JPS5843444B2 - Manufacturing method of electromagnetic silicon steel - Google Patents

Manufacturing method of electromagnetic silicon steel

Info

Publication number
JPS5843444B2
JPS5843444B2 JP50136784A JP13678475A JPS5843444B2 JP S5843444 B2 JPS5843444 B2 JP S5843444B2 JP 50136784 A JP50136784 A JP 50136784A JP 13678475 A JP13678475 A JP 13678475A JP S5843444 B2 JPS5843444 B2 JP S5843444B2
Authority
JP
Japan
Prior art keywords
steel
temperature
silicon
cold rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50136784A
Other languages
Japanese (ja)
Other versions
JPS5173922A (en
Inventor
アレン サルスギバー ジエームス
アンゲロ マラガリ ジユニアー フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunbeam Oster Co Inc
Original Assignee
Allegheny Ludlum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allegheny Ludlum Industries Inc filed Critical Allegheny Ludlum Industries Inc
Publication of JPS5173922A publication Critical patent/JPS5173922A/ja
Publication of JPS5843444B2 publication Critical patent/JPS5843444B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は、キューブオンエッヂの配向(Cnbeon
−edge −orientation )と、10エ
ルステツドに於いて少くとも1850 (G10e)の
導磁率とを有する電磁的珪素鋼を製造する方法に関して
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cube-on-edge orientation (Cnbeon
-edge -orientation) and a magnetic permeability of at least 1850 (G10e) at 10 oersteds.

2.60乃至4.0%の珪素を含有する配向された硅素
鋼は、一般に、熱間圧延、2重冷間圧下、各各の冷間圧
延以前の焼鈍と、高温組織焼鈍とを含む処理に依って製
造される。
Oriented silicon steels containing 2.60 to 4.0% silicon are generally processed by processes including hot rolling, double cold rolling, annealing prior to each cold rolling, and high temperature microstructural annealing. Manufactured by.

近年幾つかの特許が、10エルステツドに於いて、18
50 (G10e)以上の導磁率を有する珪素鋼の製造
方法を開示している。
In recent years, several patents have been published in 10 Oersted, 18
A method for manufacturing silicon steel having a magnetic permeability of 50 (G10e) or higher is disclosed.

それ等の中で、米国特許第3287183号、3632
456号及び3636579号が最も興味を惹くように
思われる。
Among them, U.S. Pat.
Nos. 456 and 3636579 seem to be the most interesting.

併し、一つの米国特許出願に記載された方法は、更に一
層興味がある。
However, the method described in one US patent application is even more interesting.

これは、1973年米国特許出願第357974号であ
る。
This is 1973 US Patent Application No. 357,974.

この米国出願に記載されている方法は、本質的に重量比
で、0.07%1での炭素と、2.6乃至4.0条の珪
素と、0.03乃至0.24条のマンガンと、0.01
乃至0.07係の硫黄と、0.015乃至0.04%の
アルミニウムと、0.02%1での窒素と、0.1乃至
0.5係の銅と、残量の鉄とより成る鋼の醇融物を調製
すること、前記鋼を熱間圧延すること、前記鋼を最終的
冷間圧延するに先立ち、760℃乃至1175℃の温度
で焼鈍すること、前記鋼を、926℃乃至343℃の温
度から、少くとも260℃の低い温度1では、液状急冷
媒体或はガスの流れを用い、そしてその最高の焼鈍温度
から上記926°C乃至343℃の温度1では、鉄鋼が
、静的ふん囲気内で冷却されるか、或は、唯一の意図的
運動は、鋼に与えられた運動なるも、ふん囲気と鋼との
間には若干の関係運動が存在する、成る連続する処理路
線内で冷却される率よりも速からざる率に於い七、冷却
すること、及び少くとも80饅の圧下に於いて鋼を冷間
圧延することの諸段階より或っている。
The process described in this U.S. application consists essentially of carbon at 0.07% 1, silicon at 2.6 to 4.0, and manganese at 0.03 to 0.24. and 0.01
Consisting of sulfur at 0.07%, aluminum at 0.015% to 0.04%, nitrogen at 0.02% 1, copper at 0.1 to 0.5%, and the balance iron. preparing a melt of steel; hot rolling said steel; annealing said steel at a temperature of 760°C to 1175°C prior to final cold rolling; From a temperature of 343°C, at least 260°C, using a liquid quenching medium or gas flow, and from its highest annealing temperature, from 926°C to 343°C, the steel is A continuous process consisting of cooling in a target atmosphere, or in which the only intentional movement is the movement imparted to the steel, but there is some relative movement between the atmosphere and the steel. The steps include cooling the steel at a rate no less than the rate at which it is cooled in the line, and cold rolling the steel at a reduction of at least 80 degrees.

