JPS59143037A - Alloy having high magnetic permeability and its production - Google Patents
Alloy having high magnetic permeability and its productionInfo
- Publication number
- JPS59143037A JPS59143037A JP58016893A JP1689383A JPS59143037A JP S59143037 A JPS59143037 A JP S59143037A JP 58016893 A JP58016893 A JP 58016893A JP 1689383 A JP1689383 A JP 1689383A JP S59143037 A JPS59143037 A JP S59143037A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic permeability
- temp
- temperature
- room temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、室温以下の低温度領域において初透磁率が
20000以上を有する高透磁率合金およびその製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high magnetic permeability alloy having an initial magnetic permeability of 20,000 or more in a low temperature region below room temperature, and a method for producing the same.
最近1、超伝導体を用いたフライ第1・ロニクス。Recently, the first fly ronics using superconductors.
なかでも液体ヘリウム(4,2°に以下)中で作動する
ノヨセフソン素子の応用研究が盛んに行なわれており、
一部実用化されてもいる。In particular, applied research on No-Josefson elements that operate in liquid helium (below 4.2 degrees) is being actively conducted.
Some of them have even been put into practical use.
一般に、超伝導体は、その材質に固有の臨界磁場以下の
弱磁場中では、磁束を完全に排斥する完全反強磁性体(
マイスナー効果)である。しかし実際には、イ′、A旧
中Vこ散在する種々の物理的・化学的欠陥に磁束がピン
止め(トラップ)されたまま固着される。一方、ノヨセ
フソン素子は微小磁界を入力して動作するものである。In general, superconductors are completely antiferromagnetic (completely antiferromagnetic) that completely exclude magnetic flux in a weak magnetic field below the critical magnetic field specific to the material.
Meissner effect). However, in reality, the magnetic flux remains pinned (trapped) in various physical and chemical defects scattered throughout A', A, V, and V. On the other hand, the Noyosefson element operates by inputting a minute magnetic field.
それ故、ジョセフソン素子を誤動作なく動作させるため
には、外部磁場を完全に遮蔽する必要がある(残留磁場
として1μG以下)。Therefore, in order to operate the Josephson element without malfunction, it is necessary to completely shield the external magnetic field (residual magnetic field of 1 μG or less).
この磁気遮蔽の方法としては、ノヨセフソン素子自体を
シールドする方法と、ジョセフソン素子をクライオスタ
ット中に装入しクライオスタットをシールドする方法の
2つが考えられている。後者の場合、クライオスタット
の周りを強磁性体制料でできるだけ完全に囲み、外部磁
界に対して高い透磁率の磁気回路を構成するために、高
透磁率イ]料(例えば・ぐ−マロイ)の円筒状のケース
を。Two methods of magnetic shielding are considered: shielding the Noyosefson element itself, and shielding the cryostat by inserting the Josephson element into the cryostat. In the latter case, in order to surround the cryostat as completely as possible with a ferromagnetic material and to construct a magnetic circuit with high permeability to external magnetic fields, a cylinder of high permeability material (e.g., Gumalloy) is used. case.
クライオスタットの外周部に設ける必要があり。It must be installed on the outer periphery of the cryostat.
さらに十分な7−ルドを行なう場合、多層構造(層間は
空隙)を有する大規模なケースが必要となるので、後者
の方法は実用的ではない。一方前者テは、ノソーマロイ
等でシールドされたノヨセフソン素子をクライオスタッ
ト中に装入するため。Furthermore, the latter method is not practical because a large-scale case with a multilayer structure (with gaps between layers) is required to carry out sufficient 7-fold heating. On the other hand, the former is for loading the Noyosefson element shielded with Nosomalloy etc. into the cryostat.
後者に比べて前者の方が構造上有利ではある。しかし、
クライオスタット中の温度は4..2’に以下であるた
め1通常の・ぐ−マロイでは第1図の曲線aで示すよう
に透磁率が低下し、初透磁率で]、0000以下となり
、十分な磁気/−ルドが期待されない。The former is structurally more advantageous than the latter. but,
The temperature in the cryostat is 4. .. 2', the permeability decreases as shown by curve a in Figure 1, and the initial permeability is less than 0,000, and sufficient magnetic flux is not expected. .
