JPS5813605B2 - Manufacturing method of magnetic silicon steel - Google Patents

Manufacturing method of magnetic silicon steel

Info

Publication number
JPS5813605B2
JPS5813605B2 JP49049839A JP4983974A JPS5813605B2 JP S5813605 B2 JPS5813605 B2 JP S5813605B2 JP 49049839 A JP49049839 A JP 49049839A JP 4983974 A JP4983974 A JP 4983974A JP S5813605 B2 JPS5813605 B2 JP S5813605B2
Authority
JP
Japan
Prior art keywords
steel
annealing
silicon
cold rolling
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49049839A
Other languages
Japanese (ja)
Other versions
JPS5015726A (en
Inventor
アレン サルスギバ− ジエ−ムス
エンジエロ マラガリ フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunbeam Oster Co Inc
Original Assignee
Allegheny Ludlum Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allegheny Ludlum Industries Inc filed Critical Allegheny Ludlum Industries Inc
Publication of JPS5015726A publication Critical patent/JPS5015726A/ja
Publication of JPS5813605B2 publication Critical patent/JPS5813605B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は、稜接立方体(Cube−on−edge )
的配向と、10エルステッドに於いて少くとも1 8
5 0 G/Oeの導磁率を有する磁気用珪素鋼を製造
する方法に関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cube-on-edge
orientation and at least 1 8 in 10 oersteds
The present invention relates to a method for producing magnetic silicon steel having a magnetic permeability of 50 G/Oe.

2.60乃至4.0%の珪素を含有する、配向された珪
素鋼は、一般に、熱間圧延、2重冷間圧延、各冷間圧延
以前の焼鈍及び高温組織焼鈍より成る方法によって製造
される。
Oriented silicon steel containing 2.60 to 4.0% silicon is generally produced by a process consisting of hot rolling, double cold rolling, annealing before each cold rolling, and high temperature microstructural annealing. Ru.

近年、多数の特許によって、10エルステッドに於いて
1 8 5 0 G/Oe以上の導磁率を有する珪素鋼
が発表された。
In recent years, a number of patents have announced silicon steels with magnetic permeability of greater than 1850 G/Oe at 10 Oe.

これ等の中、処理法から見れば、米国特許第3,2 8
7,1 8 3号、3,6 2 3,4 5 6号及
び3,6 3 6,5 7 9号が最も興味がある。
Among these, from the viewpoint of processing method, US Patent No. 3, 28
7,1 8 3, 3,6 2 3,4 5 6 and 3,6 3 6,5 7 9 are of most interest.

米国特許第3,2 8 7,1 8 3号は、1966
年11月22日に発行されたもので、これは、該鋼を、
AINを析出させるように、950゜C乃至1200℃
の温度で焼鈍することにより、特定量の炭素、珪素、ア
ルミニウム、硫黄及び鉄より成る鋼を、高導磁率珪素鋼
に処理することができることを発表している。
U.S. Patent No. 3,287,183, 1966
It was published on November 22, 2017, and this indicates that the steel is
950°C to 1200°C to precipitate AIN
It has been announced that steel consisting of specific amounts of carbon, silicon, aluminum, sulfur and iron can be processed into high magnetic permeability silicon steel by annealing at a temperature of .

その後米国特許第3,6 3 2,4 5 6号及び3
,6 3 6,5 7 9号には、同様な合金鋼に対す
る略略同様な処理法が発表された。
Subsequently, U.S. Pat.
, 6 3 6, 5 7 9, a substantially similar treatment method for similar alloy steels was published.

これ等の特許は何れも、AINが析出される焼鈍に続く
冷却法に関している。
These patents all relate to cooling followed by annealing in which AIN is precipitated.

前者に於いては、珪素の含有に従い、750℃乃至12
00℃で、熱間圧延帯鋼を焼鈍し、焼鈍された帯鋼を急
速に冷却し、然る後、これを少くとも2回の冷間圧延に
かける。
In the former case, the temperature ranges from 750°C to 12°C depending on the silicon content.
The hot rolled steel strip is annealed at 00° C., the annealed steel strip is rapidly cooled, and then it is subjected to at least two cold rollings.

