JPS6246073B2 - - Google Patents

Info

Publication number
JPS6246073B2
JPS6246073B2 JP20903182A JP20903182A JPS6246073B2 JP S6246073 B2 JPS6246073 B2 JP S6246073B2 JP 20903182 A JP20903182 A JP 20903182A JP 20903182 A JP20903182 A JP 20903182A JP S6246073 B2 JPS6246073 B2 JP S6246073B2
Authority
JP
Japan
Prior art keywords
etching
film
gate
dry etching
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20903182A
Other languages
Japanese (ja)
Other versions
JPS5999776A (en
Inventor
Toshuki Terada
Takamaro Mizoguchi
Nobuyuki Toyoda
Akimichi Hojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP20903182A priority Critical patent/JPS5999776A/en
Publication of JPS5999776A publication Critical patent/JPS5999776A/en
Publication of JPS6246073B2 publication Critical patent/JPS6246073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はゲートにシヨツトキー障壁を用いたい
わゆるシヨツトキーゲート型電界効果トランジス
タの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a so-called Schottky gate field effect transistor using a Schottky barrier in the gate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ゲートにシヨツトキー障壁を用いた電界効果ト
ランジスタ(FET)においては、ゲート長及び
ソース・ゲート間に存在するソース直列抵抗がそ
の特性を決定づける大きな要因となつている。す
なわち、ゲート長(lg)と、FETの信号伝搬遅
延時間(tpd)との間には tpd∝lg2 なる関係があるため、lgを短かくするほどtpdが
小さくなり、高速動作が可能となる。また、ソー
ス直列抵抗(Rs)については、FETの真性相互
コンダクタンスをgmo、実際の相互コンダクタン
スをgmとすれば gm=gmo/(1+gmoRs) なる関係があり、Rsが大きいほどgmを小さくし
てしまう。さらに、lgとgmoの間には gmo∝1/lg なる関係がある。
In a field effect transistor (FET) using a Schottky barrier at the gate, the gate length and the source series resistance existing between the source and gate are major factors that determine its characteristics. In other words, there is a relationship between the gate length (lg) and the FET signal propagation delay time (tpd): tpd∝lg 2 , so the shorter lg, the smaller tpd becomes, enabling high-speed operation. . Regarding source series resistance (Rs), if the FET's intrinsic transconductance is gmo and the actual transconductance is gm, then there is a relationship as follows: gm = gmo/(1 + gmoRs), and the larger Rs is, the smaller gm is. . Furthermore, there is a relationship between lg and gmo: gmo∝1/lg.

すなわちFETの動作速度を速くするために
は、ゲート長lgを短くし、かつソース直列抵抗
Rsを小さくする必要がある。
In other words, in order to increase the operating speed of the FET, the gate length lg should be shortened and the source series resistance should be reduced.
It is necessary to reduce Rs.

しかしながら、ゲート長を短くすることは従来
のフオトエツチングの技術に限界があり、1μm
以下のゲート長を得ることは困難とされている。
However, there is a limit to reducing the gate length with conventional photoetching technology, which is 1 μm.
It is considered difficult to obtain a gate length below.

そこで従来用いられてきた方法として、第1図
に示すように、耐熱性金属でゲート電極3を形成
し、これをマスクとしてゲートの両脇にイオン注
入を行ない、高濃度層4,5を形成してRsを低
減する方法がある。図中、1は例えば半絶縁性
GaAs基体、2はn型GaAs層である。しかし、こ
の方法ではアニール時の高濃度層4,5の不純物
再拡散によりゲート電極3と高濃度層4,5が重
なるため、ゲート容量が増大し、かつドレイン耐
圧が4V程度と低くなつてしまう。
Therefore, as shown in FIG. 1, the conventional method used is to form a gate electrode 3 with a heat-resistant metal, and use this as a mask to implant ions on both sides of the gate to form high concentration layers 4 and 5. There is a way to reduce Rs. In the figure, 1 is, for example, semi-insulating
GaAs base, 2 is an n-type GaAs layer. However, in this method, the gate electrode 3 and the high concentration layers 4 and 5 overlap due to impurity re-diffusion in the high concentration layers 4 and 5 during annealing, which increases the gate capacitance and lowers the drain breakdown voltage to about 4V. .

