JPS6251419B2 - - Google Patents

Info

Publication number
JPS6251419B2
JPS6251419B2 JP56016320A JP1632081A JPS6251419B2 JP S6251419 B2 JPS6251419 B2 JP S6251419B2 JP 56016320 A JP56016320 A JP 56016320A JP 1632081 A JP1632081 A JP 1632081A JP S6251419 B2 JPS6251419 B2 JP S6251419B2
Authority
JP
Japan
Prior art keywords
crucible
carbon
pyrolytic graphite
coated
atomic absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56016320A
Other languages
English (en)
Other versions
JPS56126743A (en
Inventor
Rerusumatsuheru Berunharudo
Furanshisukasu Kunitsupenberugu Uiruherumusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JPS56126743A publication Critical patent/JPS56126743A/ja
Publication of JPS6251419B2 publication Critical patent/JPS6251419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】
本発明は熱分解グラフアイトで被覆した炭素予
備成形物から成る、試料の無炎原子吸収分光分析
(AAS)用るつぼおよびその製造方法に関するも
のである。 AASにおいて使用されるるつぼは分析する試
料用の容器である。かかるるつぼはまた抵抗体と
して使用することができ、試料の電気的加熱用の
抵抗路を形成する。一般に該るつぼは管状であ
り、炭素、特にグラフアイトからつくられる。こ
の目的のため、電気グラフアイト、高純度の多結
晶物質は、多数の特定な利点を有する。例えば電
気グラフアイトは昇華温度が高く(3000℃におけ
る蒸気圧約1.33ミリバール)、温度の急激な変化
に鈍感であり、良好な耐薬品性を有し、極めて機
械加工し易い。更に電気グラフアイトはかなり安
価である。 その耐薬品性はグラフアイトが相互作用する物
質および温度に左右される。例えば、酸素および
多数の金属酸化物と比較的低い温度(約500℃か
ら)においても著しく反応する。この相互作用は
多結晶電気グラフアイトがかなり多孔質であると
いうことにより増大し、従つて反応の中心が微結
晶の大きさおよび分布により影響を受ける、化学
的相互作用にはむしろ大きい領域を与える。従つ
てグラフアイトは還元剤と見做すことができ、そ
の活性は温度とともに著しく増大する。この還元
作用はAASの目的には好ましい場合もあり、ま
た好ましくない場合もあり、分析する試料中の元
素の形態により左右される。 西独特許出願第2219594号明細書には、AASる
つぼの試料に対向する表面を多孔質炭素の保護層
で被覆することが記載されている。西独特許出願
第2225421号明細書には、加熱の目的で多孔性材
料または発泡材料、特に多孔質のグラフアイトま
たは炭素の、電流を通す、加熱素子が記載されて
いる。西独特許出願第2558948号明細書に記載さ
れている方法では、るつぼの外被を少なくとも部
分的に機械により荒くして一層良好な温度測定を
得ている。 更に、西独特許出願第2702189号明細書には、
グラフアイトるつぼに適当に配向した熱分解グラ
フアイトの保護被覆を行うことが披瀝されてい
る。このことによりるつぼの有効寿命が著しく長
くなること勿論であり、測定値が一層容易に再現
性あるものとなる。然し、一方では前記還元作用
が多少弱められる。この最後に挙げた影響は熱分
解グラフアイトにおける結晶グラフアイトの優先
する配向により生ずる。この低減した活性は低い
温度および中程度の温度の範囲、即ち約1200℃ま
でで特に顕著である。 然し低い温度においても若干の還元作用を有す
