JPS6249665A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6249665A
JPS6249665A JP18868085A JP18868085A JPS6249665A JP S6249665 A JPS6249665 A JP S6249665A JP 18868085 A JP18868085 A JP 18868085A JP 18868085 A JP18868085 A JP 18868085A JP S6249665 A JPS6249665 A JP S6249665A
Authority
JP
Japan
Prior art keywords
gate electrode
film
ion
layer
polysilicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18868085A
Other languages
Japanese (ja)
Inventor
Kazunobu Mishima
三島 和展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18868085A priority Critical patent/JPS6249665A/en
Publication of JPS6249665A publication Critical patent/JPS6249665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the deterioration in current driving capability by a method wherein, after a low density region is formed, a second gate electrode is self- matchingly formed on the side wall of a first gate electrode, and a high density source and drain region is formed by performing an ion implantation. CONSTITUTION:After a thermally oxided film 2 is formed on a P-type Si substrate 1, a first gate electrode 3 of N<+> polysilicon film is formed. Then, phosphorus ions 4 are ion-implanted, and a low density N<-> layer 5 is formed. Subsequently, a polysilicon film 6 is deposited on the whole surface using a chemical vapor deposition (CVD) technique. Then, an anisotropic etching, which is a reactive etching, is performed on the polysilicon film 6, the film 6 is left on the side wall part of the first gate electrode 3, and a second gate electrode is formed. Subsequently, arsenic ions 7 are ion-implanted, and the transistor of LDD structure is formed by obtaining a high density N<-> layer 8.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はMO8型電界効果トランジスタの製造方法に係
り、特にトランジスタ内部の電界集中を緩和したトラン
ジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an MO8 field effect transistor, and more particularly to a method for manufacturing a transistor in which electric field concentration inside the transistor is alleviated.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

現在MO8型電界効果トランジスタの寸法は高集積化の
ために縮少化が進んでいるが、これによる問題の一つに
ドレイン近傍の′電界集中の影響がある。これは素子寸
法が小さくなるにもかかわらず、電源11EEが低減さ
れないために起こるものである。これによりドレイン近
傍で加速された電子は、ホットエレクトロンやホットキ
ャリア発生の原因の1つとなっている。そしてゲート酸
化膜にトラップされた電子は、しきい値シフトの原因と
なり1M08)ランジスタの信頼性が低下する。
Currently, the dimensions of MO8 type field effect transistors are being reduced due to higher integration, but one of the problems caused by this is the influence of electric field concentration near the drain. This occurs because the power supply 11EE is not reduced even though the element size is reduced. Electrons accelerated near the drain are one of the causes of hot electrons and hot carriers. The electrons trapped in the gate oxide film cause a shift in threshold value, reducing the reliability of the 1M08) transistor.

このようなドレイン近傍の電界集中を緩和させ、ホット
エレクトロンやホットキャリアの発生を弱め、さらにし
きい値変動を減少させる方法として、種々のデバイス構
造が提案されてきた。その1つに第2図に示すようなL
DD (Lightly DopedDrain)構造
がある。これはドレインのゲート方向に不純物濃度の低
いn一層を形成し、これによりドレイン近傍の電界を緩
和しようとするものである。これは低濃度の1層3を形
成するのにゲート電極5をマスクに不純物をイオン注入
したのち、ゲート電極5の側壁部に形成した絶縁膜4を
マスクに不純物をイオン注入して高濃度の叶層を形成し
ている。このようにLDD構造を造る場合、一般にゲー
ト電極側壁にイオン注入のためのマスク材として酸化膜
等の絶縁膜が用いられている。
Various device structures have been proposed as methods for alleviating such electric field concentration near the drain, weakening the generation of hot electrons and hot carriers, and further reducing threshold fluctuations. One of them is L as shown in Figure 2.
It has a DD (Lightly Doped Drain) structure. This is to form an n layer with a low impurity concentration in the direction of the gate of the drain, thereby attempting to alleviate the electric field near the drain. This is done by ion-implanting impurities using the gate electrode 5 as a mask to form a low-concentration layer 3, and then implanting impurity ions using the insulating film 4 formed on the side wall of the gate electrode 5 as a mask to form a high-concentration layer 3. Forms a leaf layer. When creating an LDD structure in this manner, an insulating film such as an oxide film is generally used as a mask material for ion implantation on the sidewall of the gate electrode.