後者に於いては、950℃乃至1200℃の温度で、2
.5乃至4.0%の珪素を含む鋼を焼鈍し、これを前記
温度から少くとも400゜Cまで急冷し、然る後これを
冷間圧延する。
In the latter case, at a temperature of 950°C to 1200°C, 2
.. Steel containing 5 to 4.0% silicon is annealed and rapidly cooled from said temperature to at least 400 DEG C., after which it is cold rolled.

興味ある今一つは米国特許第3,1 5 9,5 1
1号で、これは、単一冷間圧延で珪素鋼を製造する方法
を開示して居り、これは、10エルステッドで1 8
5 0 G/Oeほどに高い導磁率を有する珪素鋼を作
る方法ではない。
Another interesting one is U.S. Patent No. 3,1 5 9,5 1
No. 1, which discloses a method for producing silicon steel in a single cold rolling, which
There is no way to make silicon steel with a magnetic permeability as high as 50 G/Oe.

更にこれを特記すれば、これは珪素鋼が熱間圧延され然
る後直ちに冷間圧延されるような処理方法を示している
More specifically, this describes a processing method in which silicon steel is hot rolled and immediately thereafter cold rolled.

こゝに記載せんとするのは、特別の組成を有する鋼から
稜接立方体的配向と、10エルステッドで少くとも1
8 5 0 Q/Oeの導磁率を有する、珪素鋼を製造
する改良法にある。
What is described here is that a steel with a special composition has an edge-cubic orientation and at least 1
An improved method for manufacturing silicon steel having a magnetic permeability of 850 Q/Oe.

この方法は、15秒乃至2時間の期間に亘り、790乃
至926℃の温度で、熱間圧延帯鋼を焼鈍すること、静
止空気中で室温下に熱間圧延帯鋼を冷却すること、及び
単一冷間圧延で、少くとも80%の低減率で前記冷却さ
れた鋼を冷間圧延することの諸段階より成っている。
The method includes annealing a hot rolled steel strip at a temperature of 790 to 926° C. for a period of 15 seconds to 2 hours, cooling the hot rolled steel strip to room temperature in still air, and A single cold rolling consists of the steps of cold rolling said cooled steel with a reduction rate of at least 80%.

この方法は、下記の点で、前掲各米国特許の方法とは異
り且つ相納れない内容を持っている。
This method differs from and is incompatible with the methods of the above-mentioned US patents in the following points.

即ち、米国特許第3,1 5 9,5 1 1号には、
10エルステッドに於いて、1 8 5 0 Q/Oe
程にも高い導磁率を有する珪素鋼を作る方法も、又15
秒乃至2時間に亘り、790℃乃至926℃の温度で、
熱間圧延された帯鋼を焼鈍する段階も示されては居ない
こと、米国特許第3,287,183号には 950゜
Cの最低焼鈍温度が示されているが、926℃の最高焼
鈍温度を示しては居ないこと、米国特許第3,6 3
2,4 5 6号には、事実上少くとも2.5%のSi
を含有する鋼に対する950°の過剰温度で行われる熱
間圧延帯鋼の焼鈍に引続く1回の焼鈍と2回の冷間圧延
が示されているが、静止空気中で室温下に焼鈍された熱
間圧延帯鋼を冷却しては居ないこと、そして米国特許第
3,6 3 6,5 7 9号には、少くとも2.5%
のSiを含む鋼に対する950℃の最低焼鈍温度と、前
記焼鈍温度からの急速冷却が示されていることが挙げら
れる。
That is, in U.S. Patent No. 3,159,511,
At 10 Oersted, 1 8 5 0 Q/Oe
There is also a method for making silicon steel with moderately high magnetic permeability.
At a temperature of 790°C to 926°C for a period of seconds to 2 hours,
There is also no indication of annealing the hot rolled steel strip; US Pat. No. 3,287,183 indicates a minimum annealing temperature of 950°C, but a maximum annealing temperature of 926°C. Does not indicate temperature, U.S. Patent No. 3,63
2,4 5 6 contains virtually at least 2.5% Si.
Annealing of hot rolled strip steel at an excess temperature of 950° for steel containing No. 3,636,579 states that at least 2.5%
A minimum annealing temperature of 950°C for Si-containing steel and rapid cooling from said annealing temperature have been shown.