ることが望ましい。このことは、検出すべき元素
が多少揮発性である酸化物の形態である場合に、
もつともなことである。従つて最も良い装置は熱
分解グラフアイト被覆した電気グラフアイト予備
成形物から成り、熱分解グラフアイト保護被覆が
低い温度においても還元剤として尚十分に作用す
るAASるつぼである。 本発明を達成する際行つた研究の目的は、この
種の設計に必要なしばしば相互に独立した条件に
あう材料の形を得ることであつた。濃密な不透過
性の熱分解グラフアイトから成るAAS用の固有
の有用な被覆は高温度まで反応するのが常に比較
的緩徐である。 従つて本発明の目的はかかる被覆の保護作用を
保持し同時に前述したようなその活性を増すこと
にある。 本発明の一例において、この目的は、少くとも
試料と接触する熱分解グラフアイト層の部分を機
械的または化学的に荒くすることにより達成され
る。 本発明の他の例において、上記目的は、少くと
もるつぼ中の試料と接触する熱分解グラフアイト
被覆を、極めて低度の配向を有し完全な結晶が理
想的グラフアイト格子のものと著しく異なる炭素
で被覆することにより達成される。 熱分解グラフアイト被覆を、気相から炭素材料
を物理的または化学的に堆積することにより、炭
素で被覆するのが好ましい。ここで堆積した炭素
の配向度が極めて低く、その結晶の完成が理想的
グラフアイト格子のものと著しく異なるように堆
積反応を制御することに注意する必要がある。 好適な方法においては、熱分解グラフアイト層
を、炭素またはすす粒子、熱分解性乳化剤および
揮発性溶媒から成る乳濁液で被覆し、然る後炭素
またはすす粒子が残留するまで加熱する。 本発明においては、著しく高い活性従つて良好
な還元作用を有する炭素の他の表面被覆を、適当
に配向したグラフアイトから成る保護層上に設け
る。これを行うために、できるだけ多くの反応中
心が環境との相互作用に関与し得るように表面を
形成する。かかる反応中心においては、結晶のプ
リズムまたはピラミツド領域の部分が炭素原子に
より濃密に占有された基礎領域に対してできるだ
け大である。この活性化した表面状態は本発明に
おいては次の2つの手段により得られる。 1 特に効果的で簡単な方法は、AASるつぼに
おける熱分解グラフアイト保護層を機械的また
は化学的に荒くすることにより表面を活性化す
る方法である。機械的に荒くすることは例えば
サンドブラストによるかまたは金属ブラシを用
いて機械加工することにより、また化学的に荒
くすることはエツチングまたは陽極酸化により
行うことができる。 2 適当に配向した熱分解グラフアイトで被覆さ
れた予備成形物に、配向度ができるだけ低く、
完全な結晶が理想的グラフアイト格子のものと
できるだけ大きく異なる炭素の他の被覆を与え
る。例えば付着するすすの被覆が必要な性質を
与える。かかる有効な炭素層を被着する特に好
ましい方法は炭素薄膜抵抗を製造する際使用さ
れると同様の方法で行う気相からの化学的また
は物理的蒸着(CVD法およびPVD法)であ
る。また最初乳濁液をるつぼに導入することに
よりすすの反応性被覆をつくることができる。
この乳濁液の成分は各成分が分析を妨害しない
ようなものでなくてはならない。この種の適当
な乳濁液は、例えばセルロースまたはセルロー
ス誘導体を、溶媒および炭素粒子またはすす中
に含有する。このるつぼを使用する場合には、
セルロース成分は炭素に転換する。この方法は
適用するのが容易であり且つ反応性炭素の量を
他の2つの方法におけるより著しく多く変える
ことができるという利点を有する。 本発明の方法においては、分析せんとする試料
と接触するるつぼの部分、即ち一般に内側を被覆
または粗面にすることだけが必要であるが、るつ
ぼの表面全体に本発明の処理を行うことが一層簡
単である。 本発明のAASるつぼは一種の芯と結合成分、
即ち炭素、特に電気グラフアイトの予備成形物を
高度に配向した熱分解グラフアイトの保護層で被
覆し、次いて著しく低度の配向を有する炭素(す
す)層で更に被覆するかまたは荒くすることによ
り活性化したものである。 本発明の他の例においては、両方法を組合せ、
これによりるつぼを先ず粗面化し然る後第2の
(活性)炭素被覆を被着する。このことにより熱
分解グラフアイトの自然に生長する被覆より一層
良好な接着が得られる。 次に図面を参照して本発明を実施例につき説明
する。 図示するるつぼは電気グラフアイトの予備成形
物を熱分解グラフアイトの包囲層2で被覆して成