捷だ液体ヘリウム中で高透磁率を有する・ぐ−マIコイ
(第1図の曲線すで示さる特性を有する)も一部実用化
されているが、このパーマロイには次の欠点があっ/こ
。Guma I carp, which has high magnetic permeability in frozen liquid helium (having the characteristics shown by the curve in Figure 1), has been put into practical use to some extent, but this permalloy has the following drawbacks. /child.
1)高透磁率が得られる温度領域が狭い即ち、42°に
で高透磁率を有しているが室温での初透磁率は1.00
00以下である。この月利でシールドケースを作製し実
用に供した場合。1) The temperature range in which high magnetic permeability can be obtained is narrow, i.e., it has high magnetic permeability at 42°, but the initial magnetic permeability at room temperature is 1.00.
00 or less. If a shield case is made and put into practical use at this monthly rate.
42°に以下に降温した後も、室温での7−ルドケース
内の残留磁場がその゛まま残るので、十分な磁気シール
ドが行なわれない。Even after the temperature is lowered to below 42 degrees, the residual magnetic field inside the 7-cold case at room temperature remains as it is, so that sufficient magnetic shielding is not performed.
2)高透磁率を得るだめの熱処理が困難即ち、この従来
のパーマロイでは、初透磁率が極大となる温度を42°
に近傍に調整するために、2段熱処理を施しているが、
この2段処理温度が所定の温度から±5℃以上変化する
と初透磁率の極太温度が大きく変化するため工業的に不
利である。2) Heat treatment to obtain high magnetic permeability is difficult. In other words, in this conventional permalloy, the temperature at which the initial magnetic permeability reaches a maximum is 42 degrees.
Two-stage heat treatment is applied to adjust the temperature close to .
If this two-stage treatment temperature changes by ±5° C. or more from the predetermined temperature, the extreme temperature of the initial magnetic permeability will change significantly, which is industrially disadvantageous.
従って、この発明は、熱処理が容易でかつ室温以下の低
温度領域で初透磁率20000以上を有する高透磁率合
金を提供することを目的にしている・すなわち、この発
明は1重量%で、Ni70〜84 % 、 Mo0.5
〜5.5%、CuO,5〜6.5%、Mn2%以下、S
i1%以下、残部Feと少量の不純物とからなり、室温
以下の低温度領域で初透磁率20000」ノ、」二を有
する高透磁率合金である。この高透磁率合金は、上記組
成の合金を調整し、該合金を1000℃以上融点以下の
高温で非酸化性雰囲気中あるいは真空中において10分
間以上100時間以下加熱し十分再結晶化させた後、1
000℃/分〜0.1℃/分の速度で常温まで冷却する
か、あるいはこれをさらに300〜700℃の温度で1
0分間以上100時間以下加熱した後、1000℃/分
〜01℃/分の速度で常温まで冷却することにより得ら
れるO
この発明合金の各成分の組成を」−記の如く限定した理
由を次に述べる。Therefore, the object of this invention is to provide a high magnetic permeability alloy that is easy to heat-treat and has an initial magnetic permeability of 20,000 or more in a low temperature region below room temperature. ~84%, Mo0.5
~5.5%, CuO, 5-6.5%, Mn 2% or less, S
It is a high magnetic permeability alloy consisting of i1% or less, the balance Fe and a small amount of impurities, and has an initial magnetic permeability of 20,000 in the low temperature range below room temperature. This high magnetic permeability alloy is obtained by preparing an alloy having the above composition, heating the alloy at a high temperature of 1000°C or more and below the melting point in a non-oxidizing atmosphere or in a vacuum for 10 minutes or more and 100 hours or less to fully recrystallize it. ,1
Cool to room temperature at a rate of 000°C/min to 0.1°C/min, or further cool to room temperature at a temperature of 300 to 700°C.
O obtained by heating for 0 minutes to 100 hours and then cooling to room temperature at a rate of 1000°C/min to 01°C/min I will explain.