更に、本発明によって処理される鋼の化学的成分も、上
に挙げた各米国特許に於けるものとは異っている。
Furthermore, the chemical composition of the steel processed according to the present invention is also different from that in each of the above-cited US patents.

従って本発明の目的は稜接立方体的配向と、10エルス
テッドに於いて少くとも1850G/Oeの導磁率とを
有する磁気的珪素鋼を作る方法を提供することである。
It is therefore an object of the present invention to provide a method for making a magnetic silicon steel having an edge cubic orientation and a magnetic permeability of at least 1850 G/Oe at 10 Oe.

本発明による処理法は、重量比で0.07%までの炭素
と、2.60乃至4.0%の珪素と、0.03乃至0.
24%のマンガンと、0.01乃至0.07%の硫黄と
、0.015乃至0.04%のアルミニウムと、0.0
2%までの窒素と、0.1乃至0.5%の鋼とを含む珪
素鋼の溶融物を調製すること、前記鋼を鋳込むこと、前
記鋼を熱間圧延して帯鋼を作ること、熱間圧延鋼帯を焼
鈍すること、焼鈍された帯鋼を冷間圧延すること、この
鋼に脱炭処理を施すこと、及びこの鋼に最終的組織焼鈍
を施すことの諸段階より成る。
The treatment method according to the invention comprises up to 0.07% carbon, 2.60 to 4.0% silicon, and 0.03 to 0.0% by weight.
24% manganese, 0.01-0.07% sulfur, 0.015-0.04% aluminum, 0.0
Preparing a melt of silicon steel containing up to 2% nitrogen and 0.1 to 0.5% steel, casting said steel, and hot rolling said steel to make a steel strip. , annealing the hot rolled steel strip, cold rolling the annealed steel strip, subjecting the steel to a decarburization treatment, and subjecting the steel to a final textural annealing.

尚、更に、重要段階として、次の特別の処理が含まれる
Furthermore, the following special processing is included as an important step.

即ち、15秒乃至2時間に亘り、790℃乃至926℃
の温度で前記熱間圧延帯鋼を焼鈍すること、静止空気中
で室温下に、焼鈍された熱間圧延帯鋼を冷却すること、
単一冷間圧延に於いて、少くとも80%の低減率で、前
記冷却された鋼を冷間圧延することである。
That is, from 790°C to 926°C for 15 seconds to 2 hours.
annealing the hot rolled steel strip at a temperature of , cooling the annealed hot rolled steel strip to room temperature in still air;
Cold rolling the cooled steel with a reduction rate of at least 80% in a single cold rolling.

更に、熱間圧延帯鋼を790℃乃至890℃の温度で焼
鈍すること及び少くとも85%の低減率で冷間圧延する
ことの条件を含ませるを有利とする。
Furthermore, it is advantageous to include the conditions that the hot rolled steel strip is annealed at a temperature of 790° C. to 890° C. and cold rolled with a reduction rate of at least 85%.

尚、限定を目的として言えば、静止空気中における室温
下の冷却には、鋼が静的大気圧の下で冷却されるような
冷却、及び冷却の目的で故意に運動を生ぜしめる意図な
き限り、連続的処理路線に於けるような、大気と鋼との
間に相対的運動があるような冷却を含むものと了解され
たい。
For purposes of limitation, cooling at room temperature in still air does not include cooling in which steel is cooled under static atmospheric pressure, and unless there is an intention to intentionally create movement for the purpose of cooling. It is understood to include cooling where there is relative movement between the atmosphere and the steel, such as in continuous processing lines.

