JPS59157248A - High permeability alloy and its manufacture - Google Patents

High permeability alloy and its manufacture

Info

Publication number
JPS59157248A
JPS59157248A JP58031021A JP3102183A JPS59157248A JP S59157248 A JPS59157248 A JP S59157248A JP 58031021 A JP58031021 A JP 58031021A JP 3102183 A JP3102183 A JP 3102183A JP S59157248 A JPS59157248 A JP S59157248A
Authority
JP
Japan
Prior art keywords
alloy
magnetic permeability
temperature
room temperature
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58031021A
Other languages
Japanese (ja)
Inventor
Koichi Tamaki
玉城 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP58031021A priority Critical patent/JPS59157248A/en
Publication of JPS59157248A publication Critical patent/JPS59157248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high permeability alloy easy to heat-treat and having >=4,000 initial permeability in a low temp. region belot room temp. by restricting the amount of 2Mo+Fe+Cu in an alloy having a specified composition consisting of Ni, Mo, Cu and Fe. CONSTITUTION:This alloy consists of, by weight, 74-80% Ni, 0.5-4.5% Mo, 0.5-6.5% Cu and the balance Fe and satisfies 23%<=2Mo+Fe+Cu<=27%. The alloy is heated at about 1,000 deg.C- the m.p. in a nonoxidizing atmosphere or vacuum for about 10min-100hr, and it is cooled to ordinary temp. at 1,000- 0.1 deg.C/min cooling rate. Before carrying out the cooling, the alloy may be cooled to ordinary temp. and further heated at about 300-700 deg.C in a nonoxidizing atmosphere or vacuum for 10min-100hr. The alloy shows a significant effect as the material of a shielding case used at a temp. below room temp.

Description

【発明の詳細な説明】 この発明は室温以下の低温度領域において初透磁率が4
. OOO0以上を有する高透磁率合金およびその製造
方法に関するものである。
Detailed Description of the Invention This invention has an initial magnetic permeability of 4 in a low temperature region below room temperature.
.. The present invention relates to a high magnetic permeability alloy having OOO0 or more and a method for producing the same.

最近、超伝導体を用いたクライオトロニクス。Cryotronics using superconductors has recently been developed.

なかでも液体ヘリウム(42°に以下)中で動作するノ
ヨセフノン素子の応用研究が盛んに行なわれており、一
部実用化されてもいる。
Among them, applied research on noyosephnon elements that operate in liquid helium (below 42 degrees) is being actively conducted, and some of them have even been put into practical use.

一般に超伝導体はその材質に固有の臨界磁場以下の弱磁
場中では磁束を完全に排斥する完全反強磁性体(マイス
ナー効果)である。しかし、実際には材料中に散在する
種々の物理的、化学的欠陥に磁束がピン止め(トラ、プ
)された1 1固着される。一方、超伝導体を用いたジ
ョセフソン素子は微小磁界を入力して動作するものであ
る。それ故ノヨセフノン素子を誤動作なく動作させるた
めには外部磁界を完全に遮蔽する必要がある(残留磁場
として1μG以下が望まれている)。この磁気遮蔽の方
法としては液体ヘリウム中でノヨセフノン素子自体をシ
ールドする方法と、ノヨセフノン素子をクライオスタッ
ト中に装入しタライオスタット全体をシールドする方法
の2つが考えられている。後者の場合クライオスタット
の周シを強磁性体材料でできるだけ完全に囲み、外部磁
界に対して高い透磁率の磁気回路を構成するため+/(
高透磁率合金(例えばパーマロイ)の円筒状のケースを
クライオスタットの外周部に設ける必要かあり。
Generally, a superconductor is a completely antiferromagnetic material (Meissner effect) that completely excludes magnetic flux in a weak magnetic field below the critical magnetic field specific to the material. However, in reality, magnetic flux is pinned to various physical and chemical defects scattered throughout the material. On the other hand, a Josephson device using a superconductor operates by inputting a minute magnetic field. Therefore, in order to operate the Noyosefnon element without malfunction, it is necessary to completely shield the external magnetic field (residual magnetic field is desired to be 1 μG or less). Two methods of magnetic shielding have been considered: shielding the Noyosephnon element itself in liquid helium, and shielding the entire Taliostat by inserting the Noyosephnon element into the cryostat. In the latter case, the cryostat is surrounded as completely as possible with ferromagnetic material to form a magnetic circuit with high permeability to external magnetic fields.
Is it necessary to install a cylindrical case made of high magnetic permeability alloy (e.g. permalloy) around the outer periphery of the cryostat?