N170〜84%の範囲外では、室温近傍は言うに及ば
ず室温以下の低温領域で透磁率が低下するためである。This is because outside the range of N170 to 84%, the magnetic permeability decreases not only near room temperature but also in a low temperature region below room temperature.
MoおよびCuが約10%以下では室温側近で高透磁率
を有するが2室温以下、特に100°に以下では初透磁
率が20000以下の小さな値になり、室温以下の低温
度領域で高透磁率を得るだめのM。When Mo and Cu are less than about 10%, it has high magnetic permeability near room temperature, but below 2 room temperature, especially below 100°, the initial permeability becomes small, less than 20,000, and high magnetic permeability occurs in the low temperature region below room temperature. M who can't get it.
の上限は5.5%、 Cuの上限は65%である。また
MoおよびCuの下限を05%としたのはこれ未満では
室温以下の低温度領域で初透磁率か20000以上とな
らないためである。The upper limit for Cu is 5.5%, and the upper limit for Cu is 65%. The lower limit of Mo and Cu is set at 05% because if it is less than this, the initial magnetic permeability will not reach 20,000 or more in a low temperature region below room temperature.
MnおよびSiは加工性を改善するために添加するもの
でMn142%以下+S+は1%以下で十分改善できる
。Mn and Si are added to improve workability, and a sufficient improvement can be achieved with Mn of 142% or less + S+ of 1% or less.
さらに本発明合金の製造方法において、高温熱処理は、
溶体化処理、加工歪の除去のために行なうもので、加熱
温度を1000℃以上融点以下としたのは再結晶温度(
約500℃)以上の加熱温度ならば再結晶は開始するが
再結晶が不十分であり1000℃以上特に1100℃、
さらに好ましくは1200℃以上では十分再結晶し高透
磁率を得るのに好適であるからである。なお加熱温度の
上限を融点(約1500℃)以下としたのはこの熱処理
は成型加工後に行なうもので融点以上に加熱できないた
めである。捷だこの熱処理の際の雰囲気は材料表面に酸
化物の生成を避けるために非酸化性雰囲気中または真空
中が必要である。Furthermore, in the method for producing the alloy of the present invention, the high temperature heat treatment
This is carried out to remove solution heat treatment and processing strain, and the reason why the heating temperature is 1000°C or higher and lower than the melting point is because the recrystallization temperature (
Recrystallization will start if the heating temperature is higher than 1000°C, especially 1100°C, but recrystallization will be insufficient.
More preferably, the temperature is 1200° C. or higher because it is suitable for sufficiently recrystallizing and obtaining high magnetic permeability. Note that the upper limit of the heating temperature is set below the melting point (approximately 1500° C.) because this heat treatment is performed after molding and cannot be heated above the melting point. The atmosphere during the heat treatment of the shredder must be a non-oxidizing atmosphere or a vacuum in order to avoid the formation of oxides on the surface of the material.
この場合の加熱時間を10分間以上100時間以下とし
たのは、加熱時間が温度と関連しており。The reason why the heating time in this case is set to 10 minutes or more and 100 hours or less is that the heating time is related to the temperature.
1400℃以上では10分程度の短時間でも十分再結晶
させ得るが、加熱温度が1000℃未満の場合100時
間以上が必要となり、工業的で々い。なお加熱温度と加
熱時間の関係は合金組成により決定することが必要であ
る。At 1400° C. or higher, recrystallization can be sufficiently performed in a short time of about 10 minutes, but if the heating temperature is lower than 1000° C., 100 hours or more is required, which is industrially laborious. Note that the relationship between heating temperature and heating time needs to be determined depending on the alloy composition.
上記の再結晶完了状態より常温まで冷却する速度を10
00 ’c/e〜0.1 職分の速度としたのは。The rate of cooling from the above recrystallization completion state to room temperature is 10
00 'c/e ~ 0.1 The speed of the job was chosen.
1o o Or/’;’>以上では冷却による熱ひずみ
カニ生じ。At temperatures above 1o o Or/';', thermal distortion occurs due to cooling.