更に、これも限定の目的として言えば、あらゆるガス状
のふん囲気は空気と同一冷却効果を持つものと想定され
る。
Additionally, and again by way of limitation, any gaseous atmosphere is assumed to have the same cooling effect as air.

従って、急冷用液体或は強制されたガス状ふん囲気が使
用されない限り、あらゆる開放冷却は、静止空気中にお
ける室温化の冷却等価なものとする。
Therefore, unless a quenching liquid or forced gaseous atmosphere is used, any open cooling is equivalent to room temperature cooling in still air.

そして、強制されたガス状ふん囲気は、冷却の目的で故
意に運動がそのふん囲気に与えられたものを指す。
A forced gaseous atmosphere refers to one in which movement is intentionally imparted for the purpose of cooling.

上述の溶融、鋳込み、熱間圧延、焼鈍、冷間圧延、脱炭
及び最終的組織焼鈍には、技術に関する限り何等新規措
置が含まれていない。
The above-mentioned melting, casting, hot rolling, annealing, cold rolling, decarburization and final structure annealing do not involve any new measures as far as technology is concerned.

そしてこれ等に関しては、本発明には、あらゆる製鋼法
の技術が適用されて差支ない。
Regarding these, any steel manufacturing technique may be applied to the present invention.

併し、790℃乃至926℃の温度で、熱間圧延された
帯鋼を焼鈍すことは、これが鋼に冷間圧延に適する条件
を与え、抑制剤が形成される作用期間を与えることに於
いて特に有利であり、更に、若干より高い温度に於ける
、オーステナイト及びフエライト相の存在及び各相内の
抑制元素に対して異る溶解度等と対比される、926℃
以下の鋼内には、主としてフエライト相だけが存在する
ように、抑制剤が分布されている均等性が増進されるこ
とは、最も重要である。
However, annealing the hot rolled steel strip at temperatures between 790°C and 926°C is important as this provides the steel with conditions suitable for cold rolling and provides a period of action during which the inhibitor is formed. 926° C. is particularly advantageous, further contrasted with the presence of austenite and ferrite phases and different solubilities for inhibiting elements within each phase, etc. at slightly higher temperatures.
It is of paramount importance that the evenness in which the inhibitor is distributed is promoted so that within the following steel there is primarily only a ferrite phase.

抑制剤としては、本発明は、主として窒化アルミニウム
、硫化マンガン及び(或は)硫化マンガン鋼を指示する
が、これ等に関しては、更に後段に詳述する。
As inhibitors, the present invention mainly specifies aluminum nitride, manganese sulfide, and/or manganese sulfide steel, which will be described in further detail later.

尚焼鈍用のふん囲気に関しては、特別の基準は置かれて
居ない。
There are no special standards regarding the atmosphere for annealing.

従って、これ等のふん囲気を例示すれば、窒素、水素の
ような還元性のガス、アルゴンのような不活性ガス、空
気及びそれ等の混合物が挙げられる。
Therefore, examples of such ambient air include nitrogen, reducing gases such as hydrogen, inert gases such as argon, air, and mixtures thereof.

冷間圧延に関しては、数回の圧延台の通過が一回の冷間
圧延を構成すること、及び冷間圧延の操作が、焼鈍によ
って分離されたとき初めて複数の冷間圧延操作が行われ
たことになることを指摘しなければならない。
With regard to cold rolling, several passes through the rolling bed constitute one cold rolling, and multiple cold rolling operations were performed only when the cold rolling operations were separated by annealing. I have to point out that this is happening.

溶融した鋼には、珪素、アルミニウム、マンガン、硫黄
及び銅が含まれなければならない。
The molten steel must contain silicon, aluminum, manganese, sulfur and copper.

珪素は、鋼の比抵抗を増大し、その磁気的ひずみを低減
し、結晶の磁気的非等方性を低減し、従って鉄損を減少
させるために必要である。
Silicon is necessary to increase the resistivity of the steel, reduce its magnetic strain, reduce the magnetic anisotropy of the crystal, and thus reduce iron losses.