る。るつぼの両端に接触表面3を備える。るつぼ
壁に孔4を設けてるつぼに試料5を供給する。る
つぼを使用している場合、測定用ビームが線6―
6に沿つて通過する。7は試料5と接触するるつ
ぼの領域における層2の活性化した表面の状態、
即ち粗面または付加的炭素被覆である。 実施例 1 次の方法を使用してるつぼ上の熱分解グラフア
イト表面の作用を調べた:先ず高純度の電気グラ
フアイト予備成形物を既知方法で熱分解グラフア
イトで被覆(厚さ20〜30μm)した。 次いでこれ等の各るつぼの一部を a サンドブラストにより機械的に粗面(内側お
よび外側)化するか、または b CVD法によりすす炭素被覆を行つた。 このようにして処理したるつぼにつき、特定の
条件で酸素含有雰囲気中で活性化試験した。得た
結果をまとめると次の通りである:1000℃までの
温度、好ましくは860℃において、活性化した炭
素と大気中の酸素との間の相互作用は著しく増加
し;時間的反応割合(約860℃)は1:8:12
(熱分解グラフアイト対機械的粗面化した熱分解
グラフアイト対すす被覆熱分解グラフアイト)で
あつた。活性化したるつぼの導電率および熱伝導
率は著しく低く、放出係数は著しく大であつた。
活性化炭素の850℃における酸化速度は熱分解グ
ラフアイトの1100℃における速度にほぼ相当し
た。これ等の結果は活性化した炭素層の反応性が
著しく増大したことを示す。 実施例 2 るつぼの表面を極めて適切な方法で活性化した
即ちサンドブラスト法に使用するのと同様の微細
な珪砂に埋置した被覆るつぼを旋盤上のドラム内
で回転させた、更に、多数の熱分解グラフアイト
被覆したるつぼを広口のポリエチレンフラスコに
入れ、次いでフラスコに微粒子の研削粉末をほぼ
半分充填し、全体を旋盤上で所定時間回転した。 この方法は次に示す極めて有意な利点を有す
る: a 操作が極めて簡単で、 b 処理時間を調整し、またできるだけ研削粉末
を選定する、例えば微粒SiCとすることにより
正確に計量し得る除去または粗面化ができ、 c 均一な除去ができる。 次表に旋盤上で行つた試験結果を示す。
【表】 これ等は内側および外側が均一に除去されたと
仮定したことに基づく。外側の除去が一層大であ
ると考えられるから上記仮定は修正されなければ
ならないことは確かである。またかかる結論は活
性の増加を測定するために行われる試験によつて
示される。酸化試験の結果は次の如く要約するこ
とができる。 本発明により処理したすべてのるつぼは未処理
るつぼと比較して700〜1000℃の範囲で酸化傾向
が増大したことを示す。反応速度は約3〜10倍大
である(反応式:C+O2→CO2)。選定した試験
反応は1000℃以上で使用することができない。 粗面化は熱分解グラフアイトの外表面領域だけ
に0.1〜1.0μmの範囲で影響を及ぼす場合にのみ
利点を与える。一層多くの材料を除去しても他の
利点は得られない。この結果は構造体から期待さ
れる挙動と十分に一致し、これによると一層大量
の材料の除去は常に「同じ反応ポテンシヤル」の
領域だけを表わす。除去の程度がベースの表面に
近づく(貫通する)ほど大である場合に、このこ
とは二酸化炭素の生成が突然上昇することでわか
る。 このように熱分解グラフアイトの被覆表面の外
側領域を機械的に荒くすることにより既に反応性
の著しい増加をきたす。更に材料を除去しても、
るつぼ上の熱分解グラフアイト層の保護作用が不
必要に減少するということとは全く別に、他の利
点が得られない。このことは特に予備成形物材
料、即ちグラフアイトの作用が注目されるように
なるほど大量除去することにあてはまる。 要約すると、本発明により活性化されたグラフ
アイトるつぼは次の2点に注目すべきである。: 1 粗面化による活性化、これにより多数の活性
中心が現われ、その数は一定の最大値をこさな
い。 2 第2の低配向度の炭素(すす)層で被覆する
ことによる活性化、これにより反応性が増加
し、更に反応容積(反応質量)がこの第2層の
厚さの増加とともに増大し得る。従つて本発明
の活性化したるつぼは2つの方法により製造す
ることができ、夫々の方法は各々特徴を有す
る。
【図面の簡単な説明】
添付図面は本発明の一例の水平操作に用いる
AASるつぼの断面図である。 1…電気グラフアイトの予備成形物、2…熱分
解グラフアイトの包囲層、3…接触表面、4…
孔、5…試料、7…包囲層2の活性化した表面。