本発明によれば、キューブオンエッヂの配向と、10エ
ルステツドに於いて少くとも1850(G10e)の導
磁率とを有する、珪素鋼を製造する、今一つの改良され
た方法が記述される。
In accordance with the present invention, another improved method is described for producing silicon steel having a cube-on-edge orientation and a magnetic permeability of at least 1850 (G10e) at 10 oersteds.

これは、主として、上記米国出願及び、これと同時に出
願された第524831号に於いては、前記酵融物が、
それにほう素をかえて調整することもできるという発見
に基いている。
This is mainly because in the above-mentioned US application and No. 524,831 filed at the same time, the fermentation product is
It is based on the discovery that it can be adjusted by changing the boron content.

即ち、はう素は、粒子が配向された珪素鋼に高い導磁率
を生ぜしめる助勢剤として有効に使用された。
That is, boron has been effectively used as a promoter to produce high magnetic permeability in grain-oriented silicon steel.

これは、主として前掲米国特許出願第357974号に
於いては、該廖融物を、その中に含1れる硫黄の1部或
は全部をセレニウムを以て入れ換えて、調製することが
できるという発見に基く。
This is primarily based on the discovery in the aforementioned U.S. Patent Application No. 357,974 that the melt can be prepared by replacing part or all of the sulfur contained therein with selenium. .

従って、本発明の目的は、キューブオンエッヂの配向(
Cnb e −on −edge −orientat
ion )と、10エルステツドに於ける、少くとも1
850(G10e)の導磁率とを有する電磁的、珪素鋼
を製造する方法を提供することである。
Therefore, it is an object of the present invention to improve the cube-on-edge orientation (
Cnb e -on -edge -orientat
ion) and at least 1 in 10 oersted
The object of the present invention is to provide a method for producing an electromagnetic silicon steel with a magnetic permeability of 850 (G10e).

本発明は、キューブオンエツトの配向と、10エルステ
ツドに於ける、少くとも1850(G10e)の導磁率
とを有する珪素鋼を製造する一つの方法を提供する。
The present invention provides a method for producing silicon steel having a cube-on-et orientation and a magnetic permeability of at least 1850 (G10e) at 10 oersteds.

この方法には、本質的に重量比で、0.07饅壕での炭
素と、2.67乃至4.0条の珪素と、0.03乃至0
.24 %のマンガンと、0.01乃至0.09φの、
硫黄及びセレニウムより戒る群から選択された材料と、
0.015乃至0.04%のアルミニウムと、0.02
%1での窒素と、0.1乃至0.5幅の銅と、0.00
045乃至0.0035%のほう素と、残量の鉄とより
成る珪素鋼の晦融体を調製すること、前記鋼を鋳造する
こと、前記鋼を熱間圧延帯鋼に熱間圧延すること、前記
鋼を少くとも1回の冷間圧延にかげること、前記鋼に最
終的冷間圧延に先立って最終的焼鈍にかげること、前記
鋼に脱炭処理を施すこと、及び前記鋼に最終的組織焼鈍
を施すことの諸段階が含1れている。
This process essentially includes, by weight, carbon at 0.07, silicon at 2.67 to 4.0, and silicon at 0.03 to 0.
.. 24% manganese and 0.01 to 0.09φ,
A material selected from the group consisting of sulfur and selenium;
0.015-0.04% aluminum and 0.02%
Nitrogen at %1, copper ranging from 0.1 to 0.5, and 0.00
preparing a silicon steel molten body comprising 0.045 to 0.0035% boron and the balance iron; casting said steel; hot rolling said steel into hot rolled strip steel; , subjecting the steel to at least one cold rolling; subjecting the steel to a final annealing prior to final cold rolling; subjecting the steel to a decarburization treatment; and subjecting the steel to a final annealing process. The steps of applying tissue annealing are included.