アルミニウム、マンガン及び硫黄は、鋼の配向及びこれ
に基く諸特性を制御するのに重要な抑制剤を形成するた
めに必要である。
Aluminum, manganese and sulfur are necessary to form inhibitors which are important in controlling the orientation and properties based thereon of the steel.

更に詳記すれば、アルミニウムは、鋼内の或は大気中の
窒素と化合して窒化アルミニウムを形成し、マンガンは
硫黄と化合して、硫化マンガン及び(或は)硫化マンガ
ン銅を形成する。
More specifically, aluminum combines with nitrogen in the steel or in the atmosphere to form aluminum nitride, and manganese combines with sulfur to form manganese sulfide and/or manganese copper sulfide.

そしてこれ等の化合物は、最終的組織焼鈍中に常に粒子
が作られることを抑制するように作用すると同時に、所
望の稜接立方体(Cube−on−edge )配向を
有する、2次再結晶粒子の発達を助勢する。
These compounds act to suppress the formation of particles during final annealing of the structure, and at the same time, form secondary recrystallized particles with the desired cube-on-edge orientation. Helps development.

銅は、硫化マンガン銅を形成する可能性の外、尚銅が焼
鈍温度を低下させ、圧延可能度を増進し、溶解を簡単化
し、焼鈍するふん囲気所要条件を緩和することができる
ということが仮設的に理論づけられることに於いて役立
っている。
In addition to the possibility of forming copper manganese sulfide, it is believed that copper can lower the annealing temperature, increase the rollability, simplify melting, and ease the annealing atmosphere requirements. It is useful in being able to hypothesize hypothetically.

特に、本発明の方法を適用し得る鋼は、主として、重量
比で、0.02乃至0.07%の炭素と、2.60乃至
3.5%の珪素と、% Mn + (0.1 + 0.
25)×%Cuなる等価式で表わした、0.05%乃至
0.24係に等価なマンガンと、0.01乃至0.05
%の硫黄と、0.015乃至0.4%のアルミニウムと
、0.0030乃至0.0 0 9 0%の窒素と、0
.1乃至0.3%の銅と、残りの鉄及び残渣とより成っ
て居り、上記に於いて、硫黄と等価なマンガンの比率は
、2.0乃至4.75の範囲内とされる。
In particular, the steel to which the method of the present invention can be applied mainly contains 0.02 to 0.07% carbon, 2.60 to 3.5% silicon, and % Mn + (0.1 +0.
25) Manganese equivalent to 0.05% to 0.24 and 0.01 to 0.05 expressed by the equivalent formula ×%Cu.
% sulfur, 0.015 to 0.4% aluminum, 0.0030 to 0.0090% nitrogen, 0.
.. It consists of 1 to 0.3% copper, the balance iron and residue, and in the above, the ratio of manganese equivalent to sulfur is within the range of 2.0 to 4.75.

この鋼の化学的成分は、本発明によって処理されるとき
、特に有利な構造を作るように平衡されている。
The chemical composition of this steel is balanced to create a particularly advantageous structure when processed according to the invention.

次に挙げる実施例は、本発明の数個の特徴を実証するも
のである。
The following examples demonstrate several features of the invention.

珪素鋼の3つの標本(標本1乃至3)が鋳込まれ、1バ
ツチのBOF珪素鋼から、稜接立方体的配向を有する、
珪素鋼に処理された。
Three specimens of silicon steel (specimens 1 to 3) were cast from one batch of BOF silicon steel with an edge-cubic orientation.
Processed into silicon steel.

この鋼は、主として、重量比で、0.0 4 9 %の
炭素と、2.91係の珪素と、0.094%のマンガン
と、0.032係ノ硫黄と、0.036%のアルミニウ
ムと、0.0046%の窒素と、0.22%の銅と、残
りの鉄及び残渣より成っている。
This steel mainly contains, by weight, 0.049% carbon, 2.91% silicon, 0.094% manganese, 0.032% sulfur, and 0.036% aluminum. 0.0046% nitrogen, 0.22% copper, and the balance iron and residue.

