JPS6248741B2 - - Google Patents

Info

Publication number
JPS6248741B2
JPS6248741B2 JP58016893A JP1689383A JPS6248741B2 JP S6248741 B2 JPS6248741 B2 JP S6248741B2 JP 58016893 A JP58016893 A JP 58016893A JP 1689383 A JP1689383 A JP 1689383A JP S6248741 B2 JPS6248741 B2 JP S6248741B2
Authority
JP
Japan
Prior art keywords
temperature
room temperature
magnetic permeability
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58016893A
Other languages
Japanese (ja)
Other versions
JPS59143037A (en
Inventor
Koichi Tamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP58016893A priority Critical patent/JPS59143037A/en
Publication of JPS59143037A publication Critical patent/JPS59143037A/en
Publication of JPS6248741B2 publication Critical patent/JPS6248741B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、極低温から室温迄の低温度領域に
おいて初透磁率が20000以上を有する低温用高透
磁率合金およびその製造方法に関するものであ
る。 最近、超伝導体を用いたクライオエレクトロニ
クス、なかでも液体ヘリウム(4.2〓以下)中で
作動するジヨセフソン素子の応用研究が盛んに行
なわれており、一部実用化されている。 一般に、超伝導体は、その材質に固有の臨界磁
場以下の弱磁場中では、磁束を完全に排斥する完
全反強磁性体(マイスナー効果)である。しか
し、実際には、材料中に散在する種々の物理的・
化学的欠陥に磁束がピン止め(トラツプ)された
まま固着される。一方、ジヨセフソン素子は微小
磁界を入力して動作するものである。それ故、ジ
ヨセフソン素子を誤動作なく動作させるために
は、外部磁場を完全に遮蔽する必要がある(残留
磁場として1μG以下)。 この磁気遮蔽の方法としては、ジヨセフソン素
子自体をシールドする方法と、ジヨセフソン素子
をクライオスタツト中に装入しクライオスタツト
をシールドする方法の2つが考えられている。後
者の場合、クライオスタツトの周りを強磁性体材
料でできるだけ完全に囲み、外部磁界に対して高
い透磁率の磁気回路を構成するために、高透磁率
材料(例えばパーマロイ)の円筒状のケースを、
クライオスタツトの外周部に設ける必要があり、
さらに十分なシールドを行なう場合、多層構造
(層間は空隙)を有する大規模なケースが必要と
なるので、後者の方法は実用的ではない。一方前
者では、パーマロイ等でシールドされたジヨセフ
ソン素子をクライオスタツト中に装入するため、
後者に比べて前者の方が構造上有利ではある。し
かし、クライオスタツト中の温度は4.2〓以下で
あるため、通常のパーマロイでは第1図の曲線a
で示すように透磁率が低下し、初透磁率で10000
以下となり、十分な磁気シールドが期待されな
い。また液体ヘリウム中で高透磁率を有する低温
用パーマロイ(第1図の曲線bで示さる特性を有
する)も一部実用化されているが、この低温用パ
ーマロイには次の欠点があつた。 (1) 高透磁率が得られる温度領域が狭い 即ち、4.2〓で高透磁率を有しているが室温
での初透磁率は10000以下である。この材料で
シールドケースを作製し実用に供した場合、
4.2〓近傍ではシールド効果は大きくなるが、
それ以上の例えば室温付近ではシールド効果が
著しく劣化し、シールドケースとしての使用可
能温度領域が狭く実用上不利である。 (2) 高透磁率を得るための熱処理が困難 即ち、この従来の低温用パーマロイでは、初
透磁率が極大となる温度を4.2〓近傍に調整す
ために、2段熱処理を施しているが、この2段
処理温度が所定の温度から±5℃以上変化する
と初透磁率の極大温度が大きく変化するため工
業的に不利である。 従つて、この発明は、熱処理が容易でかつ極低
温から室温迄の低温度領域で初透磁率20000以上
を有する低温用高透磁率合金を提供することを目
的にしている。 すなわち、この発明は、重量%で、Ni70〜84
%、Mo0.5〜2.5%、Cu0.5〜6.5%、Mn2%以下、
Si1%以下、残部Feと少量の不純物とからなり、
極低温から室温迄の低温度領域で初透磁率20000
以上を有する低温用高透磁率合金である。この高
透磁率合金は、上記組成の合金を調整し、該合金
を1000℃以上融点以下の高温で非酸化性雰囲気中
あるいは真空中において10分間以上100時間以下
加熱し十分再結晶化させた後、1000℃/分〜0.1
℃/分の速度で常温まで冷却するか、あるいはこ
れをさらに300〜700℃の温度で10分間以上100時
間以下加熱した後、1000℃/分〜0.1℃/分の速
度で常温まで冷却することにより得られる。 この発明合金の各成分の組成を上記の如く限定
した理由を次に述べる。 Ni70〜84%の範囲外では、室温近傍は言うに
及ばず室温以下の低温領域で透磁率が低下するた
めである。 MoおよびCuが約10%以下では室温付近で高透
磁率を有するが、室温以下、特に100〓以下では
初透磁率が20000以下の小さな値になり、室温以
下の低温度領域で高透磁率を得るためのMoの上
限は2.5%、Cuの上限は6.5%である。またMoお
よびCuの下限を0.5%としたのはこれ未満では室
温以下の低温度領域で初透磁率が20000以上とな
らないためである。 MnおよびSiは加工性を改善するために添加す
るものでMnは2%以下、Siは1%以下で十分改
善できる。 さらに本発明合金の製造方法において、高温熱
処理は、溶体化処理、加工歪の除去のために行な
うもので、加熱温度を1000℃以上融点以下とした
のは再結晶温度(約500℃)以上の加熱温度なら
ば再結晶は開始するが再結晶が不十分であり、
1000℃以上の特に1100℃、さらに好ましくは1200
℃以上では十分再結晶し高透磁率を得るのに好適
であるからである。なお加熱温度の上限を融点
(約1500℃)以下としたのはこの熱処理は成型加
工後に行なうもので融点以上に加熱できないため
である。またこの熱処理の際の雰囲気は材料表面
に酸化物の生成を避けるために非酸化性雰囲気中
または真空中が必要である。 この場合の加熱時間を10分間以上100時間以下
としたのは、加熱時間が温度と関連しており、
1400℃以上では10分程度の短時間でも十分再結晶
させ得るが、加熱温度が1000℃未満の場合100時
間以上が必要となり、工業的でない。 上記の再結晶完了状態より常温まで冷却する速
度を1000℃/分〜0.1℃/分の速度としたのは、
1000℃/分以上では冷却による熱ひずみが生じ、
透磁率を低下させるし、また0.1℃/分以下では
室温付近では高透磁率が得られるが、室温以下の
低温度領域(特に100〓以下)で初透磁率が20000
以下となるためである。なお、適当な冷却速度は
この範囲で、合金組成に応じて決定すれば良い。
冷却速度と合金組成の関係を第3図に示す。これ
は冷却速度におよぼす(Mo+Cu)量の関係を表
わしたものであり、線でかこまれた内側範囲が、
本発明に適用できる領域である。 さらに上記高温熱処理につづいて低温熱処理を
行なう場合は300〜700℃の加熱温度が適当で、こ
の温度範囲外では室温以下の低温度領域で初透磁
率が20000以下となる。またこの時の加熱時間お
よび冷却速度を、それぞれ10分間以上100時間以
下および1000℃/分〜0.1℃/分の速度としたの
は、この範囲外でも室温近傍での初透磁率は
20000以上が得られるが、室温以下の低温度領域
では20000以下となるためである。低温熱処理温
度と(Mo+Cu)量の関係を第4図に示す。線で
かこまれた内側範囲が本発明範囲である。また、
このときの冷却速度については、第3図が適用さ
れる。 また室温以下の低温度領域で初透磁率20000以
上としたのは、本合金でシールドケースを作製し
た際のシールド効果はシールドケースの寸法、形