また、別の例として、第2図に示すようにゲー
ト電極3をエツチングする際にオーバーエツチン
グをかけてゲート長を短縮し、さらにエツチング
マスクであるフオトレジスト6をそのままイオン
注入のマスクとして用いて高濃度層4,5を形成
する方法がある。しかしこの方法では、ゲート電
極のエツチングに従来のウエツトエツチング法や
等方的なプラズマエツチング法等を用いた場合に
は、金属膜の膜厚分布によりオーバーエツチング
の量が異なつてしまい、ゲート長の精密な制御が
難しい。さらに、イオン注入の際には、面チヤン
ネリングの効果等を避けるため、基板を5〜10゜
傾けることが多く、この方法を用いた場合には、
ゲート電極にソース領域もしくはドレイン領域の
どちらか一方が必要以上に近接してしまう可能性
もある。
As another example, as shown in FIG. 2, when etching the gate electrode 3, over-etching is applied to shorten the gate length, and the photoresist 6, which is an etching mask, is used as it is as a mask for ion implantation. There is a method of forming the high concentration layers 4 and 5. However, with this method, when a conventional wet etching method or isotropic plasma etching method is used to etch the gate electrode, the amount of overetching varies depending on the thickness distribution of the metal film, resulting in an increase in the gate length. It is difficult to control precisely. Furthermore, during ion implantation, the substrate is often tilted at an angle of 5 to 10 degrees to avoid the effects of surface channeling.
There is also a possibility that either the source region or the drain region becomes closer to the gate electrode than necessary.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点にかんがみなされたもので、
高度なリソグラフイ技術を使用せずにサブミクロ
ンまでのゲート長の短縮ができ、さらにソース直
列抵抗が小さくかつドイレン耐圧の高いシヨツト
キーゲート型FETを製造する方法を提供するも
のである。
The present invention has been made in view of the above points,
The present invention provides a method for manufacturing a Schottky gate type FET that can shorten the gate length to submicrons without using advanced lithography technology, has a low source series resistance, and has a high drain breakdown voltage.

〔発明の概要〕[Summary of the invention]

本発明は要約すれば、異方性と等方性のドラ
イエツチング技術をこの順に連続的に組み合わせ
てゲート電極金属膜をエツチングすることによ
り、制御性よくマスク寸法よりわずかに小さいゲ
ート長を得ること、次にマスクを残したままス
テツプカバレージに優れた堆積法により絶縁膜を
形成した後、異方性ドライエツチングを行ない、
ゲート電極の側面即ちマスクのひさしの下にのみ
この絶縁膜を残し、この状態でイオン注入により
低抵抗ソース、ドレイン領域を形成すること、を
特徴とする。
In summary, the present invention is to obtain a gate length slightly smaller than the mask dimension with good controllability by etching a gate electrode metal film by sequentially combining anisotropic and isotropic dry etching techniques in this order. Next, an insulating film is formed using a deposition method with excellent step coverage while leaving the mask, and then anisotropic dry etching is performed.
The method is characterized in that the insulating film is left only on the side surfaces of the gate electrode, that is, under the eaves of the mask, and in this state, low-resistance source and drain regions are formed by ion implantation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドライエツチング技術の組合
せによりサブミクロンまで制御性よくゲート長を
短縮することができる。またゲート電極の側面に
絶縁膜をつけた状態でイオン注入を行う結果、ゲ
ート電極とソース、ドレイン領域の間を制御性よ
く微小間隔だけ離すことができ、従つてゲート容
量が小さく、高速動作が可能で、かつドレイン耐
圧の高いシヨツトキ−ゲート型FETが得られ
る。
According to the present invention, the gate length can be shortened to submicrons with good controllability by combining dry etching techniques. In addition, as a result of performing ion implantation with an insulating film attached to the side surface of the gate electrode, it is possible to separate the gate electrode and the source and drain regions by a minute distance with good controllability, resulting in small gate capacitance and high-speed operation. Therefore, a short key gate type FET with high drain breakdown voltage can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、基板にGaAsを用いた実施例について、
第3図を参照して詳細に説明する。例えば、クロ
ム(Cr)をドープした半絶縁性GaAs基体11に
活性層となるn型GaAs層12を成長させた基板
を用い、この表面にゲート電極となる耐熱性金属
膜としてタングステン(W)膜13を4000Åの厚
さに全面被着し、更にそのゲート電極となる部分
に耐エツチングマスクとして1μm幅の金
(Au)膜14を約2000Åの膜厚で形成する(第3
図a)。この際、Au膜14のパターニングにはリ
フトオフ法を用いれば、微細パターンを精度よく
形成できる。
Below, regarding an example using GaAs for the substrate,
This will be explained in detail with reference to FIG. For example, a substrate is used in which an n-type GaAs layer 12 that becomes an active layer is grown on a semi-insulating GaAs substrate 11 doped with chromium (Cr), and a tungsten (W) film is formed on the surface of this substrate as a heat-resistant metal film that becomes a gate electrode. A gold (Au) film 14 with a width of 1 μm and a thickness of about 2000 Å is formed on the portion that will become the gate electrode as an etching-resistant mask.
Diagram a). At this time, if a lift-off method is used for patterning the Au film 14, a fine pattern can be formed with high precision.