上記3つの標本の処理は、高温で数時間水漬けすること
、鋼塊を作ること、約2.3mm標準寸法まで熱間圧延
すること、窒素の中で、802℃の温度で1時間焼鈍す
ること、下の2つの方法の一つによって冷却すること、
約0.33mmの最終寸法まで冷間圧延すること、80
2℃の窒素と湿った水素との混合物の中で2分間脱炭処
理にかけること、最後に、最高1121℃の水素の中で
8時間焼鈍することより成る。
The treatments for the above three specimens include immersion in water at high temperature for several hours, making steel ingots, hot rolling to a standard size of about 2.3 mm, and annealing in nitrogen at a temperature of 802°C for 1 hour. cooling by one of the following two methods,
cold rolling to a final dimension of approximately 0.33 mm, 80
It consists of a decarburization treatment for 2 minutes in a mixture of nitrogen and moist hydrogen at 2°C, and finally annealing in hydrogen at up to 1121°C for 8 hours.

上記2つの冷却方法とは、炉内冷却、空気冷却である。The above two cooling methods are in-furnace cooling and air cooling.

標本1は、炉内冷却、標本2は空気冷却、そして標本3
には塩水急冷が施された。
Sample 1 is cooled in the furnace, sample 2 is air cooled, and sample 3 is cooled in the furnace.
was subjected to salt water quenching.

標本1〜2は、導磁率及び鉄損に就いて試験された。Specimens 1-2 were tested for magnetic permeability and iron loss.

その結果は下表Iに示す通りである。上表■から、標本
2が極めて高い導磁率を有することが明らかである。
The results are shown in Table I below. From Table 3 above, it is clear that Sample 2 has extremely high magnetic permeability.

即ち、10エルステッドで1 8 5 0 G/Oe以
上である。
That is, it is 1850 G/Oe or more at 10 Oe.

標本2は、本発明によって処理されたものである。Specimen 2 was processed according to the present invention.

標本2は、802℃の水素の中で1時間焼鈍され、然る
後空気冷却され、そして単一冷間圧延で86%の低減率
で冷間圧延された。
Specimen 2 was annealed in hydrogen at 802°C for 1 hour, then air cooled, and cold rolled in a single cold roll with a reduction of 86%.

標本1にも、これ等が、焼鈍温度から、炉内冷却が施さ
れたこと以外は、前の場合と同様な処理が施された。
Specimen 1 was also subjected to the same treatment as in the previous case, except that it was subjected to furnace cooling from the annealing temperature.

標本2とは異り、標本1は、比較的低い導磁率を持って
いる。
Unlike sample 2, sample 1 has a relatively low magnetic permeability.

又これは、標本2よりも著しく高い鉄損を持っている。It also has a significantly higher iron loss than sample 2.

特別の実施例を以て上に示した本発明の新規原理
は、その他の種々の変形及びその応用を示唆しているこ
とは当業者には明らかである。
It will be apparent to those skilled in the art that the novel principles of the invention, described above with specific embodiments, suggest various other variations and applications thereof.

従って特許請求の範囲の解釈に当っては、特定の実施例
に限ってはならない。
Therefore, when interpreting the claims, the scope of the claims should not be limited to specific embodiments.