状にも関連するが、初透磁率で20000以上より好
ましくは40000以上であれば実用上十分なシール
ド効果が得られるためである。 次にこの発明の実施例について説明する。な
お、この実施例は本発明を限定するものではな
い。 実施例 1 77%Ni−2.4%Mo−4.7%Cu−0.6%Mn−0.3%
Si−Fe合金。 公称純度99%以上の原料を用い、上記組成とな
るように配合した総重量3Kgをアルミナルツボに
入れ、真空中にて高周波誘導炉で溶解し、C、
Ca、Mg、Al等の脱酸剤、脱硫剤を少量(1%以
下)添加し、適当な形状の鋳型に溶湯を注ぎ込み
健全なインゴツトを得た。さらにこのインゴツト
を1100℃で熱間鍛造、熱間圧延により4mm厚の板
に加工し、これを冷間圧延により1.5mm厚とし
た。次いで900℃で加熱し軟化させた後、冷間圧
延により1mm厚としこれから外径10mm、内径6mm
のリング状試料を打ち抜いた。この試料に水素中
で、表1に示すような種々の熱処理を施して同表
に示すような特性が得られた。測定温度は液体ヘ
リウム(4.2〓)液体窒素(77〓)、室温(293
〓)とし、一部試料についてはドライアイス+ア
セトン(196〓)でも測定した。表1の熱処理条
件(a)で処理した試料の測定温度と初透磁率の関係
を第2図に曲線1で示す。
The present invention relates to a low-temperature high-permeability alloy having an initial magnetic permeability of 20,000 or more in the low-temperature range from extremely low temperatures to room temperature, and a method for producing the same. Recently, there has been active research into cryoelectronics using superconductors, especially applied research on Josephson devices that operate in liquid helium (4.2〓 or less), and some of them have been put into practical use. Generally, a superconductor is a perfect antiferromagnetic material (Meissner effect) that completely excludes magnetic flux in a weak magnetic field below a critical magnetic field specific to the material. However, in reality, various physical and
The magnetic flux remains trapped in the chemical defect. On the other hand, the Josephson device operates by inputting a minute magnetic field. Therefore, in order to operate the Josephson device without malfunction, it is necessary to completely shield the external magnetic field (residual magnetic field of 1 μG or less). Two methods have been considered for magnetic shielding: one is to shield the Josephson element itself, and the other is to insert the Josephson element into the cryostat and shield the cryostat. In the latter case, a cylindrical case of high permeability material (e.g. permalloy) is used to surround the cryostat as completely as possible with ferromagnetic material and to form a magnetic circuit with high permeability to external magnetic fields. ,
It must be installed on the outer periphery of the cryostat.
Furthermore, in order to provide sufficient shielding, a large-scale case having a multilayer structure (with gaps between layers) is required, so the latter method is not practical. On the other hand, in the former case, a Josephson element shielded with permalloy or the like is inserted into the cryostat.
The former is structurally more advantageous than the latter. However, since the temperature in the cryostat is below 4.2〓, the curve a in Figure 1 for normal permalloy
The magnetic permeability decreases as shown in , and the initial permeability is 10000.
Therefore, sufficient magnetic shielding cannot be expected. Further, some low-temperature permalloys having high magnetic permeability in liquid helium (having the characteristics shown by curve b in FIG. 1) have been put into practical use, but this low-temperature permalloy has the following drawbacks. (1) The temperature range in which high magnetic permeability can be obtained is narrow. In other words, it has high magnetic permeability at 4.2〓, but the initial magnetic permeability at room temperature is less than 10,000. When a shield case is made using this material and put into practical use,
4.2〓The shielding effect increases in the vicinity, but