透磁率を低下させるし、捷だ0.1 ’C/’、+ J
−)、下では室温付近では高透磁率が得られるが、室温
以下のイ氏温度領域(特に1000.に以下)で初透磁
率カニ20000以下となるためである。なお、適当な
(冷却速度はこの範囲で1合金組成に応じて決定すれば
良い。It lowers the magnetic permeability and is 0.1 'C/', + J
-), high magnetic permeability can be obtained near room temperature, but the initial magnetic permeability becomes 20,000 or less in the temperature range below room temperature (particularly below 1,000 degrees Celsius). Note that an appropriate cooling rate may be determined within this range depending on the alloy composition.
さらに上記高温熱処理につづいて低温熱処理を行なう場
合は300〜700℃の加熱温度75g適当で、この温
度範囲外では室温以下の低温度領域で初透磁率が200
00以下と々る。またこの時の力1熱時間および冷却速
度を、それぞれ10分間以上100時間以下および10
00℃2勿〜01(分の速度としたのは、この範囲外で
も室温近傍での初透磁率は20000以上が得られるが
、室温以下のイ氏温度領域では20000以下となるた
めである。Furthermore, when performing low-temperature heat treatment following the above-mentioned high-temperature heat treatment, a heating temperature of 75g at 300 to 700°C is appropriate; outside this temperature range, the initial magnetic permeability is 200 in the low temperature range below room temperature.
00 or less. In addition, the force 1 heat time and cooling rate at this time are 10 minutes to 100 hours and 10 minutes to 100 hours, respectively.
The reason why the speed is set at 00° C. 2 minutes to 01 minutes is because an initial magnetic permeability of 20,000 or more near room temperature can be obtained even outside this range, but it becomes 20,000 or less in the temperature range of 2 degrees Fahrenheit below room temperature.
また室温以下の低温度領域で初透磁率20000以上と
したのは2本合金でシールドケースを作製した際のシー
ルド効果はシールドケースの寸法。In addition, the initial magnetic permeability is 20,000 or more in the low temperature range below room temperature, and the shielding effect when making a shield case with two alloys is due to the dimensions of the shield case.
形状にも関連するが、初透磁率で20600以上より好
捷しくは4000以上あれば実用上十分なシールド効果
が得られるためである。This is because, although it is related to the shape, a practically sufficient shielding effect can be obtained if the initial magnetic permeability is 20,600 or more, preferably 4,000 or more.
次にこの発明の実施例について説明する。なお・この実
施例は本発明を限定するものではない。Next, embodiments of this invention will be described. Note that this example does not limit the present invention.
以下余白
〈実施例−1〉
77%Ni −2,4% Mo = 4.7%Cu −
Q、6 % MnO,3% Si −Fe合金。Below margin <Example-1> 77%Ni -2.4% Mo = 4.7%Cu -
Q, 6% MnO, 3% Si-Fe alloy.
公称純度99係以上の原料を用い、上記組成となるよう
に配合した総重量3 kgをアルミナルツボに入れ、真
空中にて高周波誘導炉で溶解し、C1Ca2Mg、At
等の脱酸剤、脱硫剤を少量(1%以下)添加し、適当な
形状の鋳壓に溶湯を注ぎ込み健全なインコ゛ットを得た
。さらにこのインゴットを1100℃で熱間鍛造、熱間
圧延によシ4叫厚の板に加工し、これを冷間圧延によシ
15調厚としだ。次いで900℃で加熱し軟化させた後
、冷間圧延により1順厚としこれから外径10陶、内径
6tanのリング状試料を打ち抜いた。この試料に水素
中で8表1に示すような種々の熱処理を施して同表に示
すような特性が得られた。測定温度は液体ヘリウム(4
2°K)液体窒素(77°K)、室温(293°K)と
し、一部試料についてはドライア ′イス+アセトン(
196°K)でも測定した。表1の熱処理条件(a)で
処理した試料の測定温度と初透磁率の関係を第2図に曲
線1で示す。Using raw materials with a nominal purity of 99 or higher, a total weight of 3 kg mixed to have the above composition was placed in an alumina crucible and melted in a high frequency induction furnace in a vacuum to form C1Ca2Mg, At.