次にこのAu膜14をマスクとして、W膜13
を平行平板型反応性イオンエツチング(RIE)装
置により完全にエツチングする(第3図b)。エ
ツチングガスとしてはCF4、流量は20c.c./min、
エツチングガス圧は0.05Torrで、高周波電力は
200Wである。この条件でのW膜13のエツチン
グ速度は300Å/minであり、エツチングは完全
な異方性で進行する。なお、Au膜14、GaAs層
12との選択比はそれぞれ〜8、〜10と充分に得
られている。このRIEにひきつづき、通常の円筒
型プラズマエツチング装置にてW膜13をエツチ
ングする。エツチングガスとしてはCF4とO2の混
合ガスを用い、流量はそれぞれ15c.c./min、5
c.c./min、エツチングガス圧は0.1Torrで、高周
波電力は100Wである。円筒型プラズマエツチン
グ装置では、W膜13は等方的にエツチングさ
れ、エツチング速度は100Å/minである。この
条件下で20分間エツチングすると、Au膜14と
GaAs層12はまつたくエツチングされないた
め、W膜14の側壁が後退してAu膜14のひさ
し(Δx)が0.2μm形成される(第3図c)。
Next, using this Au film 14 as a mask, the W film 13
is completely etched using a parallel plate reactive ion etching (RIE) device (Figure 3b). Etching gas was CF 4 , flow rate was 20c.c./min.
The etching gas pressure is 0.05 Torr, and the high frequency power is
It is 200W. The etching rate of the W film 13 under these conditions is 300 Å/min, and the etching progresses with complete anisotropy. Note that the selectivity with respect to the Au film 14 and the GaAs layer 12 is sufficiently obtained as ~8 and ~10, respectively. Following this RIE, the W film 13 is etched using a normal cylindrical plasma etching device. A mixed gas of CF 4 and O 2 was used as the etching gas, and the flow rates were 15 c.c./min and 5 c.c./min, respectively.
cc/min, etching gas pressure is 0.1 Torr, and high frequency power is 100W. In the cylindrical plasma etching apparatus, the W film 13 is etched isotropically at an etching rate of 100 Å/min. After etching for 20 minutes under these conditions, the Au film 14
Since the GaAs layer 12 is not etched completely, the side wall of the W film 14 recedes, and the eaves (Δx) of the Au film 14 are formed by 0.2 μm (FIG. 3c).

このように、まず異方性ドライエツチングであ
るRIEでW膜の側壁を垂直に加工した後、等方性
ドライエツチングであるプラズマエツチングでサ
イドエツチングをかける方法をとつているため、
サイドエツチ量(Δx)の制御が非常に精密にで
きる。また、すべてドライエツチング工程である
ため、ウエハ面内及びウエハ間の均一性も非常に
よい。例えば、この状態で2インチφウエハ全面
でゲート長を測定した所、W膜の膜厚分布が±
700Å程度であつたにもかかわらず、ゲート長は
0.6μm±0.05μmであつた。さらにAu膜のひさ
しΔxは面内でほとんどバラツキがなく、±0.05
μmの分布はAu膜のパターンを形成した時点で
のバラツキと考えることができる。
In this way, we first process the side walls of the W film vertically using RIE, which is anisotropic dry etching, and then perform side etching using plasma etching, which is isotropic dry etching.
The side etching amount (Δx) can be controlled very precisely. Furthermore, since the entire process is a dry etching process, the uniformity within the wafer surface and between wafers is also very good. For example, when we measured the gate length over the entire surface of a 2-inch φ wafer in this state, we found that the film thickness distribution of the W film was ±
Even though it was about 700Å, the gate length was
It was 0.6 μm±0.05 μm. Furthermore, the eaves Δx of the Au film has almost no variation within the plane, ±0.05
The distribution of μm can be considered to be a variation at the time when the pattern of the Au film is formed.