尚、次の特定の処理段をも含むことが重要である。It is important to note that the following specific processing stages are also included.

即ち、最終的冷間圧延に先立ち、15秒乃至2時間に亘
り760℃乃至1175°Cの温度で最終的焼鈍を施す
こと、926℃乃至343℃の温度から、少くとも26
0℃の低い温度1では液状急冷媒体或はガスの流れを用
い、そして最高の焼鈍し温度から、前記926℃乃至3
43℃の温度1では、鉄鋼が静的ふん囲気の中で冷却さ
れる率或は、唯一の意図された運動は鋼に与えられた運
動に過ぎないが、ふん囲気と鋼との間には成る関係運動
が存在する場合の連続的処理路線に於いて冷却される率
よりも速くない率で、鋼を冷却すること、及び冷却され
た鋼を少くとも80%の圧下に於いて冷間圧延すること
より成る。
That is, prior to final cold rolling, a final annealing is performed at a temperature of 760°C to 1175°C for a period of 15 seconds to 2 hours, from a temperature of 926°C to 343°C, at least 26°C.
A liquid quenching medium or gas flow is used at a low temperature 1 of 0°C, and from a maximum annealing temperature of 926°C to 3°C.
At a temperature 1 of 43°C, the rate at which the steel is cooled in a static atmosphere or the only intended motion is the motion imparted to the steel, but there is no difference between the atmosphere and the steel. cooling the steel at a rate no faster than the rate at which it would be cooled in a continuous process line where there is associated motion, and cold rolling the cooled steel at a reduction of at least 80%. Consists of doing.

伺一層有利とする。This will be even more advantageous.

条件には981°C乃至1152°Cの温度で焼鈍する
こと、860℃乃至537℃の温度からは、液状急冷媒
体或はガスの流れを以て冷却すること、そして少くとも
85多の圧下に於いて冷間圧延することが含1れる。
Conditions include annealing at a temperature of 981°C to 1152°C, cooling from a temperature of 860°C to 537°C with a liquid quenching medium or gas flow, and at least 85°C of pressure. Includes cold rolling.

上述の爵融、鋳造、熱間圧延、冷間圧延、脱炭及び最終
的組織焼鈍には、技術に関する限り、何等新規な処理手
順が含1れていない。
The above-mentioned melting, casting, hot rolling, cold rolling, decarburization and final structure annealing do not involve any new processing steps as far as technology is concerned.

従ってこれ等の処理手順に関しては、本発明は、適用可
能なあらゆる製鋼措置を包括する。
With respect to these processing steps, the invention therefore encompasses all applicable steelmaking measures.

併し、冷間圧延に関しては、数回の圧延過程が、唯1回
の冷間圧延操作を構成する場合があり、そして数回の冷
間圧延過程が、焼鈍によって分離された場合に限って複
数回の冷間圧延操作が存在するを指摘せんとするもので
ある。
However, with regard to cold rolling, several rolling steps may constitute only one cold rolling operation, and only if several cold rolling steps are separated by annealing. This is intended to point out that there are multiple cold rolling operations.

冑、廖融した鋼には、はう素の外、更に珪素、アルミニ
ウム、マンガン及び硫黄と(或は)セレニウムを含1せ
る要がある。
In addition to ferrous metal, melting steel must contain silicon, aluminum, manganese, sulfur, and/or selenium.

珪素は、鋼の抵抗を増進し、その磁歪性を低下し、その
磁気結晶の異方性を低減し、従ってその鉄損を低減する
という理由で必要である。
Silicon is necessary because it increases the resistance of the steel, reduces its magnetostriction, reduces its magnetocrystalline anisotropy, and thus reduces its core losses.

アルミニウム、マンガン及び硫黄と(或は)セレニウム
は、鋼の配向及び、これに依存するその特性を制御する
のに重要な抑止剤を形成するの故を以て必要である。
Aluminum, manganese and sulfur and/or selenium are necessary because they form important inhibitors for controlling the orientation of the steel and its dependent properties.

更に特記すれば、アルミニウムは、鋼の中の、或は大気
からの、窒素と化合して、窒化アルミニウムを形成し、
マンガンは、硫黄と(或は)セレニウム、及び場合によ
っては銅と化合して、硫化マンガン、及び(或は)硫化
マンガン銅、及び或はセレン化マンガン及び(或は)セ
レン化マンガン銅を形成する。
More specifically, aluminum combines with nitrogen, either in the steel or from the atmosphere, to form aluminum nitride;
Manganese combines with sulfur and/or selenium and optionally copper to form manganese sulfide and/or manganese copper sulfide, and/or manganese selenide and/or manganese copper selenide. do.