Above this temperature, for example, around room temperature, the shielding effect deteriorates significantly, and the usable temperature range as a shield case is narrow, which is disadvantageous in practice. (2) Difficulty in heat treatment to obtain high magnetic permeability In other words, in this conventional low-temperature permalloy, two-stage heat treatment is performed to adjust the temperature at which the initial magnetic permeability reaches a maximum to around 4.2〓. If the temperature of this two-stage treatment changes from the predetermined temperature by ±5° C. or more, the maximum temperature of the initial magnetic permeability changes greatly, which is industrially disadvantageous. Therefore, an object of the present invention is to provide a high magnetic permeability alloy for low temperature use that is easy to heat treat and has an initial magnetic permeability of 20,000 or more in the low temperature range from extremely low temperatures to room temperature. That is, this invention has Ni70~84 in weight%.
%, Mo0.5~2.5%, Cu0.5~6.5%, Mn2% or less,
Consisting of less than 1% Si, the balance being Fe and a small amount of impurities,
Initial permeability is 20,000 in the low temperature range from extremely low temperatures to room temperature.
This is a high magnetic permeability alloy for low temperature use having the above characteristics. This high magnetic permeability alloy is produced by preparing an alloy with the above composition, heating the alloy at a high temperature of 1000°C or higher and lower than the melting point in a non-oxidizing atmosphere or in a vacuum for 10 minutes or more and 100 hours or less to fully recrystallize it. , 1000℃/min~0.1
Cool to room temperature at a rate of 1000°C/min to room temperature, or further heat at a temperature of 300 to 700°C for 10 minutes to 100 hours, and then cool to room temperature at a rate of 1000°C/min to 0.1°C/min. It is obtained by The reason for limiting the composition of each component of this invention alloy as described above will be described below. This is because when Ni is outside the range of 70 to 84%, the magnetic permeability decreases not only near room temperature but also in a low temperature region below room temperature. When Mo and Cu are less than about 10%, they have high magnetic permeability near room temperature, but below room temperature, especially below 100〓, the initial permeability becomes a small value of 20,000 or less, and high magnetic permeability occurs in the low temperature region below room temperature. The upper limit for Mo to obtain is 2.5% and the upper limit for Cu is 6.5%. The lower limit of Mo and Cu is set to 0.5% because if it is less than this, the initial magnetic permeability will not exceed 20,000 in a low temperature region below room temperature. Mn and Si are added to improve workability, and sufficient improvements can be made with Mn at 2% or less and Si at 1% or less. Furthermore, in the method for manufacturing the alloy of the present invention, high-temperature heat treatment is carried out for solution treatment and removal of processing strain, and the heating temperature is set at 1000°C or higher and below the melting point because the temperature is higher than the recrystallization temperature (approximately 500°C). If the heating temperature is high, recrystallization will start, but recrystallization will be insufficient.
1000℃ or higher, especially 1100℃, more preferably 1200℃
This is because it is suitable for sufficiently recrystallizing and obtaining high magnetic permeability at temperatures above .degree. The upper limit of the heating temperature is set below the melting point (approximately 1500° C.) because this heat treatment is performed after the molding process and cannot be heated above the melting point. Further, the atmosphere during this heat treatment must be a non-oxidizing atmosphere or a vacuum in order to avoid the formation of oxides on the material surface. The reason why the heating time in this case is 10 minutes or more and less than 100 hours is because the heating time is related to the temperature.