上記のようにゲート電極を形成した後、減圧
CVD(LPCVD)法によりSi3N4膜15を〜6000Å
堆積する。この方法はステツプカバレージが非常
に良いため、基板上の凹凸を完全にカバーできる
(第3図d)。この後、全面にCF4ガスによるRIE
を行なう。この結果、RIEの異方性のためにAu
膜14のひさしの下部にのみSi3N4膜15が残る
(第3図e)。
After forming the gate electrode as above, reduce the pressure
Si 3 N 4 film 15 ~6000Å by CVD (LPCVD) method
accumulate. Since this method has very good step coverage, it is possible to completely cover the irregularities on the substrate (FIG. 3d). After this, RIE the entire surface with CF4 gas.
Do this. As a result, Au
The Si 3 N 4 film 15 remains only under the eaves of the film 14 (FIG. 3e).

この状態で 28Si+イオンを、加速電圧
200KeV、ドーズ量3×1013cm-3でイオン注入
し、800〜850℃で15分間のアニールを行つて低抵
抗のソース領域16、ドレイン領域17を形成し
た後、ソース、ドレイン領域16,17にAuGe
合金からなるオーミツク電極18,19を形成し
た(第3図f)。
In this state, 28 Si + ions are
After ion implantation at 200KeV and a dose of 3×10 13 cm -3 and annealing at 800 to 850°C for 15 minutes to form low resistance source and drain regions 16 and 17, AuGe
Ohmic electrodes 18 and 19 made of an alloy were formed (FIG. 3f).

この結果、ゲートのマスク寸法が1μmである
にもかかわらず、実際のゲート長が0.6μmと短
く、また、ソース、ドレインとゲート間が0.2μ
mと小さいためソース直列抵抗もゲート容量も十
分に小さく、高速動作が可能で、かつドレイン耐
圧が10V以上という高性能のFETが得られた。し
かもFET特性はウエハ面内及びウエハ間でもバ
ラツキが少なく、非常に均一性のよいものであつ
た。
As a result, although the gate mask size is 1 μm, the actual gate length is as short as 0.6 μm, and the distance between the source, drain, and gate is 0.2 μm.
Because the FET is small, the source series resistance and gate capacitance are sufficiently small, high-speed operation is possible, and a high-performance FET with a drain breakdown voltage of 10 V or more was obtained. Moreover, the FET characteristics had very good uniformity with little variation within the wafer surface and between wafers.

また、比較例として上記実施例中のAu膜の部
分にAl2O3膜を用い、第3図cの状態で、イオン
注入し常圧CVD法によるSiO2でパツシベーシヨ
ンした後、熱処理してFETを形成した。これを
上記実施例と比較すると、上記実施例のものの方
が、ゲート電極自身の抵抗が3割程度低く、また
ソース直列抵抗のバラツキも1/2程度に小さかつ
た。比較例の場合、直列抵抗のバラツキはイオン
注入時に基板を7゜傾けているためと考えられる
が、ゲート電極の側壁にSi3N4膜を形成した上記
実施例のものは、このSi3N4膜がイオン注入のマ
スクとなるため、基板を傾けてもバラツキが小さ
くなつている。さらに、同じ理由から、ドレイン
耐圧も、比較例の場合で6〜12Vに対し、上記実
施例のものでは10〜12Vとバラツキが小さくなつ
ていた。
As a comparative example, an Al 2 O 3 film was used in place of the Au film in the above example, and in the state shown in Fig. 3c, ions were implanted, passivation was performed with SiO 2 by atmospheric pressure CVD, and heat treatment was performed to form an FET. was formed. Comparing this with the above embodiment, in the above embodiment, the resistance of the gate electrode itself was about 30% lower, and the variation in the source series resistance was about 1/2 smaller. In the case of the comparative example, the variation in series resistance is thought to be due to the substrate being tilted at 7 degrees during ion implantation, but in the above example in which a Si 3 N 4 film was formed on the side wall of the gate electrode, this Si 3 N Since the 4- layer film serves as a mask for ion implantation, variations are reduced even when the substrate is tilted. Further, for the same reason, the drain breakdown voltage was 6 to 12 V in the comparative example, whereas the variation in the drain breakdown voltage was 10 to 12 V in the above example, with small variations.

また、比較例のものは、熱処理時のひさしの部
分のパツシベーシヨンの不完全さに起因する不良
品率が非常に高かつたが、上記実施例のものにつ
いては、不良品はほとんどなかつた。
In addition, the comparative examples had a very high rate of defective products due to imperfection of the passivation of the eaves during heat treatment, but the samples of the above examples had almost no defective products.