A small amount (1% or less) of a deoxidizing agent and a desulfurizing agent were added, and the molten metal was poured into a casting pot of an appropriate shape to obtain a sound ingot. Further, this ingot was hot-forged at 1100°C and hot-rolled into a plate with a thickness of 4 mm, which was then cold-rolled to a thickness of 15 mm. Next, the material was heated at 900° C. to soften it, and then cold-rolled to a thickness of 1 mm, and a ring-shaped sample with an outer diameter of 10 mm and an inner diameter of 6 mm was punched out. This sample was subjected to various heat treatments in hydrogen as shown in Table 1, and the properties shown in Table 1 were obtained. The measurement temperature is liquid helium (4
2°K) liquid nitrogen (77°K), room temperature (293°K), and for some samples dry ice + acetone (
196°K) was also measured. The relationship between the measured temperature and the initial magnetic permeability of the sample treated under the heat treatment condition (a) in Table 1 is shown by curve 1 in FIG.
表 1
〈実施例−2〉
76%Ni−2,O%Mo−4,3%Cu−0,4%当
−〇、2%Si −Fe合金。Table 1 <Example-2> 76%Ni-2,O%Mo-4,3%Cu-0.4%Al-〇,2%Si-Fe alloy.
この合金試料を〈実施例−1〉と同様な方法で製造し1
表2に示すような種々の熱処理を施して同表に示すよう
な特性が得られた。表2の熱処理条件(a)で処理した
試料の測定温度と初透磁率の関係を第2図に曲線2で示
す。This alloy sample was manufactured in the same manner as in <Example-1>.
Various heat treatments as shown in Table 2 were performed, and the properties shown in Table 2 were obtained. The relationship between the measured temperature and the initial magnetic permeability of the sample treated under the heat treatment condition (a) in Table 2 is shown by curve 2 in FIG.
実施例1および2よシ室温以下の低温度領域で初透磁率
が40000以上得られていることがわかる。It can be seen that in Examples 1 and 2, an initial magnetic permeability of 40,000 or more was obtained in a low temperature region below room temperature.
表 2
〈実施例−3〉
表3に示しだ組成の合金を〈実施例−1〉と同様な方法
で製造し評価した。その結果を表3に示すO
以下余日
上記実施例かられかるように、 Ni −Mo −Cu
−Mn −Si合金を1000℃以上融点以下の高温で
非酸化性雰囲気あるいは真空中において少なくとも10
分間以上100時間以下加熱し、1000℃h〜0.1
℃/分の速度で常温1で冷却するか、あるいはこれをさ
らに300〜700℃の温度で10分間以上100時間
以下加熱した後1000℃/分〜0.1℃/分の速度で
常温まで冷却することによシ熱処理が容易でかつ室温以
下の低温領域で初透磁率20000以上を有する高透磁
率合金が得られる。Table 2 <Example-3> Alloys having the compositions shown in Table 3 were produced and evaluated in the same manner as in <Example-1>. The results are shown in Table 3.
-Mn-Si alloy at a high temperature above 1000℃ and below the melting point in a non-oxidizing atmosphere or in vacuum for at least 10
Heating for at least 100 hours at 1000℃h~0.1
Cool to room temperature 1 at a rate of 1°C/min, or further heat at a temperature of 300 to 700°C for 10 minutes to 100 hours, and then cool to room temperature at a rate of 1000°C/min to 0.1°C/min. By doing so, a high magnetic permeability alloy can be obtained which is easy to heat-treat and has an initial magnetic permeability of 20,000 or more at a low temperature below room temperature.
それ数本合金は室温以下で用いられるシールドケースに
用いて良好なシールド効果を示す。Several of these alloys exhibit good shielding effects when used in shield cases used below room temperature.
第1図は、従来のパーマロイの初透磁率と温度との関係
を示すグラフ、第2図は本発明の異なる実施例の初透磁
率と温度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the initial magnetic permeability and temperature of a conventional permalloy, and FIG. 2 is a graph showing the relationship between the initial magnetic permeability and temperature of different embodiments of the present invention.
Claims (1)
5.5% 、 Cu 0.5〜6.5%、 Mn 2%
以下、Si1%以下。 残部Feと少量の不純物とからなシ、室温以下の低温度
領域で初透磁率20000以上を有することを特徴とす
る高透磁率合金。 2、重量%にてNi70〜84%、 Mo0.5〜5.