さらに十分彦シールドを行なう場合、多層構造(層間は
空1揮)を有する大規模なケースが必要と々るので、後
者の方法は操作上さらには構造上実用的ではない。一方
前者では、・や−マロイ等のケースでシールドされたノ
ヨセフンン素子をクライオスタット中に装入するため後
者に比べて前者の方が構造」二有利である。しかし、シ
ールドケース自体を液体ヘリウム中に浸漬するため2通
常の・や−マロイをケース材に用いると第1図の曲&I
 aで示されるように透磁率の低下が著しく初透磁率で
10000以下となり十分な磁気シールド効果が期待さ
れない。また液体ヘリウム中で高透磁率を有するパーマ
ロイ(第1図の曲線すで示される特性を有する。)につ
いても一部実用化されているか、このパーマロイには次
の欠点があった。
Furthermore, when performing sufficient shielding, a large-scale case with a multilayer structure (with one layer of air between the layers) is required, so the latter method is not practical in terms of operation or structure. On the other hand, in the former case, the structure of the former is more advantageous than the latter, since a shielded element shielded by a case such as Malloy is inserted into the cryostat. However, since the shield case itself is immersed in liquid helium, if ordinary 2-Ya-Malloy is used as the case material, the song &I shown in Figure 1.
As shown by a, the decrease in magnetic permeability is significant and the initial magnetic permeability is less than 10,000, and a sufficient magnetic shielding effect cannot be expected. Also, some permalloys having high magnetic permeability in liquid helium (having the characteristics shown by the curve in FIG. 1) have been put into practical use, but this permalloy has the following drawbacks.

1)高透磁率が得られる温度領域が狭いO即ぢ、4.2
°に近傍で高透磁率を有しているものの室温での初透磁
率は10000以下で冠る。この材料でシールドケース
を作製し実用に供した場合、4,2°に以下に降温した
後も、室温でのシールドケース内の残留磁場がそのまま
残るので、この残留磁場により超伝導体中に磁束がトラ
、ゾされ誤動作の原因となる。
1) The temperature range in which high magnetic permeability can be obtained is narrow, 4.2
Although it has a high magnetic permeability in the vicinity of 100°C, its initial magnetic permeability at room temperature is less than 10,000. When a shield case is made of this material and put into practical use, the residual magnetic field inside the shield case at room temperature remains as it is even after the temperature drops below 4.2 degrees, so this residual magnetic field causes magnetic flux in the superconductor. This may cause malfunction.

2)高透磁率を得るための熱処理が困’J、if。2) Heat treatment to obtain high magnetic permeability is difficult.

即ち、このパーマロイでは初透磁率が極大となる温度を
4.2°に近傍に調整するために2段熱処理を施してい
るが、この2段熱処理温度が所定のLL度から±5℃り
上変化すると初透磁率の)1ヶ大温度が大きく変化する
ため工業的1ては不才1jである。
In other words, this permalloy is subjected to two-stage heat treatment in order to adjust the temperature at which the initial magnetic permeability reaches its maximum to around 4.2°, but this two-stage heat treatment temperature is ±5°C higher than the predetermined LL degree. If the temperature changes, the temperature (initial magnetic permeability) will change greatly, so it is unskillful from an industrial perspective.

従って、この発明は熱処理が容易でかつ室温以下の低温
度領域で初透磁率4.0000以上を有する高透磁率合
金を提供することを目的にしている。
Therefore, an object of the present invention is to provide a high magnetic permeability alloy that is easy to heat-treat and has an initial magnetic permeability of 4.0000 or more in a low temperature range below room temperature.

すなわちこの発明は1重量係で、Ni74〜80% r
 Mo 0.5〜4.5%、Cu O,5〜6.5%、
残部FCと少量の不純物とからなりかつ23係≦2Mo
+Fe+Cuく27係である。室温以下の低温度領域で
初透磁率40000す」二を有する高透磁率合金である
That is, in this invention, Ni74 to 80% r
Mo 0.5-4.5%, CuO, 5-6.5%,
The remainder consists of FC and a small amount of impurities, and the coefficient 23≦2Mo
+Fe+Cu is in charge 27. It is a high magnetic permeability alloy with an initial magnetic permeability of 40,000 mm in the low temperature range below room temperature.