Claims (1)

  1. 【特許請求の範囲】 1 熱分解グラフアイト被覆を被着した炭素予備
    成形物より成る無炎原子吸収分光分析用るつぼに
    おいて、熱分解グラフアイト被覆2の少くとも試
    料5と接触する部分が機械的または化学的に粗面
    化されていることを特徴とする無炎原子吸収分光
    分析用るつぼ。 2 熱分解グラフアイト被覆を被着した炭素予備
    成形物より成る無炎原子吸収分光分析用るつぼに
    おいて、熱分解グラフアイト被覆の少くとも試料
    5と接触する領域の部分が極めて低度に配向しそ
    の完全な結晶が理想的グラフアイト格子のものと
    著しく異なる炭素7で被覆されていることを特徴
    とする無炎原子吸収分光分析用るつぼ。 3 熱分解グラフアイト被覆を被着した炭素予備
    成形物より成る無炎原子吸収分光分析用るつぼを
    製造するに当り、熱分解グラフアイト被覆の少く
    とも試料と接触する領域の部分を極めて低度に配
    向しその完全な結晶が理想的グラフアイト格子の
    ものと著しく異なる炭素で、気相から物理的また
    は化学的堆積により被覆することを特徴とする無
    炎原子吸収分光分析用るつぼの製造方法。 4 熱分解グラフアイト被覆を炭素で被覆する前
    に該被覆を機械的または化学的に粗面化する特許
    請求の範囲第3項記載の製造方法。 5 熱分解グラフアイト被覆を被着した炭素予備
    成形物より成る無炎原子吸収分光分析用るつぼを
    製造するに当り、熱分解グラフアイト被覆の少く
    とも試料と接触する領域の部分を、極めて低度に
    配向しその完全な結晶が理想的グラフアイト格子
    のものと著しく異なる炭素またはすす粒子と熱分
    解性乳化剤と揮発性溶媒とから成る乳濁液で被覆
    し、然る後るつぼを上記炭素またはすす粒子が残
    留するまで加熱することを特徴とする無炎原子吸
    収分光分析用るつぼの製造方法。 6 熱分解グラフアイト被覆を炭素で被覆する前
    に該被覆を機械的または化学的に粗面化する特許
    請求の範囲第5項記載の製造方法。
JP1632081A 1980-02-09 1981-02-07 Crucible for flame-free atomic absorption spectroanalysis and method of producing same Granted JPS56126743A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3004812A DE3004812C2 (de) 1980-02-09 1980-02-09 Küvette für die flammenlose Atom-Absorptions-Spektrokopie und Verfahren zu deren Herstellung

Publications (2)

Publication Number Publication Date
JPS56126743A JPS56126743A (en) 1981-10-05
JPS6251419B2 true JPS6251419B2 (ja) 1987-10-29

Family

ID=6094178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1632081A Granted JPS56126743A (en) 1980-02-09 1981-02-07 Crucible for flame-free atomic absorption spectroanalysis and method of producing same

Country Status (5)

Country Link
US (1) US4367246A (ja)
JP (1) JPS56126743A (ja)
DE (1) DE3004812C2 (ja)
FR (1) FR2475731A1 (ja)
GB (1) GB2072640B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208247A1 (de) * 1982-03-08 1983-09-22 Philips Patentverwaltung Gmbh, 2000 Hamburg Cuvette fuer die atom-absorptions-spektrometrie
DE3720376A1 (de) * 1987-06-19 1988-12-29 Bodenseewerk Perkin Elmer Co Ofen zur elektrothermischen atomisierung fuer die atomabsorptions-spektroskopie
US5435889A (en) * 1988-11-29 1995-07-25 Chromalloy Gas Turbine Corporation Preparation and coating of composite surfaces