At 1400°C or higher, recrystallization can be achieved in a short time of about 10 minutes, but if the heating temperature is lower than 1000°C, more than 100 hours are required, which is not industrially practical. The reason why the rate of cooling from the above recrystallized state to room temperature was set at a rate of 1000℃/min to 0.1℃/min is as follows.
At temperatures above 1000℃/min, thermal distortion occurs due to cooling.
At 0.1℃/min or less, high magnetic permeability can be obtained near room temperature, but in the low temperature region below room temperature (especially below 100〓), the initial magnetic permeability decreases to 20,000.
This is because the following is true. Note that an appropriate cooling rate may be determined within this range depending on the alloy composition.
Figure 3 shows the relationship between cooling rate and alloy composition. This represents the relationship between the amount of (Mo + Cu) on the cooling rate, and the inner range surrounded by the line is
This is an area to which the present invention can be applied. Furthermore, when performing low temperature heat treatment following the above-mentioned high temperature heat treatment, a heating temperature of 300 to 700°C is appropriate; outside this temperature range, the initial magnetic permeability will be 20,000 or less in the low temperature range below room temperature. In addition, the heating time and cooling rate at this time were set to 10 minutes to 100 hours and 1000℃/min to 0.1℃/min, respectively, because even outside these ranges, the initial magnetic permeability at around room temperature is
This is because although a value of 20,000 or more can be obtained, it becomes 20,000 or less in a low temperature region below room temperature. Figure 4 shows the relationship between the low temperature heat treatment temperature and the amount of (Mo+Cu). The inner range surrounded by the line is the range of the present invention. Also,
Regarding the cooling rate at this time, FIG. 3 is applied. In addition, the reason why we set the initial magnetic permeability to 20,000 or more in the low temperature region below room temperature is because the shielding effect when making a shield case with this alloy is related to the dimensions and shape of the shield case, but if the initial magnetic permeability is 20,000 or more, Preferably, if it is 40,000 or more, a practically sufficient shielding effect can be obtained. Next, embodiments of this invention will be described. Note that this example does not limit the present invention. Example 1 77%Ni-2.4%Mo-4.7%Cu-0.6%Mn-0.3%
Si-Fe alloy. Using raw materials with a nominal purity of 99% or more, a total weight of 3 kg mixed to have the above composition was placed in an alumina crucible and melted in a high frequency induction furnace in a vacuum.
A small amount (1% or less) of deoxidizing agents and desulfurizing agents such as Ca, Mg, and Al were added, and the molten metal was poured into a mold of an appropriate shape to obtain a sound ingot. Further, this ingot was hot forged at 1100°C and hot rolled into a 4 mm thick plate, which was then cold rolled to a 1.5 mm thick plate. Next, it was heated to 900℃ to soften it, and then cold rolled to a thickness of 1mm, with an outer diameter of 10mm and an inner diameter of 6mm.
A ring-shaped sample was punched out. This sample was subjected to various heat treatments shown in Table 1 in hydrogen, and the properties shown in Table 1 were obtained. The measurement temperature is liquid helium (4.2〓), liquid nitrogen (77〓), room temperature (293〓),
〓), and some samples were also measured using dry ice + acetone (196〓). Curve 1 in FIG. 2 shows the relationship between the measured temperature and initial magnetic permeability of the sample treated under the heat treatment conditions (a) in Table 1.