これ等の化合物は何れも一緒に、最終的組織焼鈍中の、
正常の粒子の成育を抑止すると同時に、所要の立方晶系
の配向を有する。
Together, these compounds are used during final tissue annealing.
It has the required cubic crystal orientation while inhibiting normal grain growth.

2次的再結晶粒子の発生に助勢を与える。Assists the generation of secondary recrystallized particles.

上に、マンガン抑止剤の中に存在する銅を挙げたが、銅
は伺処理の進行中にも有利な効果を有することがある。
Although copper is mentioned above as being present in the manganese inhibitor, copper may also have a beneficial effect during the course of the infiltration process.

即ち、仮説的ながら、銅は焼鈍温度を引下げ、急速冷却
を起し得る温度を引下げ、圧延可能度を改善し、廖融措
置を簡単化し、そして、焼鈍のふん囲気に対する所要条
件を緩和する。
That is, copper hypothetically lowers the annealing temperature, lowers the temperature at which rapid cooling can occur, improves rollability, simplifies melting procedures, and relaxes annealing ambient requirements.

更に、銅は、鋼の抵抗を増進し、そしてその鉄損を低減
する。
Additionally, copper increases the resistance of the steel and reduces its core losses.

特に、本発明の方法を適用するに適する鋼は、主として
、重量比で、0.02乃至0.07%の炭素と、2.6
5乃至3.25多の珪素と、0.05乃至0.20%の
マンガンと、0.02乃至0.07条の、硫黄及びセレ
ニウムより成る群より選択された材料と、0.015乃
至0.04%のアルミニウムと、◆−0,0030乃至
0.0090饅の窒素と、o、i乃至0.4%の銅と、
0.0005乃至0.0025係のほう素と、残量の鉄
とより成っている。
In particular, steel suitable for applying the method of the invention mainly contains 0.02 to 0.07% carbon and 2.6% by weight.
5 to 3.25% silicon, 0.05 to 0.20% manganese, 0.02 to 0.07% of a material selected from the group consisting of sulfur and selenium, and 0.015 to 0. .04% aluminum, ◆-0,0030 to 0.0090% nitrogen, and o,i to 0.4% copper;
It consists of 0.0005 to 0.0025% boron and the balance iron.

この鋼は、本発明によって処理されるとき極めて有利な
構造を作るように、その化学的成分を平衡させている。
This steel balances its chemical composition to create a highly advantageous structure when processed according to the present invention.

一般的基準として、はう素の含有量は、 0.0007%以上にされることになっている。As a general standard, the content of boron is It is supposed to be 0.0007% or more.

上記最終的冷間圧延に先立つ最終的焼鈍及び本発明の制
御された冷却が、有効な理由は確実ではないが、仮説的
に、焼鈍は、鋼に冷間圧延に対する条件を供与し、そし
て抑止剤を形成し得るための操作を与えること、及び、
926℃の温度1での徐々の冷却及び(或は)焼鈍温度
範囲の低い方の部分の焼鈍温度を使用することは、オー
ステナイト相及びフェライト相が存在し、従って若干高
い温度では各々の相に於ける抑止剤に対する可晦度が異
るということに対比されることとして、926°C以下
の温度の鋼の中には、主としてフェライト相だげが存在
する故抑止剤が分布される均等性を増大することの故で
あると推論される。
Although it is not certain why the final annealing and controlled cooling of the present invention prior to the final cold rolling described above is effective, hypothetically, the annealing provides the steel with conditions for cold rolling and inhibits it. providing an operation for forming an agent; and
Gradual cooling at temperature 1 of 926°C and/or using an annealing temperature in the lower part of the annealing temperature range indicates that the austenite and ferrite phases are present and therefore at slightly higher temperatures each phase In contrast to the different susceptibilities to inhibitors in steels at temperatures below 926°C, the uniformity of the distribution of inhibitors due to the presence of mainly ferrite phase flakes in steels at temperatures below 926°C. It is inferred that this is due to the increase in

上に論じたように、主要な抑止剤は、窒化アルミニウム
、及び硫化マンガンとセレン化マンガンである。
As discussed above, the primary inhibitors are aluminum nitride and manganese sulfide and manganese selenide.