5%、 Cu 0.5〜6.5%、 Mn 2%以下、
Si1%以下。 残部Feと少量の不純物とからなる合金を得、該合金を
1000℃以上融点以下の温度で非酸化性雰囲気あるい
は真空中において10分間以上100時間以下の時間加
熱した後、10・00し分〜0.1℃/分の速度で常温
まで冷却することを特徴とした室温以下の低温度領域で
初透磁率20000以上を有する高透磁率合金の製造方
法。 3、 重量%にてNi70〜84%、Mo0.5〜55
%、’ Cu 0.5−〜6.5%、Mn2%以下、S
i1%以下あ残部Feと少量の不純物とからなる合金を
得8該合金を1000℃以上融点以下の温度で非酸化性
雰囲気あるいは真空中において少なくとも10分間以上
100時間以下の組成に対応した適幽時間加熱した後、
常温まで冷却し、これをさら[300℃〜700℃の温
度で非酸化性雰囲気あるいは真空中において10分間以
上100時間以下の時間加熱した後、1000’C/e
〜0.IV分の速度で常温まで冷却することを特徴とし
た室温以下の低温度領域で初透磁率20000以上を有
する高透磁率合金の製造方法。[Claims] 1. Ni 70-84%, Mo 0.5-84% by weight
5.5%, Cu 0.5-6.5%, Mn 2%
Below, Si is 1% or less. A high magnetic permeability alloy comprising the balance Fe and a small amount of impurities, and having an initial magnetic permeability of 20,000 or more in a low temperature range below room temperature. 2. Ni 70-84% by weight, Mo 0.5-5.
5%, Cu 0.5-6.5%, Mn 2% or less,
Si 1% or less. An alloy consisting of the remainder Fe and a small amount of impurities is obtained, and the alloy is heated at a temperature of 1000° C. or higher and lower than the melting point in a non-oxidizing atmosphere or in a vacuum for 10 minutes or more and 100 hours or less, and then heated for 10.00 minutes to 100 hours. A method for producing a high magnetic permeability alloy having an initial magnetic permeability of 20,000 or more in a low temperature region below room temperature, characterized by cooling to room temperature at a rate of 0.1° C./min. 3. Ni70-84%, Mo0.5-55 in weight%
%, ' Cu 0.5--6.5%, Mn 2% or less, S
An alloy consisting of i1% or less with the balance Fe and a small amount of impurities is obtained.8 The alloy is heated in a suitable temperature suitable for the composition in a non-oxidizing atmosphere or in vacuum at a temperature of 1000°C or higher and lower than the melting point for at least 10 minutes and 100 hours. After heating for an hour,
Cool to room temperature and further heat at 300°C to 700°C in a non-oxidizing atmosphere or in vacuum for 10 minutes to 100 hours, and then heat to 1000'C/e.
