JPH0812868B2 - Method for manufacturing compound semiconductor device - Google Patents

Method for manufacturing compound semiconductor device

Info

Publication number
JPH0812868B2
JPH0812868B2 JP59176835A JP17683584A JPH0812868B2 JP H0812868 B2 JPH0812868 B2 JP H0812868B2 JP 59176835 A JP59176835 A JP 59176835A JP 17683584 A JP17683584 A JP 17683584A JP H0812868 B2 JPH0812868 B2 JP H0812868B2
Authority
JP
Japan
Prior art keywords
film
gaas
schottky
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59176835A
Other languages
Japanese (ja)
Other versions
JPS6155966A (en
Inventor
元 松浦
浩 中村
芳明 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59176835A priority Critical patent/JPH0812868B2/en
Publication of JPS6155966A publication Critical patent/JPS6155966A/en
Publication of JPH0812868B2 publication Critical patent/JPH0812868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は化合物半導体素子の製造方法に関し、特に
GaAsショットキゲート電界効果トランジスタ(以下GaAs
MESFETという)の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a compound semiconductor device, and in particular,
GaAs Schottky gate field effect transistor (hereinafter GaAs
Called MESFET).

(従来の技術) GaAs MESFETの1つのタイプとして耐熱性金属ゲート
を用いたものが知られている。
(Prior Art) As one type of GaAs MESFET, one using a heat-resistant metal gate is known.

耐熱性金属ゲートとして用いられるタングステン(以
下Wという)は、GaAs MESFETのイオン注入領域の活性
化熱処理にも耐えることができ、また低抵抗で良好なシ
ョットキ特性を示す。W膜は電子ビーム蒸着法によって
形成でき、また、特公昭44−18655号公報に記載されて
いるように、スパッタ法によっても形成できる。
Tungsten (hereinafter referred to as W) used as a heat-resistant metal gate can withstand the activation heat treatment of the ion-implanted region of GaAs MESFET, has low resistance, and exhibits excellent Schottky characteristics. The W film can be formed by an electron beam vapor deposition method, and can also be formed by a sputtering method as described in JP-B-44-18655.

(発明が解決しようとする問題点) W膜の蒸着は、電子ビーム法よりもスパッタ法による
蒸着の方が容易であるけれども、蒸着条件によってGaAs
MESFETの特性は変動する欠点があった。
(Problems to be Solved by the Invention) Although it is easier to deposit a W film by a sputtering method than by an electron beam method, GaAs may be deposited depending on the deposition conditions.
The characteristic of MESFET has the drawback that it fluctuates.

従ってこの発明の目的は、密着性、ショットキ特性及
び逆方向電流電圧特性などが良好なGaAs MESFETの製造
方法を提供することにある。
Therefore, an object of the present invention is to provide a method of manufacturing a GaAs MESFET having good adhesion, Schottky characteristics, reverse current-voltage characteristics, and the like.

(問題点を解決するための手段) この発明はGaAs半導体基体のn型活性層とショットキ
障壁をなすW膜を、基板温度が100℃〜450℃、スパッタ
圧が1mTorr〜12mTorr、蒸着レートが毎分150Å〜1000Å
である条件下で、スパッタ蒸着し、選択的に除去するこ
とによりMESFETのショットキゲートを形成するものであ
る。
(Means for Solving Problems) The present invention provides a W film that forms a Schottky barrier with an n-type active layer of a GaAs semiconductor substrate, a substrate temperature of 100 ° C. to 450 ° C., a sputtering pressure of 1 mTorr to 12 mTorr, and a deposition rate of Min 150Å ~ 1000Å
Under certain conditions, the Schottky gate of MESFET is formed by sputter deposition and selective removal.

(作用) GaAs MESFETの良好性を決める密着性、ショットキ特
性及び逆方向電流電圧特性などは多くの要因に影響され
るが、特にW膜のスパッタ蒸着時における基板温度、ス
パッタ圧力、蒸着レートが重要である。
(Function) Adhesion, Schottky characteristics, and reverse current-voltage characteristics that determine the goodness of GaAs MESFETs are affected by many factors, but the substrate temperature, sputtering pressure, and deposition rate during W film sputtering deposition are particularly important. Is.