本発明は上記実施例に限られない。例えばゲー
ト電極用金属膜はWに限らず耐熱性でかつドライ
エツチングが可能な金属であればよく、Moや
WN、WSi等を用い得る。さらに耐エツチングマ
スクもAuに限らず、800℃の高温で下のゲート金
属と反応せず、ドライエツチングのマスクとなれ
ばよく、例えばPt等を用いてもよい。またSi3N4
膜の代りに同様の堆積法によるSiO2膜を用いる
ことができる。その他エツチングガスや膜の堆積
方法も所期の目的を達成できるものであれば、上
記実施例のものに限られない。
The present invention is not limited to the above embodiments. For example, the metal film for the gate electrode is not limited to W, but any metal that is heat resistant and can be dry etched may be used, such as Mo or
WN, WSi, etc. can be used. Further, the etching-resistant mask is not limited to Au, but may be made of Pt or the like as long as it does not react with the underlying gate metal at a high temperature of 800° C. and can be used as a dry etching mask. Also Si 3 N 4
Instead of the film, a SiO 2 film can be used by a similar deposition method. Other etching gases and film deposition methods are not limited to those of the above embodiments as long as they can achieve the intended purpose.

さらに上記実施例は基板がGaAsである場合に
ついて示したが、Siや他の化合物半導体について
も電極用金属やドナー不純物を変更するだけで適
用可能である。
Furthermore, although the above embodiments have been described for the case where the substrate is GaAs, the present invention can also be applied to Si or other compound semiconductors by simply changing the electrode metal or donor impurity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来法によるシヨツトキ
ーゲート型FETの断面図、第3図a〜fは本発
明の一実施例のシヨツトキーゲート型FETの製
造工程を示す断面図である。 11……半絶縁性GaAs基板、12……n型
GaAs層、13……W膜(ゲート電極)、14……
Au膜(耐エツチングマスク)、15……LPCVD
−Si3N4膜、16……ソース領域、17……ドレ
イン領域、18,19……オーミツク電極。
1 and 2 are sectional views of a Schottky gate type FET according to a conventional method, and FIGS. 3 a to 3 f are sectional views showing the manufacturing process of a Schottky gate type FET according to an embodiment of the present invention. . 11...Semi-insulating GaAs substrate, 12...n type
GaAs layer, 13... W film (gate electrode), 14...
Au film (etching resistant mask), 15...LPCVD
-Si 3 N 4 film, 16... source region, 17... drain region, 18, 19... ohmic electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板上にシヨツトキー障壁を形成する
ゲート金属膜を全面に形成する工程と、この金属
膜上に耐エツチングマスクを形成する工程と、異
方性ドライエツチング法で前記金属膜を選択的に
エツチング除去し、続いて等方性ドライエツチン
グ法により残された金属膜の側壁を後退させて前
記耐エツチングマスクのひさしを形成する工程
と、前記耐エツチングマスクを残した状態でステ
ツプカバレージのよい堆積法により全面に絶縁膜
を堆積する工程と、堆積した絶縁膜を異方性ドラ
イエツチング法によりエツチングして前記耐エツ
チングマスクのひさし下にのみ残置させる工程
と、残された絶縁膜と前記金属膜をマスクとして
イオン注入して低抵抗のソースおよびドレイン領
域を形成する工程と、これらソースおよびドレイ
ン領域にオーミツク電極を形成する工程とを具備
したことを特徴とするシヨツトキーゲート型電界
効果トランジスタの製造方法。 2 前記半導体基板は半絶縁性GaAs基体にn型
GaAs層を成長させたものであり、前記ゲート金
属膜はW膜であり、前記耐エツチングマスクは
Au膜であり、前記絶縁膜は減圧CVDによるSi3N4
膜であり、前記異方性ドライエツチング法はCF4
ガスを用いた反応性イオンエツチングであり、前
記等方性ドライエツチング法はCF4+O2ガスを用
いたプラズマエツチングである特許請求の範囲第
1項記載のシヨツトキーゲート型電界効果トラン
ジスタの製造方法。
[Scope of Claims] 1. A step of forming a gate metal film that forms a Schottky barrier on the entire surface of a semiconductor substrate, a step of forming an etching-resistant mask on this metal film, and a step of etching the metal by an anisotropic dry etching method. selectively removing the film by etching, and then receding the sidewalls of the remaining metal film by isotropic dry etching to form the eaves of the etching-resistant mask; and with the etching-resistant mask remaining. a step of depositing an insulating film over the entire surface by a deposition method with good step coverage; a step of etching the deposited insulating film by an anisotropic dry etching method to leave it only under the eaves of the etching-resistant mask; A Schottky gate comprising the steps of forming low-resistance source and drain regions by ion implantation using a film and the metal film as a mask, and forming ohmic electrodes on these source and drain regions. Method of manufacturing type field effect transistor. 2 The semiconductor substrate is a semi-insulating GaAs base with an n-type
A GaAs layer is grown, the gate metal film is a W film, and the etching-resistant mask is a
The insulating film is made of Si 3 N 4 by low pressure CVD.
The anisotropic dry etching method uses CF 4
Manufacturing a Schottky gate type field effect transistor according to claim 1, wherein the isotropic dry etching method is a reactive ion etching method using a gas, and the isotropic dry etching method is a plasma etching method using a CF 4 +O 2 gas. Method.
JP20903182A 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor Granted JPS5999776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20903182A JPS5999776A (en) 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20903182A JPS5999776A (en) 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor

Publications (2)

Publication Number Publication Date
JPS5999776A JPS5999776A (en) 1984-06-08
JPS6246073B2 true JPS6246073B2 (en) 1987-09-30

Family

ID=16566107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20903182A Granted JPS5999776A (en) 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor

Country Status (1)

Country Link
JP (1) JPS5999776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022071U (en) * 1988-06-17 1990-01-09
JPH0415108Y2 (en) * 1987-01-12 1992-04-06

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081872A (en) * 1983-10-11 1985-05-09 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS6143481A (en) * 1984-08-08 1986-03-03 Oki Electric Ind Co Ltd Manufacture of schottky gate field effect transistor
JPH0812868B2 (en) * 1984-08-27 1996-02-07 沖電気工業株式会社 Method for manufacturing compound semiconductor device
JPS6181672A (en) * 1984-09-28 1986-04-25 Nec Corp Manufacture of semiconductor device
JPS6196735A (en) * 1984-10-17 1986-05-15 Toshiba Corp Conductor pattern forming process
JPS61108175A (en) * 1984-11-01 1986-05-26 Toshiba Corp Semiconductor device and manufacture thereof
EP0208795A1 (en) * 1985-07-12 1987-01-21 International Business Machines Corporation Method of fabricating a self-aligned metal-semiconductor FET
JPS62156878A (en) * 1985-12-28 1987-07-11 Nec Corp Semiconductor device
US4689869A (en) * 1986-04-07 1987-09-01 International Business Machines Corporation Fabrication of insulated gate gallium arsenide FET with self-aligned source/drain and submicron channel length
JPS62243359A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Compound semiconductor device
JP2557432B2 (en) * 1987-12-25 1996-11-27 富士通株式会社 Field effect transistor
JP5098166B2 (en) * 2005-12-12 2012-12-12 日亜化学工業株式会社 Nitride semiconductor laser device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415108Y2 (en) * 1987-01-12 1992-04-06
JPH022071U (en) * 1988-06-17 1990-01-09

Also Published As

Publication number Publication date
JPS5999776A (en) 1984-06-08

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
EP0128751B1 (en) Manufacturing method of schottky gate fet
JPS6246073B2 (en)
JP2553699B2 (en) Method for manufacturing semiconductor device
JPS6351550B2 (en)
US4587709A (en) Method of making short channel IGFET
US5580803A (en) Production method for ion-implanted MESFET having self-aligned lightly doped drain structure and T-type gate
JPH065682B2 (en) Method for manufacturing semiconductor device
JPH02130852A (en) Semiconductor device
JPS6258154B2 (en)
JPS6323669B2 (en)
JPS6323366A (en) Manufacture of field-effect transistor
JPS61154177A (en) Manufacture of semiconductor device
JPH01251669A (en) Manufacture of field effect transistor
JPS5852351B2 (en) Manufacturing method of semiconductor device
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPH0645293A (en) Formation of gate electrode
JPS59126676A (en) Field effect type transistor
JP2803112B2 (en) Method for manufacturing semiconductor device
JPH0714068B2 (en) Method for manufacturing semiconductor device
JPS60198869A (en) Manufacture of semiconductor device
JPH09293735A (en) Manufacture of field effect transistor
JPH03203246A (en) Method of manufacturing semiconductor device
JPH04212428A (en) Manufacture of semiconductor device
JPH028454B2 (en)