この高透磁率合金は、上記組成の合金を調整し。This high permeability alloy is made by adjusting the alloy with the above composition.

該合金を1000℃以上融点以下の高温で非酸化性雰囲
気中あるいは真空中において10分間以上100時間り
下の時間加熱し、十分再結晶させたのち1000℃/分
〜01℃/分の速度で常!Aまで冷却するか、あるいは
これを300〜700℃の温度で10分間以上100時
間以下の時間加熱した後、1000℃/分〜01℃/分
の速度で常慌寸で除動jすることによシ得られる。
The alloy is heated at a high temperature of 1000°C or more and below the melting point in a non-oxidizing atmosphere or in a vacuum for 10 minutes or more and 100 hours to fully recrystallize it, and then recrystallized at a rate of 1000°C/min to 0.1°C/min. Always! After cooling to A or heating it at a temperature of 300 to 700°C for 10 minutes to 100 hours, it is deactivated at a constant rate of 1000°C/min to 100°C/min. You can get good results.

この発明合金の各成分の組成を上記の如く限定した理由
を次に述べる。
The reason for limiting the composition of each component of this invention alloy as described above will be described below.

N174〜80係の範囲外でも室温近傍では高透磁率が
得られるが、室温以下で(は透磁率が著しく低下する。
High magnetic permeability can be obtained near room temperature even outside the range of N174 to 80, but the magnetic permeability significantly decreases below room temperature.

室温以下の低温度領域で初透磁率40000以上をイυ
るためにはN174〜80係とする必要がある。
Initial magnetic permeability of 40,000 or more in the low temperature range below room temperature υ
In order to do so, it is necessary to set it to N174-80.

MoおよびCuはそれぞれ最高10係程度以下でも室温
近傍で高透磁率を有するが室温以下、特に100に以下
では初透磁率が20000以下となり、室温以外の低温
度領域で高透磁率を得るためのMo量は0.5〜4.5
 % 、 Cu量は0.5〜6.5 %でかつ23%≦
2Mo + Fe + Cu < 27 %を満足する
必要がある。
Mo and Cu each have high magnetic permeability near room temperature even when the maximum coefficient is less than about 10, but below room temperature, especially below 100, the initial permeability becomes less than 20,000. Mo amount is 0.5 to 4.5
%, Cu amount is 0.5 to 6.5% and 23%≦
It is necessary to satisfy 2Mo + Fe + Cu < 27%.

訃だ脱酸、脱硫剤としてMn+Si+Ca+AA1Mg
等を合計で2%以下添加しても良い。
Mn+Si+Ca+AA1Mg as a deoxidizing and desulfurizing agent
etc. may be added in a total amount of 2% or less.

さらに2本発明合金の製造方法において、高温熱処理は
、溶体化処理、加工歪の除去のために行なうもので、加
熱温度を1000 ′C以」−融点以下としたのは再結
晶温度(約500℃)以上の加熱温度ならば再結晶は開
始するが、再結晶が不十分であ、9 、 ]、 000
℃以上特に1100℃さらに好壕しくは1200℃以」
二では十分再結晶し高透磁率を得るのに好適であるため
である。丑た熱処理の際の雰囲気は材料表面に酸化物の
生成を避けるために非酸化性雰囲気中外たは真空中が必
要である。この場合の加熱時間を10分間以上100時
間以下としたのは、加熱時間が温度と関連してお、!I
I) 14.00℃以上では10分程度の灼時間でも十
分再結晶させ得るが、加熱温度が1000℃未満の場合
100時間以上が必要となり工業的でない。なお、加熱
温度と加熱時間の関係は合金組成によシ決定する事が必
要である。上記再結晶完了状態より常温まで冷却する速
度を1000℃/分〜01℃/分の速度としたのは、1
ooo℃/分を超えると冷却による熱ひずみのために透
磁率が低下するし、また01℃/分未満では室温付近で
は高透磁率が得られるか、室温以下の低温度領域(特に
100°に以下)で初透磁率が4. OOOOJン下と
々るためである。なお、適当な除動j速度は。
Furthermore, in the manufacturing method of the alloy of the present invention, the high-temperature heat treatment is carried out for the purpose of solution treatment and removal of processing strain, and the reason why the heating temperature is set to 1000'C or higher and below the melting point is due to the recrystallization temperature (approximately 500'C or higher). If the heating temperature is higher than 9°C), recrystallization will start, but the recrystallization will be insufficient.
℃ or higher, especially 1100℃ or higher, preferably 1200℃ or higher.''
This is because it is suitable for sufficiently recrystallizing and obtaining high magnetic permeability. The atmosphere during the heat treatment must be outside a non-oxidizing atmosphere or in a vacuum to avoid the formation of oxides on the material surface. The reason why the heating time in this case was set to 10 minutes or more and 100 hours or less is because the heating time is related to the temperature! I
I) If the heating temperature is 14.00°C or higher, recrystallization can be achieved even with a heating time of about 10 minutes, but if the heating temperature is lower than 1000°C, more than 100 hours are required, which is not industrially practical. Note that the relationship between heating temperature and heating time must be determined depending on the alloy composition. The cooling rate from the above recrystallized state to room temperature was set at 1000°C/min to 01°C/min.
If it exceeds 01°C/min, the magnetic permeability will decrease due to thermal strain caused by cooling, and if it is less than 01°C/min, high magnetic permeability will be obtained near room temperature, or in the low temperature region below room temperature (especially at 100°). below) and the initial permeability is 4. This is because it goes down OOOOJ. In addition, what is the appropriate removal speed?