伺焼鈍温度として、特に制限は置かれていない。There are no particular restrictions on the annealing temperature.

従って、ふん囲気には、例えば、窒素、水素のような還
元ガス、アルゴンのような不活性ガス、空気、及びそれ
等の混合物が挙げられる。
Thus, the ambient air includes, for example, nitrogen, reducing gases such as hydrogen, inert gases such as argon, air, and mixtures thereof.

次の実施例は、本発明の数個の態様を示すものである。The following examples illustrate several aspects of the invention.

4バツチの陪融鋼が鋳造されて、キューブオンエッヂの
配向を有する珪素鋼に調製された。
Four batches of condensate steel were cast and prepared into silicon steel with a cube-on-edge orientation.

各バッチの化学成分は次の表に示す通りである。The chemical composition of each batch is shown in the table below.

上記何れのバッチに対する処理にも、高温に於いて数時
間浸漬すること、約2.36nmのゲージ厚1で熱間圧
延すること、1120℃に於いて1分間熱処理すること
、948℃1で徐々に(約50秒に亘り)冷却すること
、593°C1で空気冷却すること、593℃1で水を
以て急冷すること、約0.3 amの最終ゲージ厚1で
冷間圧延すること、湿った水素と窒素との混合物の中で
801℃の温度で脱炭処理を施すこと、1175℃の最
高温度で最終的組織焼鈍を施すことの諸段階が含1れる
The treatments for any of the above batches included soaking at high temperature for several hours, hot rolling to a gauge thickness of about 2.36 nm, heat treatment at 1120°C for 1 minute, and gradual rolling at 948°C. (for about 50 seconds), air cooling at 593°C1, water quenching at 593°C1, cold rolling to a final gauge thickness of about 0.3 am, wet rolling. The steps include decarburization in a mixture of hydrogen and nitrogen at a temperature of 801°C, and a final structural annealing at a maximum temperature of 1175°C.

各バッチは、導磁率に対して試験されて、10エルステ
ツドに於いて、夫々1906,1889゜1873及び
1898 (G10e)の導磁率が記録された。
Each batch was tested for magnetic permeability and permeabilities of 1906, 1889°, 1873 and 1898 (G10e) were recorded at 10 oersteds, respectively.

Claims (1)