【表】 実施例 2 76%Ni−2.0%Mo−4.3%Cu−0.4%Mn−0.2%
Si−Fe合金。 この合金試料を実施例1と同様な方法で製造
し、表2に示すような種々の熱処理を施して同表
に示すような特性が得られた。表2の熱処理条件
(a)で処理した試料の測定温度と初透磁率の関係を
第2図に曲線2で示す。 実施例1および2より室温以下の低温度領域で
初透磁率が40000以上得られていることがわか
る。
[Table] Example 2 76%Ni-2.0%Mo-4.3%Cu-0.4%Mn-0.2%
Si-Fe alloy. This alloy sample was produced in the same manner as in Example 1, and subjected to various heat treatments as shown in Table 2, to obtain the properties shown in Table 2. Heat treatment conditions in Table 2
The relationship between the measured temperature and initial permeability of the sample treated in (a) is shown by curve 2 in Figure 2. It can be seen from Examples 1 and 2 that an initial magnetic permeability of 40,000 or more was obtained in a low temperature region below room temperature.

【表】【table】

【表】 実施例 3 表3に示した組成の合金を実施例1と同様な方
法で製造し評価した。その結果を表3に示す。
[Table] Example 3 Alloys having the compositions shown in Table 3 were produced and evaluated in the same manner as in Example 1. The results are shown in Table 3.