との範凹て2合金組成に応じて決定すれば良い。It may be determined depending on the two alloy compositions.

さらに、上記高温処理につづいて低温熱処理を行なう場
合は300〜700℃の加熱温度が適当で、この温度範
囲外では室温以下の低温度領域で初透磁率が40000
以下となる。また、この時の加熱時間および冷却速度を
それぞれ10分間以上100時間以下、および1000
℃/分〜01℃/分の速度としたのは、この範囲外でも
室温近傍での初透磁率は40000以上が得られるが。
Furthermore, when performing low-temperature heat treatment following the above-mentioned high-temperature treatment, a heating temperature of 300 to 700°C is appropriate; outside this temperature range, the initial magnetic permeability is 40,000 in the low temperature range below room temperature.
The following is true. In addition, the heating time and cooling rate at this time should be set to 10 minutes or more and 100 hours or less, and 1000 hours or less, respectively.
The reason why the speed was set to 0.degree. C./min to 0.01 DEG C./min is that an initial magnetic permeability of 40,000 or more can be obtained near room temperature even outside this range.

室温以下の低温度領域では4.0000以下となるため
である。
This is because it is 4.0000 or less in a low temperature region below room temperature.

また、室温以下の低温度領域で初透磁率40000以上
としたのは1本合金でシールドケースを作製した際の7
−ルド効果はシールドケースの寸法。
In addition, the initial magnetic permeability of 40,000 or more in the low temperature region below room temperature was obtained when the shield case was made of a single alloy.
−The shielding effect is the dimensions of the shielding case.

形状、構造VCも関連するが、初透磁率で4. OO0
0以上あれば火用土十分なシールド効果が得られるため
である。
Although the shape and structure of VC are also related, the initial magnetic permeability is 4. OO0
This is because if it is 0 or more, a sufficient shielding effect can be obtained.

次にこの発明の実施例について説明する。なおこの実施
例は本発明を限定するものではない。
Next, embodiments of this invention will be described. Note that this example does not limit the present invention.

〈実施例−1〉 767%N】−2,3%Mo −4,5% Cu −0
,5%Mn+16係Fe合金。
<Example-1> 767%N] -2,3%Mo -4,5% Cu -0
, 5% Mn+16 Fe alloy.

公称純度99係り上の原料を用い、上記組成となるよう
に配合した総重N 3 kgをアルミナルツボに入れ、
真空中(/ζて高周肢銹導炉て溶71!g L 、 C
Using raw materials with a nominal purity of 99 or higher, a total weight of N 3 kg mixed to have the above composition was placed in an alumina crucible,
Melting in a vacuum (/ζ) in a high frequency melting furnace 71!g L, C
.