【特許請求の範囲】 1 珪素鋼の溶融物を調整すること、前記鋼を鋳造する
こと、上記鋼を熱間圧延帯鋼に熱間圧延すること、前記
鋼を少くとも1間冷間圧延にかけること、前記鋼の最終
的冷間圧延に先立ち最終的焼鈍にかげること、前記鋼に
脱炭処理を施すこと、及び前記鋼に最終的組織焼鈍を施
すことより成る、キューブオンエッチの配向(Cube
−on −edgeorientatioon)と、
10エルステツドに於いて少くとも1850 (G10
e)の導磁率を有する電磁的珪素鋼の製造方法に於いて
、 前記鋼の最終的冷間圧延に先立ち、これに15秒乃至2
時間に亘り、760℃乃至1175℃の温度で最終的焼
鈍を施すこと、前記鋼の926℃乃至343℃の温度か
ら、少くとも260℃の低い温度1では、液状急冷媒体
或はガスの流れを用い、そしてその最高焼鈍温度から、
前記926°C乃至343°Cの温度壕では、鉄鋼が静
的ふん囲気内で冷却される割合或は、唯一の意図された
運動は鋼に与えられた運動に過ぎないが、ふん囲気と鋼
との間には成る関係運動が存在する成る連続的処理路線
内で冷却される割合よりも速くはない割合で、前記鋼を
冷却すること、前記冷却された鋼を、少くとも80%の
圧下に於いて冷間圧延すること、の諸段階を含むこと、
及び 前記醇融鋼が、本質的に、重量比で、0.07%の炭素
と、2.60乃至4.0優の珪素と、0.03乃至0.
24咎のマンガンと、0.01乃至0.09φの、硫黄
及びセレニウムより成る群より選択された材料と、0.
015乃至0.04φのアルミニウムと、0.02係1
での窒素と、0,1乃至0.5%の銅と、0.0004
5乃至0.0035優のほう素と、残分の鉄とより成る
ことを特徴とする、電磁珪素鋼の製造方法。
[Scope of Claims] 1. Preparing a melt of silicon steel, casting the steel, hot rolling the steel into a hot rolled strip, cold rolling the steel for at least one period. a cube-on-etch orientation ( Cube
-on -edge orientation) and
At least 1850 in 10 Oersted (G10
e) In the method for producing an electromagnetic silicon steel having a magnetic permeability of
final annealing at a temperature of 760° C. to 1175° C. for a period of time, from a temperature of 926° C. to 343° C. of said steel, at a temperature as low as 1 of at least 260° C. without the flow of liquid quenching medium or gas; used, and from its maximum annealing temperature,
In the 926°C to 343°C temperature trench, the rate at which the steel is cooled in the static atmosphere or the only intended movement is the motion imparted to the steel, but the cooling said steel at a rate no faster than the rate at which it is cooled in a continuous processing line in which there is a relative motion between said steel and said cooled steel being reduced by at least 80%; including the steps of cold rolling in the step;
and said molten steel essentially contains, by weight, 0.07% carbon, 2.60 to 4.0% silicon, and 0.03 to 0.0% silicon.
a material selected from the group consisting of sulfur and selenium, 0.01 to 0.09φ;
015 to 0.04φ aluminum and 0.02 ratio 1
nitrogen at 0.1 to 0.5% copper and 0.0004
A method for producing electromagnetic silicon steel, characterized in that it is made of boron of 5 to 0.0035% and the balance iron.
JP50136784A 1974-11-18 1975-11-13 Manufacturing method of electromagnetic silicon steel Expired JPS5843444B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US524846A US3929522A (en) 1974-11-18 1974-11-18 Process involving cooling in a static atmosphere for high permeability silicon steel comprising copper

Publications (2)

Publication Number Publication Date
JPS5173922A JPS5173922A (en) 1976-06-26
JPS5843444B2 true JPS5843444B2 (en) 1983-09-27

Family

ID=24090895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50136784A Expired JPS5843444B2 (en) 1974-11-18 1975-11-13 Manufacturing method of electromagnetic silicon steel

Country Status (14)

Country Link
US (1) US3929522A (en)
JP (1) JPS5843444B2 (en)
AR (1) AR208730A1 (en)
BE (1) BE834876A (en)
CA (1) CA1041879A (en)
DE (1) DE2550426A1 (en)
ES (1) ES441705A1 (en)
FR (1) FR2291276A1 (en)
GB (1) GB1478739A (en)
IN (1) IN143003B (en)
IT (1) IT1047747B (en)
PL (1) PL106073B1 (en)
SE (1) SE414949B (en)
YU (1) YU291375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159859U (en) * 1988-04-28 1989-11-06

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1558621A (en) * 1975-07-05 1980-01-09 Zaidan Hojin Denki Jiki Zairyo High dumping capacity alloy
US4054470A (en) * 1976-06-17 1977-10-18 Allegheny Ludlum Industries, Inc. Boron and copper bearing silicon steel and processing therefore
US4174235A (en) * 1978-01-09 1979-11-13 General Electric Company Product and method of producing silicon-iron sheet material employing antimony
US4113529A (en) * 1977-09-29 1978-09-12 General Electric Company Method of producing silicon-iron sheet material with copper as a partial substitute for sulfur, and product
US4177091A (en) * 1978-08-16 1979-12-04 General Electric Company Method of producing silicon-iron sheet material, and product
JPS57145963A (en) * 1981-03-04 1982-09-09 Hitachi Metals Ltd Material for magnetic head and its manufacture
JPS6048886B2 (en) * 1981-08-05 1985-10-30 新日本製鐵株式会社 High magnetic flux density unidirectional electrical steel sheet with excellent iron loss and method for manufacturing the same
US5078808A (en) 1990-07-09 1992-01-07 Armco Inc. Method of making regular grain oriented silicon steel without a hot band anneal
DE69128624T3 (en) 1991-10-21 2002-05-29 Armco Inc., Middletown Process for the production of normal grain-oriented steel with high silicon and low carbon content