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2206700B2 (de) * 1972-02-12 1976-07-01 Sigri Elektrographit Gmbh, 8901 Meitingen Verfahren zur herstellung von faserverstaerkten verbundkoerpern
US3854979A (en) * 1972-06-29 1974-12-17 Aerospace Corp Process for applying glassy carbon coatings
US3819279A (en) * 1973-04-20 1974-06-25 Bodenseewerk Perkin Elmer Co Sample atomizing device having a radiation absorbing protective jacket for flameless atomic absorption spectroscopy
DE2554950C2 (de) * 1975-12-06 1983-12-29 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Graphitrohr zum Atomisieren von Proben bei der flammenlosen Atomabsorptions-Spektroskopie
DE2558948C2 (de) * 1975-12-29 1984-06-28 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Graphitrohr für die flammenlose Atomabsorptions-Spektroskopie
DE2702189C2 (de) * 1977-01-20 1985-05-30 Philips Patentverwaltung Gmbh, 2000 Hamburg Küvette für die flammenlose Atom- Absorptions-Spektroskopie
GB1599810A (en) * 1977-04-23 1981-10-07 Kernforschungsanlage Juelich Graphite or similar mouldings with corrosion-resistant protective layer
DE2825759A1 (de) * 1978-06-12 1979-12-13 Philips Patentverwaltung Verfahren zur herstellung von kuevetten fuer die flammenlose atom-absorptions-spektroskopie

Also Published As

Publication number Publication date
GB2072640A (en) 1981-10-07
FR2475731A1 (fr) 1981-08-14
GB2072640B (en) 1984-10-24
JPS56126743A (en) 1981-10-05
US4367246A (en) 1983-01-04
FR2475731B1 (ja) 1984-04-27
DE3004812C2 (de) 1986-11-20
DE3004812A1 (de) 1981-08-20

Similar Documents

Publication Publication Date Title
US3476586A (en) Method of coating carbon bodies and the resulting products
US6014073A (en) Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
Mominuzzaman et al. Optical absorption and electrical conductivity of amorphous carbon thin films from camphor: a natural source
US6081182A (en) Temperature sensor element and temperature sensor including the same
JPH0578844A (ja) 固体潤滑性を有する非晶質薄膜およびその製造方法
JPS6221867B2 (ja)
US4587928A (en) Apparatus for producing a semiconductor device
US4690872A (en) Ceramic heater
EP0054813A2 (en) A capacitance humidity sensor and a method for preparation thereof
US4443361A (en) Silicon carbide resistance element
KR20010070006A (ko) 탄화규소 및 이의 제조방법
JPS6251419B2 (ja)
US4276142A (en) Electrochemical sensor, particularly for internal combustion engine exhaust gas composition determination, and method of its manufacture
Poirier et al. Ultrathin heteroepitaxial SnO2 films for use in gas sensors
US3916071A (en) Ceramic substrate for receiving resistive film and method of forming chromium/chromium oxide ceramic substrate
Gaiduk et al. Structural and sensing properties of nanocrystalline SnO 2 films deposited by spray pyrolysis from a SnCl 2 precursor
US4426405A (en) Method for producing improved silicon carbide resistance elements
JPH0679444B2 (ja) 電気皮膜
US2914428A (en) Formation of hard metallic films
KR100300850B1 (ko) 알루미늄 나이트라이드의 표면 개질 방법
US20020155054A1 (en) Highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
US3985919A (en) Vapor deposition of cermet layers
US4196022A (en) Surface hardening method
JPH07230875A (ja) 炭化珪素セラミックスヒータおよび炭化珪素セラミックス基体の製造方法
Milosavljević et al. Electrical properties of 70wt.% Cr-30wt.% SiO thin films