Ca r Mg + AZ等の脱酸剤、脱硫剤を少量添
加し適当な形状の鋳型に浴湯を注き込み健全なインク゛
71・を得/こ。このインク、、1・を1100Cて熱
間鍛造、熱間圧延により4. mm厚の仮にカB工し、
引き続き冷間圧延により1.5箇厚とした。次いで90
0℃で軟化焼鈍後、冷間圧延によ、j;l 1 tnm
厚としこれから外径10+nm内径6配のリング状試料
を打ち抜いた。この試料に水素中で2表IK示すような
行程の熱処理を施して同表に示すような特性が得られた
。測定温度は液体ヘリウム(4,2°K)、液体窒素(
77°K)、室温(293°K)とし、一部試料につい
ては196°K(ドライアイス+アセトン)でも測定し
た。1200℃、1時間加熱後10℃/分の速度で常温
まで冷却した時(表−1の(a))の測定温度と初透磁
率の関係を第2図に曲線1で示す。
Add a small amount of deoxidizing agent and desulfurizing agent such as Car Mg + AZ, and pour the bath water into a mold of an appropriate shape to obtain a healthy ink. This ink was hot-forged and hot-rolled at 1100C. Temporarily cover with a thickness of mm,
Subsequently, it was made into a thickness of 1.5 by cold rolling. then 90
After softening and annealing at 0°C, by cold rolling, j; l 1 tnm
A ring-shaped sample with an outer diameter of 10+ nm and an inner diameter of 6 holes was punched out from the thick sample. This sample was heat-treated in hydrogen for the steps shown in Table 2, and the properties shown in Table 2 were obtained. The measurement temperature was liquid helium (4.2°K), liquid nitrogen (
77°K) and room temperature (293°K), and some samples were also measured at 196°K (dry ice + acetone). Curve 1 in FIG. 2 shows the relationship between the measured temperature and initial permeability when the sample was heated at 1200° C. for 1 hour and then cooled to room temperature at a rate of 10° C./min ((a) in Table 1).

以下余白 〈実施例−2〉 772・%Ni −2,5%Mo −4,6% Cu 
−0,5% Mn−152係Fe合金。
Below margin <Example-2> 772%Ni -2,5%Mo -4,6% Cu
-0.5% Mn-152 Fe alloy.

この合金試料を〈実施例−1〉と同様な方法で製造し1
表2に示すような種々の熱処理を施して同表に示すよう
な特性か得られた。1200’C1時間加熱後10℃/
分−の速度で常&S tで冷却した時(表−2の(a)
)の測定温度と初透磁率の関係を第2図に曲ね2で示す
This alloy sample was manufactured in the same manner as in <Example-1>.
Various heat treatments as shown in Table 2 were performed, and the properties shown in Table 2 were obtained. 10℃/after heating at 1200'C for 1 hour
When cooled at a rate of 1 min ((a) in Table 2)
) is shown by curve 2 in Fig. 2.

以下余日 実施例−1,2よシ、高温熱処理だけでも室温以下の低
温度領域で60000以上の初透磁率が得られており、
また、2段熱処理を施す場合でも460〜540℃で初
透磁率で40.000以上が得られていることから、低
温処理温度領域が広いことがわかる。
As shown in Examples 1 and 2 below, an initial magnetic permeability of 60,000 or more was obtained in the low temperature range below room temperature by high-temperature heat treatment alone.
Further, even when two-stage heat treatment is performed, an initial magnetic permeability of 40.000 or more is obtained at 460 to 540°C, which indicates that the low temperature treatment temperature range is wide.

〈実施例−3〉 表−3に示した組成の合金を〈実施例−1〉と同様な方
法で製造し評価した。その結果を表−3に示す。
<Example-3> Alloys having the compositions shown in Table-3 were produced and evaluated in the same manner as in <Example-1>. The results are shown in Table-3.

比較のために2Mo + Fe 十Cu = 27.2
%である場合シてつ因でも刊記したが、これは室温近傍
では高透磁率が得られているが、100°に以下では初
透磁率で4. OOOO以下となっている。
For comparison, 2Mo + Fe + Cu = 27.2
%, as mentioned in the paper, high magnetic permeability is obtained near room temperature, but below 100° the initial permeability is 4. It is below OOOO.

旧・丞臼 以上述べたようにN1− Mo −Cu −Fe合金(
23%≦2 Mo +Fe +Cu < 27 % )
を1000℃り上融点以下の高温で非酸化性雰囲気ある
いは真空中(でおいて少々くとも10分間以上100時
間以下の時間加熱し、 、1000℃/分〜0. I 
C/9の速度で常温まで冷却するか、あるいはこれをさ
らに300〜700℃の温度で10分間以上100時間
以下の時間加熱した後、1000℃/分〜01℃/分の
速度で常温1で除動Jすることにより熱処理が容易でか
つ室温以下の低温度領域で初透磁率4.0000以上を
有する高透磁率合金が得られる。
As mentioned above, N1-Mo-Cu-Fe alloy (
23%≦2Mo+Fe+Cu<27%)
Heated at a high temperature above 1000°C and below the melting point in a non-oxidizing atmosphere or in vacuum for a period of at least 10 minutes but not more than 100 hours, at a temperature of 1000°C/min to 0.
Cool to room temperature at a rate of C/9, or further heat at a temperature of 300 to 700°C for 10 minutes to 100 hours, and then cool to room temperature at a rate of 1000°C/min to 01°C/min. By removing the heat treatment, a high magnetic permeability alloy can be obtained which is easy to heat treat and has an initial magnetic permeability of 4.0000 or more in a low temperature range below room temperature.