しかし、このLDD構造でもホットエレクトロンの発生
を完全に抑えることはできず、「層3と側壁の絶縁膜4
の界面に電子6が注入されてしまう。
However, even this LDD structure cannot completely suppress the generation of hot electrons.
Electrons 6 are injected into the interface.

この注入された電子6により、「層3と側壁の絶縁膜4
の界面が負に帯電するため、チャネル部を流れる電子は
niでは反発されて界面付近を流れることができなくな
る。このため1層での抵抗が増大し、電流駆動能力の低
下等の問題を引き起こしてしまう。したがってLDD構
造を用いたトランジスタにおいては、側壁の絶縁膜とn
層の界面に注入、捕獲された電子による影響を緩和ある
いは消失するようなLDD構造の製造方法が必要となっ
て来る。
The injected electrons 6 cause the layer 3 and the sidewall insulating film 4 to
Since the interface is negatively charged, electrons flowing through the channel are repelled by Ni and cannot flow near the interface. Therefore, the resistance in one layer increases, causing problems such as a decrease in current driving ability. Therefore, in a transistor using an LDD structure, the sidewall insulating film and the n
There is a need for a method of manufacturing an LDD structure that reduces or eliminates the effects of electrons injected and trapped at layer interfaces.

〔発明の目的〕[Purpose of the invention]

この発明はLDDq造を用いたトランジスタの製造工程
において、トランジスタの電流駆動能力の低下を抑える
ようなゲート電極構造を得ることを可能とした、半導体
装置の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor device that makes it possible to obtain a gate electrode structure that suppresses a decrease in the current driving ability of a transistor in a process for manufacturing a transistor using an LDDq structure.

〔発明の概要〕[Summary of the invention]

本発明は第1図に示すように、低濃度領域5を形成した
のち、第1のゲート電極3の側壁に第2のゲート戒稀6
を自己整合的に形成し、第11第2のゲート電極をマス
クに不純物をイオン注入し、高濃度領域のソース、ドレ
イン8を形成する方法である。
In the present invention, as shown in FIG.
In this method, the source and drain 8 are formed in a self-aligned manner, and impurity ions are implanted using the eleventh second gate electrode as a mask to form the source and drain 8 in the high concentration region.

〔発明の効果〕〔Effect of the invention〕

この発明によれは、低濃度領域上にもゲート電極が形成
されるため、低濃度領域とその上の絶縁膜との界面に注
入、捕獲されたホットエレクトロンと基板間に生じる電
界を緩和し、チャネルを流れるキャリアが低濃度層内で
も界面付近を流れることができることを可能にし、トラ
ンジスタの電流駆動能力が低下することを防ぐことがで
きる。
According to this invention, since the gate electrode is also formed on the low concentration region, the electric field generated between the hot electrons injected and captured at the interface between the low concentration region and the insulating film thereon and the substrate is relaxed. This allows carriers flowing through the channel to flow near the interface even in the lightly doped layer, and can prevent the current driving ability of the transistor from deteriorating.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を@1図を用し、)で説明する。 An embodiment of the present invention will be explained using Figure @1.

まず、たとえば、第1図(a)に示すようにP型の主熱
酸化膜2を例えば200A〜400A程度形成したのち
、計ホリシリコン膜を用いた第1のゲート電極3を形成
する。次に第1図Φ)に示すように、リンイオン(P+
−)4を例えば加速電圧35Kevのoszii2 X
 l O”Crrr’程度イオン注入シ、<FHI度(
7) n 層5を形成する。次に第1図(Qに示すよう
に、全面にポリシリコン膜6をCVD技術を用いて堆積
させる。次に、反応性イオンエツチングにより前記のポ
リシリコン膜6を異方性エツチングすることにより、第
1図(d)に示すように、第1のゲート電極3の側壁部
に残置させ、第2のゲート電極を形成する。次に第1図
(e)に示すように、ヒ素イオン(As’)7re例、
tGi加m電EE50Kev、DO8IC量1.8×1
が’atf” 程度イオン注入し、高濃度の「層8を形
成することによりLDD構造のトランジスタを形成する
ことができる。このように形成したLDD構造のトラン
ジスタでは、第1のゲート電極3と第2ゲート電極6が
同じポリシリコン膜で形成されているため、電気的に1
通性がある。
First, for example, as shown in FIG. 1(a), a P-type main thermal oxide film 2 of about 200 to 400 A is formed, and then a first gate electrode 3 made of a polysilicon film is formed. Next, as shown in Figure 1 Φ), phosphorus ions (P+
-)4 for example, oszii2X with an acceleration voltage of 35Kev
l O"Crrr' degree ion implantation, <FHI degree (
7) Form n layer 5. Next, as shown in FIG. 1 (Q), a polysilicon film 6 is deposited on the entire surface using CVD technology.Next, the polysilicon film 6 is anisotropically etched by reactive ion etching. As shown in FIG. 1(d), arsenic ions (As) are left on the side walls of the first gate electrode 3 to form a second gate electrode.Next, as shown in FIG. ') 7re example,
tGi power supply EE50Kev, DO8IC amount 1.8×1
By implanting ions to the extent of 'atf' and forming a highly concentrated 'atf' layer 8, an LDD structure transistor can be formed.In the LDD structure transistor formed in this way, the first gate electrode 3 and the Since two gate electrodes 6 are formed of the same polysilicon film, electrically one
Facultative.