【表】 上記実施例からわかるように、本発明のNi−
Mo−Cu−Mn−Si合金は1000℃以上融点以下の高
温で非酸化性雰囲気あるいは真空中において少な
くとも10分間以上100時間以下加熱し、1000℃/
分〜0.1℃/分の速度で常温まで冷却するか、あ
るいはこれをさらに300〜700℃の温度で10分間以
上100時間以下加熱した後1000℃/分〜0.1℃/分
の速度まで冷却することにより熱処理が容易でか
つ室温以下極低温迄の低温領域で初透磁率20000
以上を有する低温用高透磁率合金が得られる。 それ故本合金は室温以下で用いられるシールド
ケースに用いて良好なシールド効果を示す。
[Table] As can be seen from the above examples, the Ni-
Mo-Cu-Mn-Si alloy is heated at a high temperature of 1000℃ or higher and below the melting point in a non-oxidizing atmosphere or in vacuum for at least 10 minutes and 100 hours or less.
Cool to room temperature at a rate of 1000°C/min to 0.1°C/min, or further heat at a temperature of 300 to 700°C for 10 minutes to 100 hours, and then cool to a rate of 1000°C/min to 0.1°C/min. It is easy to heat treat and has an initial permeability of 20,000 in the low temperature range from room temperature to extremely low temperatures.
A high permeability alloy for low temperature use having the above properties is obtained. Therefore, this alloy exhibits a good shielding effect when used in shield cases used below room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のパーマロイの初透磁率と温度
との関係を示すグラフ、第2図は本発明の異なる
実施例の初透磁率と温度との関係を示すグラフ、
第3図は冷却速度と合金組成の関係を示すグラ
フ、第4図は低温熱処理温度と合金組成の関係を
示すグラフである。 1……実施例1の条件(a)で処理した合金の特性
2……実施例2の条件(b)で処理した合金の特性。
FIG. 1 is a graph showing the relationship between the initial magnetic permeability and temperature of conventional permalloy, and FIG. 2 is a graph showing the relationship between the initial magnetic permeability and temperature of different embodiments of the present invention.
FIG. 3 is a graph showing the relationship between cooling rate and alloy composition, and FIG. 4 is a graph showing the relationship between low temperature heat treatment temperature and alloy composition. 1...Characteristics of the alloy treated under the condition (a) of Example 1 2...Characteristics of the alloy treated under the condition (b) of Example 2.

Claims (1)

【特許請求の範囲】 1 重量%にてNi70〜84%、Mo0.5〜2.5%、
Cu0.5〜6.5%、Mn2%以下、Si1%以下、残部Fe
と少量の不純物とからなり、極低温から室温迄の
低温度領域で初透磁率20000以上を有することを
特徴とする低温用高透磁率合金。 2 重量%にてNi70〜84%、Mn0.5〜2.5%、
Cu0.5〜6.5%、Mn2%以下、Si1%以下、残部Fe
と少量の不純物とからなる合金を得、該合金を
1000℃以上融点以下の温度で非酸化性雰囲気ある
いは真空中において10分間以上100時間以下の時
間加熱した後、1000℃/分〜0.1℃/分の速度で
常温まで冷却することを特徴とした極低温から室
温迄の低温度領域で初透磁率20000以上を有する
低温用高透磁率合金の製造方法。 3 重量%にてNi70〜84%、Mo0.5〜2.5%、
Cu0.5〜6.5%、Mn2%以下、Si1%以下、残部Fe
と少量の不純物とからなる合金を得、該合金を
1000℃以上融点以下の温度で非酸化性雰囲気ある
いは真空中において少なくとも10分間以上100時
間以下の時間加熱した後、常温まで冷却し、これ
をさらに300℃〜700℃の温度で非酸化性雰囲気あ
るいは真空中において10分間以上100時間以下の
時間加熱した後、1000℃/分〜0.1℃/分の速度
で常温まで冷却することを特徴とした極低温から
室温迄の低温度領域で初透磁率20000以上を有す
る低温用高透磁率合金の製造方法。
[Claims] 1. Ni 70-84%, Mo 0.5-2.5%,
Cu0.5~6.5%, Mn2% or less, Si1% or less, balance Fe
and a small amount of impurities, and has an initial magnetic permeability of 20,000 or more in the low temperature range from extremely low temperatures to room temperature. 2.Ni70-84%, Mn0.5-2.5% by weight,
Cu0.5~6.5%, Mn2% or less, Si1% or less, balance Fe
and a small amount of impurities.
A pole characterized by being heated at a temperature of 1000°C or more and below the melting point in a non-oxidizing atmosphere or vacuum for 10 minutes or more and 100 hours or less, and then cooled to room temperature at a rate of 1000°C/min to 0.1°C/min. A method for producing a high magnetic permeability alloy for low temperature use that has an initial magnetic permeability of 20,000 or more in the low temperature range from low temperature to room temperature. 3 Ni70-84%, Mo0.5-2.5%, by weight%
Cu0.5~6.5%, Mn2% or less, Si1% or less, balance Fe
and a small amount of impurities.
After heating for at least 10 minutes to 100 hours in a non-oxidizing atmosphere or vacuum at a temperature of 1000°C to 700°C and below the melting point, cool to room temperature and further heat in a non-oxidizing atmosphere or vacuum at a temperature of 300°C to 700°C. The initial magnetic permeability is 20,000 in the low temperature range from extremely low temperatures to room temperature, which is characterized by heating in a vacuum for 10 minutes to 100 hours and then cooling to room temperature at a rate of 1,000℃/min to 0.1℃/min. A method for producing a high magnetic permeability alloy for low temperature use having the above.
JP58016893A 1983-02-05 1983-02-05 Alloy having high magnetic permeability and its production Granted JPS59143037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016893A JPS59143037A (en) 1983-02-05 1983-02-05 Alloy having high magnetic permeability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016893A JPS59143037A (en) 1983-02-05 1983-02-05 Alloy having high magnetic permeability and its production