それ数本合金は室温以下で用いられるシールドケースに
用いて良好なシールド効果を示す。址だ。
Several of these alloys exhibit good shielding effects when used in shield cases used below room temperature. It's a place.

室7’?A近傍でも十分な高透磁率を治していることか
ら1本合金を用いたシールドケースは室温以下のみなら
ず室温イ」近でも使用できるため工業上有益である。
Room 7'? Since it has a sufficiently high magnetic permeability even near A, a shield case using a single alloy can be used not only below room temperature but also near room temperature, which is industrially useful.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のパーマロイの初透磁率と温度との関係
を示すグラフ、第2図は2本発明の異なる実施例の初透
磁率と温度との関係を示すグラフである。 1・・・実施例1の条件(、)で処理した合金の特性。 2・・・実室例2の条件(b)で処理した合金の特性。 温度(°K)
FIG. 1 is a graph showing the relationship between the initial magnetic permeability and temperature of a conventional permalloy, and FIG. 2 is a graph showing the relationship between the initial magnetic permeability and temperature of two different embodiments of the present invention. 1...Characteristics of the alloy treated under the conditions (,) of Example 1. 2...Characteristics of the alloy treated under the condition (b) of Actual Example 2. Temperature (°K)

Claims (1)

【特許請求の範囲】 1 重量部にてN174〜80%、 Mo、 0.5〜
4.5%。 Cu0.5〜65%、残部Feと少量の不純物とからな
シ、かつ23%< 2 Mo’ + Fe + Cu 
< 27 %である。室温以下の低温度領域で初透磁率
4. OOO0以上を有することを特徴とする高透磁率
合金。 2、重量部にてN174〜80裂、Moo、5〜45%
。 CuO,5〜6.5%、残部Feと少量の不純物とから
なり、かつ23%< 2 Mo + Fe + Cu 
< 27 %でちる合金を得、該合金を1000℃以上
融点以下の温度で非酸化性雰囲気あるいは真空中におい
て10分間以上100時間以下の時間加熱した後。 1000℃/分〜01℃/分の速度で常温まで冷却する
ことを特徴とした室温以下の低温度領域で初透磁率4.
 OOO0以上を有する高透磁率合金の製造方法。 3、重量部にてN174〜80%、 Mo 0.5〜4
.5% 。 Cu0,5〜65%゛、残部Feと少量の不純物とから
なり、かつ23%≦2Mo + Fe 十Cu < 2
7%である合金を得、該合金を1000℃以上融点以下
の温度で非酸化性雰囲気あるいは真空中において少なく
とも10分間以上100時間以下の組成(C対応した適
当時間加熱した後常温1で冷却し、これをさらに300
〜700℃の温度で非酸化性雰囲気あるいは真空中にお
いて10分間」メ上100時間以下の時間加熱した後、
 、1000℃/分〜01℃/分の速度で常温まで冷却
することを特徴とした室温以下の低温度領域で初透磁率
40000以上を有する高透磁率合金の製造方法。
[Claims] 1 N174-80%, Mo, 0.5-80% by weight
4.5%. Cu0.5-65%, balance Fe and small amount of impurities, and 23%<2 Mo' + Fe + Cu
<27%. Initial magnetic permeability in the low temperature range below room temperature 4. A high magnetic permeability alloy characterized by having OOO0 or more. 2. N174-80 split, Moo, 5-45% by weight
. CuO, 5-6.5%, balance Fe and a small amount of impurities, and 23% < 2 Mo + Fe + Cu
<27%, and after heating the alloy at a temperature of 1000°C or higher and lower than the melting point in a non-oxidizing atmosphere or in vacuum for 10 minutes or more and 100 hours or less. The initial magnetic permeability is 4.0 in the low temperature range below room temperature, which is characterized by cooling down to room temperature at a rate of 1000°C/min to 01°C/min.
A method for manufacturing a high magnetic permeability alloy having OOO0 or more. 3. N174-80% by weight, Mo 0.5-4
.. 5%. Cu0.5~65%゛, the balance consists of Fe and a small amount of impurities, and 23%≦2Mo+Fe+Cu<2
7%, the alloy is heated at a temperature of 1000°C or higher and lower than the melting point in a non-oxidizing atmosphere or in vacuum for at least 10 minutes and 100 hours or less for an appropriate time corresponding to the composition (C), and then cooled to room temperature 1. , this is further 300
After heating for up to 100 hours at a temperature of ~700°C for 10 minutes in a non-oxidizing atmosphere or in vacuum,
, a method for producing a high magnetic permeability alloy having an initial magnetic permeability of 40,000 or more in a low temperature region below room temperature, characterized by cooling to room temperature at a rate of 1000° C./min to 01° C./min.
JP58031021A 1983-02-28 1983-02-28 High permeability alloy and its manufacture Pending JPS59157248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031021A JPS59157248A (en) 1983-02-28 1983-02-28 High permeability alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031021A JPS59157248A (en) 1983-02-28 1983-02-28 High permeability alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPS59157248A true JPS59157248A (en) 1984-09-06