したがって、トランジスタがONの状態にあるときは、
第2のゲート1極6にも正の電圧がかがり11層5とゲ
ート陵化膜2の界面に注入、捕獲されたホットエレクト
ロンとn一層5の間に生じる電界を緩和することになる
。したがってチャネル部を流れる電子は「層5の中でも
、捕獲されたホットエレクトロンに反発されることなく
、界面付近を流れることができ、電流駆動能力を低下さ
せることなく、良好なトランジスタ特性を得ることがで
きる。
Therefore, when the transistor is in the ON state,
A positive voltage is also applied to the second gate 1 pole 6, and the electric field generated between the hot electrons injected and captured at the interface between the 11 layer 5 and the gate bulging film 2 and the n layer 5 is relaxed. Therefore, the electrons flowing through the channel part can flow near the interface without being repelled by the captured hot electrons even within the layer 5, and good transistor characteristics can be obtained without reducing the current drive ability. can.

ここでは、堆積したポリシリフン膜6をそのまま使用し
ているが、堆積後に拡散あるいはイオン注入によりリン
イオン(P+)をメリシリコン膜6に導入してn+ポリ
シリコンにしておいてもよい。
Here, the deposited polysilicon film 6 is used as it is, but phosphorus ions (P+) may be introduced into the polysilicon film 6 by diffusion or ion implantation after deposition to form n+ polysilicon.

こうすれば、第2のゲー)’1t8Rの抵抗を下げるこ
とができるため、LSIのアクセス時間を短縮すること
もできる。また、第1のゲート電極として酸化速度の遅
いW、Mo等を用い、リンイオン(P+)4をイオン注
入したのち、例えば900’C。
In this way, the resistance of the second gate ('1t8R) can be lowered, and the access time of the LSI can also be shortened. Further, after using W, Mo, etc., which have a slow oxidation rate, as the first gate electrode and implanting phosphorus ions (P+) 4, the temperature is heated at, for example, 900'C.

乾燥酸素中で酸化してもよい。Oxidation may be performed in dry oxygen.

その後は第1のゲート表面の極く薄い酸化膜要分、酸化
膜のエツチングをすればよい。
Thereafter, the oxide film may be etched to the extent that the extremely thin oxide film on the surface of the first gate is exposed.

これは、ゲート電極3をRIBで加工したときに、エツ
チングされて薄くなった酸化膜2の膜厚を厚くすること
を目的としており、このことにより第2のゲート電極6
の下の酸下膜の耐圧を向上することができ、信頼性を更
に上げることができる。
The purpose of this is to increase the thickness of the oxide film 2 that was etched and thinned when the gate electrode 3 was processed by RIB, and thereby the second gate electrode 6
It is possible to improve the withstand voltage of the underlying acid film, further increasing reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は、本発明の実施例を示す断面図
、第2図は従来のL I)、D構造の断面図である。 図において、 1・・・Si基板、2・・・酸化膜、3・・・計ポリシ
リコン、4−°゛叶ビイオン5・・・「層、6・・・ポ
リシリコン、7・・・As〜、オン、8・・・n1代理
人 弁理士 則 近 憲 佑 同      竹  花  喜久男 〜  −〜  \
FIGS. 1(a) to 1(e) are cross-sectional views showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the conventional LI, D structure. In the figure, 1...Si substrate, 2...Oxide film, 3...Total polysilicon, 4-degree bioion 5..."layer, 6...Polysilicon, 7...As ~, On, 8...n1 agent Patent attorney Nori Chika Ken Yudo Takehana Kikuo~ -~ \