~0. A method for producing a high magnetic permeability alloy having an initial magnetic permeability of 20,000 or more in a low temperature region below room temperature, characterized by cooling to room temperature at a rate of IV minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58016893A JPS59143037A (en) | 1983-02-05 | 1983-02-05 | Alloy having high magnetic permeability and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58016893A JPS59143037A (en) | 1983-02-05 | 1983-02-05 | Alloy having high magnetic permeability and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59143037A true JPS59143037A (en) | 1984-08-16 |
JPS6248741B2 JPS6248741B2 (en) | 1987-10-15 |
Family
ID=11928832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58016893A Granted JPS59143037A (en) | 1983-02-05 | 1983-02-05 | Alloy having high magnetic permeability and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59143037A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008099812A1 (en) * | 2007-02-13 | 2008-08-21 | Hitachi Metals, Ltd. | Magnetic shielding material, magnetic shielding component, and magnetic shielding room |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49115019A (en) * | 1973-03-08 | 1974-11-02 | ||
JPS503912A (en) * | 1973-05-17 | 1975-01-16 | ||
JPS503916A (en) * | 1973-05-17 | 1975-01-16 | ||
JPS5277820A (en) * | 1975-12-24 | 1977-06-30 | Nippon Mining Co Ltd | Wear resistant high permeability alloy |
JPS551332A (en) * | 1978-06-16 | 1980-01-08 | Teijin Ltd | Spun like two layer structure fluf yarn and method |
JPS5741342A (en) * | 1980-08-25 | 1982-03-08 | Tohoku Metal Ind Ltd | Magnetic alloy |
JPS57149440A (en) * | 1981-03-11 | 1982-09-16 | Res Inst Electric Magnetic Alloys | Magnetic alloy for magnetic sound recording and reproducing head and prepartion thereof |
-
1983
- 1983-02-05 JP JP58016893A patent/JPS59143037A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49115019A (en) * | 1973-03-08 | 1974-11-02 | ||
JPS503912A (en) * | 1973-05-17 | 1975-01-16 | ||
JPS503916A (en) * | 1973-05-17 | 1975-01-16 | ||
JPS5277820A (en) * | 1975-12-24 | 1977-06-30 | Nippon Mining Co Ltd | Wear resistant high permeability alloy |
JPS551332A (en) * | 1978-06-16 | 1980-01-08 | Teijin Ltd | Spun like two layer structure fluf yarn and method |
JPS5741342A (en) * | 1980-08-25 | 1982-03-08 | Tohoku Metal Ind Ltd | Magnetic alloy |
JPS57149440A (en) * | 1981-03-11 | 1982-09-16 | Res Inst Electric Magnetic Alloys | Magnetic alloy for magnetic sound recording and reproducing head and prepartion thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008099812A1 (en) * | 2007-02-13 | 2008-08-21 | Hitachi Metals, Ltd. | Magnetic shielding material, magnetic shielding component, and magnetic shielding room |
US8157929B2 (en) | 2007-02-13 | 2012-04-17 | Hitachi Metals, Ltd. | Magnetic shielding material, magnetic shielding component, and magnetic shielding room |
JP5326576B2 (en) * | 2007-02-13 | 2013-10-30 | 日立金属株式会社 | Geomagnetic shielding materials, geomagnetic shielding components and geomagnetic shielding rooms |
Also Published As
Publication number | Publication date |
---|---|
JPS6248741B2 (en) | 1987-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0158261B2 (en) | ||
JPS625972B2 (en) | ||
US3148092A (en) | Process for producing sheets of magnetic materials | |
KR100405929B1 (en) | Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head | |
JPS63272007A (en) | Ultra-high coercive force permanent magnet exhibiting maximum energy product and manufacture thereof | |
JPS59143037A (en) | Alloy having high magnetic permeability and its production | |
JPS6212296B2 (en) | ||
Roy et al. | Effect of annealing treatment on soft magnetic properties of Fe–6.5 wt% Si wide ribbons | |
JPH0335801B2 (en) | ||
JPS581183B2 (en) | High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio | |
CN102061425B (en) | High-sensitivity magnetically sensitive material with wide linear area | |
JPS5947018B2 (en) | Magnetic alloy for magnetic recording and playback heads and its manufacturing method | |
JPS633943B2 (en) | ||
JPS5924177B2 (en) | Square hysteresis magnetic alloy | |
JPH0772293B2 (en) | Method for manufacturing Fe-Co-V based cast magnetic component | |
JP7385884B2 (en) | Supersaturated solid solution soft magnetic material and its manufacturing method | |
JPS58150119A (en) | Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head | |
CN111411312B (en) | Fe-Si-B-P-Cu nanocrystalline magnetically soft alloy material with preferred orientation and preparation method thereof | |
CN110098028A (en) | Iron base amorphous magnetically-soft alloy and preparation method thereof | |
JPS5953344B2 (en) | Iron-boron glassy magnetic alloy | |
JPS5926647B2 (en) | Method for manufacturing non-magnetic steel with excellent mechanical properties | |
JPS6218619B2 (en) | ||
JPS59157248A (en) | High permeability alloy and its manufacture | |
Masumoto et al. | Equilibrium Diagram of Mn–Ga Binary Alloys | |
JPS6057686B2 (en) | Permanent magnetic ribbon and its manufacturing method |