Family

ID=12319861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031021A Pending JPS59157248A (en) 1983-02-28 1983-02-28 High permeability alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS59157248A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115019A (en) * 1973-03-08 1974-11-02
JPS503912A (en) * 1973-05-17 1975-01-16
JPS5277820A (en) * 1975-12-24 1977-06-30 Nippon Mining Co Ltd Wear resistant high permeability alloy
JPS5816893A (en) * 1981-07-06 1983-01-31 ヘキスト・アクチエンゲゼルシヤフト Supporter for offset printing cylinder and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115019A (en) * 1973-03-08 1974-11-02
JPS503912A (en) * 1973-05-17 1975-01-16
JPS5277820A (en) * 1975-12-24 1977-06-30 Nippon Mining Co Ltd Wear resistant high permeability alloy
JPS5816893A (en) * 1981-07-06 1983-01-31 ヘキスト・アクチエンゲゼルシヤフト Supporter for offset printing cylinder and its manufacture

Similar Documents

Publication Publication Date Title
JP2020509182A (en) Non-oriented electrical steel sheet and manufacturing method thereof
CZ398397A3 (en) Process for producing magnetic components made of soft magnetic alloy based on iron with nanocrystalline structure
RU2608250C1 (en) Method of texturized electric steel sheet production and primary recrystallized steel sheet for production of texturized electric steel sheet
US7291230B2 (en) Grain-oriented electrical steel sheet extremely excellent in film adhesiveness and method for producing the same
PL91102B1 (en)
US3892604A (en) Method of producing normal grain growth (110) {8 001{9 {0 textured iron-cobalt alloys
US3351501A (en) Process for producing magnetic sheets with cube-on-face grain texture
JP2001158950A (en) Silicon steel sheet for small-size electrical equipment, and its manufacturing method
Bouchara et al. Ordering influence on magnetic properties of rapidly quenched Fe-6.5 wt% Si
Varga et al. Time and temperature dependence of nanocrystalline structure formation in a Finemet-type amorphous alloy
US3868278A (en) Doubly oriented cobalt iron alloys
US3148092A (en) Process for producing sheets of magnetic materials
US3214303A (en) Process of retaining a dispersed second phase until after the texture developing anneal
JPS5843444B2 (en) Manufacturing method of electromagnetic silicon steel
JPS59157248A (en) High permeability alloy and its manufacture
US20230035269A1 (en) Double-oriented electrical steel sheet and manufacturing method therefor
US4265683A (en) Development of grain-oriented iron sheet for electrical apparatus
US3925115A (en) Process employing cooling in a static atmosphere for high permeability silicon steel comprising copper
Degauque et al. Effect of order-disorder transition on magnetic properties of rapidly solidified high-silicon iron ribbons
JPS6248741B2 (en)
JP2728721B2 (en) Method for producing bi-directional electrical steel sheet with good characteristics
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JPH06287721A (en) Amorphous alloy thin strip enhanced in crystallization resistance on surface
JPH0261031A (en) Non-oriented silicon steel sheet excellent in magnetic property and its production
JPS6164861A (en) Manufacture of amorphous alloy having small magnetic loss and high angular property