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上にゲート絶縁膜を形成し、その上に
第1の電導性被膜を用いて第1のゲート電極を形成し、
次いで前記ゲート電極をマスクに基板と逆電導型の不純
物をイオン注入する工程と、次いで第2の電導性被膜を
積層したのち、第2の電導性被膜を異方性エッチングに
より第1のゲート電極の側壁部に自己整合的に残置させ
て第2のゲート電極を形成する工程と、次いで前記第1
および第2のゲート電極をマスクに基板と逆電導型の不
純物をイオン注入して、ソース、ドレインを形成する工
程とを具備した事を特徴とする半導体装置の製造方法。
(1) forming a gate insulating film on a semiconductor substrate, forming a first gate electrode thereon using a first conductive film;
Next, using the gate electrode as a mask, there is a step of ion-implanting an impurity of conductivity type opposite to that of the substrate, and then, after laminating a second conductive film, the second conductive film is anisotropically etched to form the first gate electrode. forming a second gate electrode by leaving it on the side wall of the first gate electrode in a self-aligned manner;
and a step of ion-implanting an impurity of conductivity type opposite to that of the substrate using the second gate electrode as a mask to form a source and a drain.
(2)第1のゲート電極をマスクに基板と逆電導型の不
純物をイオン注入したのち、ソースおよびドレインを熱
酸化して酸化膜を形成することを特徴とする、前記特許
請求の範囲第1項記載の半導体装置の製造方法。
(2) After ion-implanting an impurity having a conductivity type opposite to that of the substrate using the first gate electrode as a mask, the source and drain are thermally oxidized to form an oxide film. A method for manufacturing a semiconductor device according to section 1.
JP18868085A 1985-08-29 1985-08-29 Manufacture of semiconductor device Pending JPS6249665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18868085A JPS6249665A (en) 1985-08-29 1985-08-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18868085A JPS6249665A (en) 1985-08-29 1985-08-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6249665A true JPS6249665A (en) 1987-03-04

Family

ID=16227961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18868085A Pending JPS6249665A (en) 1985-08-29 1985-08-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6249665A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266766A (en) * 1988-04-18 1989-10-24 Nec Corp Mis type semiconductor device
US5146291A (en) * 1988-08-31 1992-09-08 Mitsubishi Denki Kabushiki Kaisha MIS device having lightly doped drain structure
US5217913A (en) * 1988-08-31 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing an MIS device having lightly doped drain structure and conductive sidewall spacers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266766A (en) * 1988-04-18 1989-10-24 Nec Corp Mis type semiconductor device
US5146291A (en) * 1988-08-31 1992-09-08 Mitsubishi Denki Kabushiki Kaisha MIS device having lightly doped drain structure
US5217913A (en) * 1988-08-31 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing an MIS device having lightly doped drain structure and conductive sidewall spacers

Similar Documents

Publication Publication Date Title
US4925807A (en) Method of manufacturing a semiconductor device
JP2905808B2 (en) Semiconductor device and manufacturing method thereof
CN103872132A (en) Metal-oxide-semiconductor transistor (MOS) and method of fabricating same
JPH0834313B2 (en) Semiconductor device and manufacturing method thereof
US5518944A (en) MOS transistor and its fabricating method
JPS62156873A (en) Semiconductor device
JP2781918B2 (en) Method for manufacturing MOS type semiconductor device
JPS6249665A (en) Manufacture of semiconductor device
JPH04212467A (en) Semiconductor device and manufacture thereof
JPH0234936A (en) Semiconductor device and its manufacture
JPH0519979B2 (en)
US5215936A (en) Method of fabricating a semiconductor device having a lightly-doped drain structure
JP2757491B2 (en) Method for manufacturing semiconductor device
JP3641929B2 (en) Manufacturing method of semiconductor device
JP3438395B2 (en) Method for manufacturing semiconductor device
JPS61234077A (en) Mis type field effect transistor
JPH04124834A (en) Semiconductor device and manufacture thereof
JPS61150375A (en) Manufacture of semiconductor device
JPH02266533A (en) Manufacture of semiconductor device
JPH0438834A (en) Manufacture of mos transistor
JPH01117066A (en) Manufacture of mos type semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPH04196341A (en) Manufacture of semiconductor device
JPS61256670A (en) Insulated gate field effect transistor
KR960002101B1 (en) Semiconductor device and the making method thereof