長く又は短くし
ていることを特徴とする請求項1記載の荷電ビームの調
整方法。
2. The method of adjusting a charged particle beam according to claim 1, wherein a plurality of the marks are arranged along the beam scanning direction, and the intervals between the marks are gradually lengthened or shortened.
【請求項3】前記マークは複数のマーク群に分類され、
各々のマーク群ではマーク間隔が同じであり、かつ異な
るマーク群ではマーク間隔が異なることを特徴とする請
求項1記載の荷電ビームの調整方法。
3. The mark is classified into a plurality of mark groups,
2. The method of adjusting a charged particle beam according to claim 1, wherein each mark group has the same mark interval, and different mark groups have different mark intervals.
【請求項4】前記荷電ビームの焦点位置調整を行うに際
し、荷電ビームサイズを変化させながら該ビームの強度
分布を測定し、該測定した強度分布の変化が焦点位置の
変化に対して最も大きくなるビームサイズの荷電ビーム
を用いることを特徴とする請求項1記載の荷電ビームの
調整方法。
4. When adjusting the focus position of the charged beam, the intensity distribution of the beam is measured while changing the size of the charged beam, and the change of the measured intensity distribution becomes the largest with respect to the change of the focus position. 2. The method for adjusting a charged beam according to claim 1, wherein a charged beam having a beam size is used.
【請求項5】前記荷電ビームの焦点位置調整を行うに際
し、測定した強度分布の変化が焦点位置の変化に対して
最も大きくなるマーク間隔を持つマークを用いること特
徴とする請求項2又は3記載の荷電ビームの調整方法。
5. A mark having a mark interval with which the change in the measured intensity distribution is the largest with respect to the change in the focus position is used when adjusting the focus position of the charged beam. Method for adjusting the charged beam.
【請求項6】前記測定された荷電ビームの強度分布を評
価関数とし、該評価関数を焦点位置を変えながら測定
し、該評価関数と焦点位置との関係を二次関数に当ては
めて、該二次関数の極値となる焦点位置を最適焦点位置
とすることを特徴とする請求項1記載の荷電ビームの調
整方法。
6. The intensity distribution of the measured charged beam is used as an evaluation function, the evaluation function is measured while changing the focus position, and the relationship between the evaluation function and the focus position is applied to a quadratic function to obtain the 2. The method of adjusting a charged particle beam according to claim 1, wherein a focal position that is an extreme value of the next function is set as an optimum focal position.
JP8107438A 1996-04-26 1996-04-26 Charged beam adjusting method Pending JPH09293477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8107438A JPH09293477A (en) 1996-04-26 1996-04-26 Charged beam adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8107438A JPH09293477A (en) 1996-04-26 1996-04-26 Charged beam adjusting method

Publications (1)

Publication Number Publication Date
JPH09293477A true JPH09293477A (en) 1997-11-11

Family

ID=14459159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8107438A Pending JPH09293477A (en) 1996-04-26 1996-04-26 Charged beam adjusting method

Country Status (1)

Country Link
JP (1) JPH09293477A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2375881A (en) * 2001-02-28 2002-11-27 Sony Corp Electron beam irradiation system and electron beam irradiation method
JP2003077813A (en) * 2001-09-05 2003-03-14 Nikon Corp Method of evaluating imaging performance of charged particle beam exposure device, method of adjusting the charged particle beam exposure device, beam spread measuring apparatus and the charged particle beam exposure device
EP1339085A2 (en) * 2002-02-26 2003-08-27 Jeol Ltd. System and method for electron beam irradiation
GB2386468A (en) * 2001-10-15 2003-09-17 Pioneer Corp Electron beam apparatus and electrom beam adjusting method
JP2007188950A (en) * 2006-01-11 2007-07-26 Nuflare Technology Inc Method for computing deflected aberration-compensating voltage, and method for drawing charged particle beam
KR20180015584A (en) * 2016-08-03 2018-02-13 가부시키가이샤 뉴플레어 테크놀로지 Method of measuring resolution of charged particle beam and charged particle beam writing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2375881A (en) * 2001-02-28 2002-11-27 Sony Corp Electron beam irradiation system and electron beam irradiation method
GB2375881B (en) * 2001-02-28 2003-04-16 Sony Corp Electron beam irradiation system and electron beam irradiation method
US6573511B2 (en) 2001-02-28 2003-06-03 Sony Corporation Electron beam irradiation system and electron beam irradiation method
JP2003077813A (en) * 2001-09-05 2003-03-14 Nikon Corp Method of evaluating imaging performance of charged particle beam exposure device, method of adjusting the charged particle beam exposure device, beam spread measuring apparatus and the charged particle beam exposure device
GB2386468A (en) * 2001-10-15 2003-09-17 Pioneer Corp Electron beam apparatus and electrom beam adjusting method
GB2386468B (en) * 2001-10-15 2005-06-29 Pioneer Corp Electron beam apparatus and electron beam adjusting method
EP1339085A2 (en) * 2002-02-26 2003-08-27 Jeol Ltd. System and method for electron beam irradiation
EP1339085A3 (en) * 2002-02-26 2005-08-17 Jeol Ltd. System and method for electron beam irradiation
JP2007188950A (en) * 2006-01-11 2007-07-26 Nuflare Technology Inc Method for computing deflected aberration-compensating voltage, and method for drawing charged particle beam
KR20180015584A (en) * 2016-08-03 2018-02-13 가부시키가이샤 뉴플레어 테크놀로지 Method of measuring resolution of charged particle beam and charged particle beam writing apparatus

Similar Documents

Publication Publication Date Title
US6222195B1 (en) Charged-particle-beam exposure device and charged-particle-beam exposure method
US8188443B2 (en) Focusing method of charged particle beam and astigmatism adjusting method of charged particle
US9324540B2 (en) Charged particle beam device
JP2003016983A (en) Charged particle ray device and automatic astigmatic adjusting method
US7423274B2 (en) Electron beam writing system and electron beam writing method
US5396077A (en) Electron beam lithography apparatus having electron optics correction system
JP2001068048A (en) Charged particle beam apparatus and automatic astigmatism adjusting method
JPH11191529A (en) Charge beam exposure
US5712488A (en) Electron beam performance measurement system and method thereof
JPH09293477A (en) Charged beam adjusting method
US5936252A (en) Charged particle beam performance measurement system and method thereof
US6414325B1 (en) Charged particle beam exposure apparatus and exposure method capable of highly accurate exposure in the presence of partial unevenness on the surface of exposed specimen
US6992287B2 (en) Apparatus and method for image optimization of samples in a scanning electron microscope
JP3522045B2 (en) Charged particle beam exposure apparatus and method
US6941006B1 (en) Method and system for calibrating the scan amplitude of an electron beam lithography instrument
JPH0652650B2 (en) Alignment method of charged beam
TWI843354B (en) Charged particle beam device and inspection method using the same
JP2834466B2 (en) Ion beam device and control method thereof
US10490388B2 (en) Multibeam-focus adjusting method, multibeam-focus measuring method, and charged-particle-beam lithography apparatus
JPH11224642A (en) Electron beam exposure device and electron beam exposure method
JP2004071691A (en) Multiple-beam measuring method and apparatus thereof
JPH07286842A (en) Method and device for inspecting dimension
JP2946336B2 (en) Sample surface height detector
JPH04116915A (en) Drawing-beam diameter adjusting method
JP3110363B2 (en) Adjustment method of charged beam writing system