Claims (1)

【特許請求の範囲】 1 重量比で0.07%までの炭素と、2.6乃至4.
0%の珪素と、0.03乃至0.24%のマンガンと、
0.01乃至0.07%の硫黄と、0.015乃至0.
04%のアルミニウムと、0.02%までの窒素と、0
.1乃至0.5%の銅とを含有する溶融珪素鋼を調製す
ること、前記鋼を鋳込むこと、前記鋼を熱間圧延帯鋼を
作ること、前記熱間圧延帯鋼を焼鈍すること、前記焼鈍
された熱間圧延帯鋼を冷間圧延すること、前記鋼に脱炭
処理を施すこと、及び最終的組識焼鈍を施すことの諸段
階より成る、稜接立方体(Cube−on−edge
)的配向と、10エルスデツドに於いて少くとも1 8
5 0 G/Oe の導磁率とを有する磁気的珪素鋼
を製造する方法に於いて、 15秒乃至2時間の期間に亘り、790℃乃至926℃
の温度で、前記熱間圧延帯鋼を焼鈍すること、静止空気
中において室温下に前記焼鈍された熱間圧延帯鋼を冷却
すること及び、単一冷間圧延に於いて少くとも80%の
低減率で前記冷却された帯鋼を冷間圧延することの諸段
階より成る改良が施された、磁気的珪素鋼を製造する方
法。
[Claims] 1. Up to 0.07% carbon by weight; 2.6 to 4.
0% silicon and 0.03 to 0.24% manganese,
0.01-0.07% sulfur and 0.015-0.07% sulfur.
04% aluminum, up to 0.02% nitrogen, 0
.. preparing a molten silicon steel containing 1 to 0.5% copper; casting the steel; making a hot-rolled steel strip from the steel; annealing the hot-rolled steel strip; A cube-on-edge method comprising the steps of cold rolling the annealed hot rolled steel strip, decarburizing the steel, and subjecting it to a final structural annealing.
) orientation and at least 18 in 10 elsde
790° C. to 926° C. for a period of 15 seconds to 2 hours in a method for producing magnetic silicon steel having a magnetic permeability of 50 G/Oe.
annealing the hot rolled steel strip at a temperature of at least 80% in a single cold rolling; An improved method for producing magnetic silicon steel comprising the steps of cold rolling said cooled steel strip at a reduced rate.
JP49049839A 1973-05-07 1974-05-07 Manufacturing method of magnetic silicon steel Expired JPS5813605B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00357973A US3855019A (en) 1973-05-07 1973-05-07 Processing for high permeability silicon steel comprising copper
US357973 1973-05-07

Publications (2)

Publication Number Publication Date
JPS5015726A JPS5015726A (en) 1975-02-19
JPS5813605B2 true JPS5813605B2 (en) 1983-03-15

Family

ID=23407791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49049839A Expired JPS5813605B2 (en) 1973-05-07 1974-05-07 Manufacturing method of magnetic silicon steel

Country Status (8)

Country Link
US (1) US3855019A (en)
JP (1) JPS5813605B2 (en)
BE (1) BE814023A (en)
CA (1) CA1010347A (en)
DE (1) DE2422073B2 (en)
ES (1) ES426047A1 (en)
GB (1) GB1428902A (en)
IT (1) IT1011366B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925115A (en) * 1974-11-18 1975-12-09 Allegheny Ludlum Ind Inc Process employing cooling in a static atmosphere for high permeability silicon steel comprising copper
US3929522A (en) * 1974-11-18 1975-12-30 Allegheny Ludlum Ind Inc Process involving cooling in a static atmosphere for high permeability silicon steel comprising copper
US4078952A (en) * 1976-06-17 1978-03-14 Allegheny Ludlum Industries, Inc. Controlling the manganese to sulfur ratio during the processing for high permeability silicon steel
US4054470A (en) * 1976-06-17 1977-10-18 Allegheny Ludlum Industries, Inc. Boron and copper bearing silicon steel and processing therefore
US4168189A (en) * 1977-05-20 1979-09-18 Armco Inc. Process of producing an electrically insulative film
US4319936A (en) * 1980-12-08 1982-03-16 Armco Inc. Process for production of oriented silicon steel
JPS57145963A (en) * 1981-03-04 1982-09-09 Hitachi Metals Ltd Material for magnetic head and its manufacture
US4411714A (en) * 1981-08-24 1983-10-25 Allegheny Ludlum Steel Corporation Method for improving the magnetic properties of grain oriented silicon steel
JPS58100627A (en) * 1981-12-11 1983-06-15 Nippon Steel Corp Manufacture of directional electrical sheet
DE4311151C1 (en) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Grain-orientated electro-steel sheets with good properties
US7204894B1 (en) 2004-03-18 2007-04-17 Nucor Corporation Annealing of hot rolled steel coils with clam shell furnace
CN105956274B (en) * 2016-05-04 2019-06-07 武汉钢铁有限公司 Pass through the method for texture index assessment non-orientation silicon steel magnetic property