Publications (2)

Publication Number Publication Date
JPS59143037A JPS59143037A (en) 1984-08-16
JPS6248741B2 true JPS6248741B2 (en) 1987-10-15

Family

ID=11928832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016893A Granted JPS59143037A (en) 1983-02-05 1983-02-05 Alloy having high magnetic permeability and its production

Country Status (1)

Country Link
JP (1) JPS59143037A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123783B1 (en) * 2007-02-13 2013-04-10 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115019A (en) * 1973-03-08 1974-11-02
JPS503912A (en) * 1973-05-17 1975-01-16
JPS503916A (en) * 1973-05-17 1975-01-16
JPS5277820A (en) * 1975-12-24 1977-06-30 Nippon Mining Co Ltd Wear resistant high permeability alloy
JPS551332A (en) * 1978-06-16 1980-01-08 Teijin Ltd Spun like two layer structure fluf yarn and method
JPS5741342A (en) * 1980-08-25 1982-03-08 Tohoku Metal Ind Ltd Magnetic alloy
JPS57149440A (en) * 1981-03-11 1982-09-16 Res Inst Electric Magnetic Alloys Magnetic alloy for magnetic sound recording and reproducing head and prepartion thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115019A (en) * 1973-03-08 1974-11-02
JPS503912A (en) * 1973-05-17 1975-01-16
JPS503916A (en) * 1973-05-17 1975-01-16
JPS5277820A (en) * 1975-12-24 1977-06-30 Nippon Mining Co Ltd Wear resistant high permeability alloy
JPS551332A (en) * 1978-06-16 1980-01-08 Teijin Ltd Spun like two layer structure fluf yarn and method
JPS5741342A (en) * 1980-08-25 1982-03-08 Tohoku Metal Ind Ltd Magnetic alloy
JPS57149440A (en) * 1981-03-11 1982-09-16 Res Inst Electric Magnetic Alloys Magnetic alloy for magnetic sound recording and reproducing head and prepartion thereof

Also Published As

Publication number Publication date
JPS59143037A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
JP5064611B2 (en) Nickel-based metal material and method for producing the same
SK161897A3 (en) Manufacturing process of a soft magnetic iron based alloy components with nanocrystalline structure
JPH01123021A (en) Heat-treatment for increasing magnetostriction response of rare earth metal-iron alloy rod
US3351501A (en) Process for producing magnetic sheets with cube-on-face grain texture
JPS625972B2 (en)
US3148092A (en) Process for producing sheets of magnetic materials
US3069299A (en) Process for producing magnetic material
JPS63272007A (en) Ultra-high coercive force permanent magnet exhibiting maximum energy product and manufacture thereof
US3214303A (en) Process of retaining a dispersed second phase until after the texture developing anneal
US3345219A (en) Method for producing magnetic sheets of silicon-iron alloys
JPS6248741B2 (en)
JP2672926B2 (en) Method for producing yttrium-based superconductor
JPS5843444B2 (en) Manufacturing method of electromagnetic silicon steel
González et al. Stress annealing in Fe73. 5Cu1Ta3Si13. 5B9 amorphous alloy: Induced magnetic anisotropy and variation of the magnetostriction constant
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPH0335801B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS633943B2 (en)
Kohler Production and Properties of Grain‐Oriented Commercially Pure Iron
US4265683A (en) Development of grain-oriented iron sheet for electrical apparatus
JPS59157248A (en) High permeability alloy and its manufacture