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287184A (en) * 1963-10-22 1966-11-22 Bethlehem Steel Corp Method of producing low carbon electrical sheet steel
CA920035A (en) * 1968-04-27 1973-01-30 Taguchi Satoru Method for producing an electro-magnetic steel sheet of a thin sheet thickness having a high magnetic induction
US3671337A (en) * 1969-02-21 1972-06-20 Nippon Steel Corp Process for producing grain oriented electromagnetic steel sheets having excellent magnetic characteristics
BE790798A (en) * 1971-11-04 1973-02-15 Armco Steel Corp Manufacturing process of cube-on-edge orientation silicon iron from cast slabs
US3770517A (en) * 1972-03-06 1973-11-06 Allegheny Ludlum Ind Inc Method of producing substantially non-oriented silicon steel strip by three-stage cold rolling
US3855018A (en) * 1972-09-28 1974-12-17 Allegheny Ludlum Ind Inc Method for producing grain oriented silicon steel comprising copper
US3873381A (en) * 1973-03-01 1975-03-25 Armco Steel Corp High permeability cube-on-edge oriented silicon steel and method of making it
US3855019A (en) * 1973-05-07 1974-12-17 Allegheny Ludlum Ind Inc Processing for high permeability silicon steel comprising copper
US3855021A (en) * 1973-05-07 1974-12-17 Allegheny Ludlum Ind Inc Processing for high permeability silicon steel comprising copper
US3855020A (en) * 1973-05-07 1974-12-17 Allegheny Ludlum Ind Inc Processing for high permeability silicon steel comprising copper
US3925115A (en) * 1974-11-18 1975-12-09 Allegheny Ludlum Ind Inc Process employing cooling in a static atmosphere for high permeability silicon steel comprising copper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159859U (en) * 1988-04-28 1989-11-06

Also Published As

Publication number Publication date
US3929522A (en) 1975-12-30
FR2291276B1 (en) 1981-08-28
SE7512968L (en) 1976-05-19
DE2550426A1 (en) 1976-05-20
BE834876A (en) 1976-02-16
YU291375A (en) 1982-02-28
AR208730A1 (en) 1977-02-28
DE2550426C2 (en) 1987-12-23
GB1478739A (en) 1977-07-06
IT1047747B (en) 1980-10-20
PL106073B1 (en) 1979-11-30
FR2291276A1 (en) 1976-06-11
IN143003B (en) 1977-09-17
ES441705A1 (en) 1977-04-01
AU8499875A (en) 1977-03-24
CA1041879A (en) 1978-11-07
SE414949B (en) 1980-08-25
JPS5173922A (en) 1976-06-26

Similar Documents

Publication Publication Date Title
US3855020A (en) Processing for high permeability silicon steel comprising copper
RU2288959C2 (en) Method for producing electrical steel strips with oriented grains
KR20150067381A (en) Oriented silicon steel and method for manufacturing same
JP2004526862A5 (en)
JPS5843444B2 (en) Manufacturing method of electromagnetic silicon steel
JPS5823410A (en) Manufacture of nondirectional electromagnetic steel plate having superior magnetic characteristics
JPS5813605B2 (en) Manufacturing method of magnetic silicon steel
US3855021A (en) Processing for high permeability silicon steel comprising copper
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
KR100288351B1 (en) Standard grain oriented electrical steel manufacturing method using one step cold rolling process
US3846187A (en) Slab and plate cooling method for producing grain oriented electrical steel
JPS5843443B2 (en) Denjikeisokounoseizouhouhou
US4115160A (en) Electromagnetic silicon steel from thin castings
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
RU2038389C1 (en) Method for producing silicon textured steel
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
US3802936A (en) Method of making grain oriented electrical steel sheet
JPS5920744B2 (en) Manufacturing method of silicon steel for electromagnetic use and the silicon steel
KR0169992B1 (en) Method of making high silicon low carbon regular grain oriented silicon
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JP2653948B2 (en) Preparation of Standard Grain Oriented Silicon Steel without Hot Strip Annealing
KR0169318B1 (en) Method of making regular grain oriented silicon steel without a hot band anneal
JPH0757887B2 (en) Manufacturing method of non-oriented electrical steel sheet with developed {100} <uvw> texture
JPH04362132A (en) Production of double oriented silicon steel sheet
KR20170142932A (en) Production method for {110}〈001〉 oriented electrical steels with high magnetic properties