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209686A (en) * 1938-07-25 1940-07-30 Electro Metallurg Co Sheared electrical steel sheet
GB873149A (en) * 1956-11-08 1961-07-19 Yawata Iron & Steel Co Method of producing oriented silicon steel
BE563546A (en) * 1956-12-31
GB933873A (en) * 1959-07-09 1963-08-14 United States Steel Corp Method of producing grain oriented electrical steel
US3345219A (en) * 1960-05-04 1967-10-03 Vacuumschmelze Ag Method for producing magnetic sheets of silicon-iron alloys
US3287184A (en) * 1963-10-22 1966-11-22 Bethlehem Steel Corp Method of producing low carbon electrical sheet steel
US3632456A (en) * 1968-04-27 1972-01-04 Nippon Steel Corp Method for producing an electromagnetic steel sheet of a thin sheet thickness having a high-magnetic induction
US3575739A (en) * 1968-11-01 1971-04-20 Gen Electric Secondary recrystallization of silicon iron with nitrogen
US3671337A (en) * 1969-02-21 1972-06-20 Nippon Steel Corp Process for producing grain oriented electromagnetic steel sheets having excellent magnetic characteristics
BE790798A (en) * 1971-11-04 1973-02-15 Armco Steel Corp Manufacturing process of cube-on-edge orientation silicon iron from cast slabs
US3770517A (en) * 1972-03-06 1973-11-06 Allegheny Ludlum Ind Inc Method of producing substantially non-oriented silicon steel strip by three-stage cold rolling

Also Published As

Publication number Publication date
JPS5015726A (en) 1975-02-19
DE2422073B2 (en) 1975-12-11
GB1428902A (en) 1976-03-24
US3855019A (en) 1974-12-17
DE2422073A1 (en) 1974-11-28
ES426047A1 (en) 1976-07-01
BE814023A (en) 1974-10-22
IT1011366B (en) 1977-01-20
CA1010347A (en) 1977-05-17

Similar Documents

Publication Publication Date Title
US10109405B2 (en) Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
CN110055393B (en) Production method of thin-specification low-temperature high-magnetic-induction oriented silicon steel strip
US3855020A (en) Processing for high permeability silicon steel comprising copper
KR101696627B1 (en) Annealing separating agent composition for base coating free electrical steel sheet, and method for manufacturing base coating free electrical steel sheet using the same
JP2000514506A (en) Manufacturing method of unidirectional electrical steel sheet
JPS5813605B2 (en) Manufacturing method of magnetic silicon steel
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
US3855021A (en) Processing for high permeability silicon steel comprising copper
JPS5843444B2 (en) Manufacturing method of electromagnetic silicon steel
JPH04120216A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic
JPS5836048B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent iron loss
US3925115A (en) Process employing cooling in a static atmosphere for high permeability silicon steel comprising copper
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JPS5920744B2 (en) Manufacturing method of silicon steel for electromagnetic use and the silicon steel
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
RU2038389C1 (en) Method for producing silicon textured steel
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JPS6054371B2 (en) Manufacturing method of electromagnetic silicon steel
JPS6148761B2 (en)
JPS5915966B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JPS6237090B2 (en)
JPS5831367B2 (en) Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties
JP2653948B2 (en) Preparation of Standard Grain Oriented Silicon Steel without Hot Strip Annealing
JPH07252531A (en) Production of grain oriented silicon steel sheet
JPH0757887B2 (en) Manufacturing method of non-oriented electrical steel sheet with developed {100} <uvw> texture