GaAs基体にショットキ障壁をなすW膜をスパッタ蒸着
法によって形成する場合、基体からのゲート金属膜の剥
離が生ずることがある。この原因はGaAs基体とW膜の密
着性や薄膜効果による内部応力に関係している。これら
の密着性や薄膜効果はスパッタ蒸着時の基体温度に影響
され、室温でW膜をGaAs基体に蒸着した場合約1000Å程
度膜厚のW膜のGaAs基体に対する引っ張り応力は1.7×1
010dyn/cm2であり、これに対し基体温度150℃で蒸着し
た場合9×109dyn/cm2と約半分に減少させることができ
る。しかし、さらに基体温度を上げると、基体中のAs原
子を蒸発させることになり、500℃以上においては、こ
の現象は顕著である。また蒸着時の基体温度はW膜の抵
抗率にも影響し、この抵抗率は、25℃では大きく、温度
を上げることにより低くなり、100℃以上の温度ではほ
ぼ一定となる。従ってGaAs基体にW膜をスパッタ蒸着す
る際の基体温度は、100℃〜450℃の温度領域が良い。
When the W film forming the Schottky barrier is formed on the GaAs substrate by the sputter deposition method, the gate metal film may be separated from the substrate. This cause is related to the adhesion between the GaAs substrate and the W film and the internal stress due to the thin film effect. These adhesion and thin film effect are affected by the substrate temperature during sputter deposition, and when a W film is deposited on a GaAs substrate at room temperature, the tensile stress of a W film with a thickness of about 1000Å to a GaAs substrate is 1.7 × 1
It is 0 10 dyn / cm 2 , whereas in the case of vapor deposition at a substrate temperature of 150 ° C., it can be reduced to about half, which is 9 × 10 9 dyn / cm 2 . However, when the temperature of the substrate is further increased, As atoms in the substrate are vaporized, and this phenomenon is remarkable at 500 ° C. or higher. The substrate temperature during vapor deposition also affects the resistivity of the W film, which is large at 25 ° C., decreases with increasing temperature, and becomes almost constant at temperatures above 100 ° C. Therefore, the substrate temperature when the W film is sputter-deposited on the GaAs substrate is preferably in the temperature range of 100 ° C to 450 ° C.

またGaAs MESFETのショットキ特性は、スパッタ蒸着
時のスパッタ圧に影響される。第2図はスパッタ圧1mTo
rrと24mTorrとで蒸着したW膜を用いたショットキキ障
壁の800℃,15分の高温熱処理後の電流電圧特性を表わし
た図であり、GaAs基体のn型活性層とW膜との接触面積
は8×10-5cm2であり、W膜厚は1000Åである。第2図
よりスパッタ圧1mTorrで形成したW膜はn値が1.14、バ
リア高さφは0.72Vであり、これに対し24mTorrで形成
したW膜はn値が1.11、バリア高さφは0.66Vとな
り、1mTorrで形成した方がバリア高さは高く好ましい。
スパッタ圧24mTorr以下で形成したW膜のバリア高さφ
は、n型活性層の活性化アニール温度の上昇にともな
ってゆるやかに高くなる。この活性化アニールは一般に
800℃程度で行われ、800℃の活性化アニールにおいて、
バリア高さφが0.7Vを越えるためにはスパッタ圧を12
mTorr以下にしなければならない。しかしながらスパッ
タ圧を0.5mTorr以下にした場合、スパッタ蒸着装置にお
けるプラズマの発生が困難となる。従ってGaAs MESFET
の良好なショットキ特性を形成するためのスパッタ圧は
0.5mTorr〜12mTorrの圧力範囲が良い。
The Schottky characteristic of GaAs MESFET is affected by the sputtering pressure during sputter deposition. Figure 2 shows sputter pressure 1mTo
FIG. 3 is a diagram showing current-voltage characteristics of a Schottky barrier using a W film deposited with rr and 24 mTorr after high-temperature heat treatment at 800 ° C. for 15 minutes, showing the contact area between the n-type active layer of the GaAs substrate and the W film. Is 8 × 10 -5 cm 2 and the W film thickness is 1000Å. From Fig. 2, the n-value of the W film formed with a sputtering pressure of 1 mTorr is 1.14 and the barrier height φ B is 0.72 V, whereas the n-value of the W film formed with 24 mTorr is 1.11 and the barrier height φ B is It becomes 0.66V, and it is preferable to form it at 1 mTorr because the barrier height is high.
Barrier height φ of W film formed at a sputtering pressure of 24 mTorr or less
B gradually increases as the activation annealing temperature of the n-type active layer rises. This activation anneal is generally
It is performed at about 800 ℃, and at 800 ℃ activation annealing,
To increase the barrier height φ B to 0.7 V, the sputtering pressure must be 12
Must be less than or equal to mTorr. However, when the sputter pressure is set to 0.5 mTorr or less, it becomes difficult to generate plasma in the sputter deposition apparatus. Therefore GaAs MESFET
The sputtering pressure for forming good Schottky characteristics of
Good pressure range from 0.5mTorr to 12mTorr.

またスパッタ蒸着の蒸着レートは、逆方向電流電圧特
性に影響を与える。第3図はショットキゲートとなるW
膜のスパッタ蒸着レートを、毎分120Åと500Åで形成し
たGaAs MESFET電流電圧特性を示す図である。この図に
示されるように、蒸着レートは特に逆方向電流電圧特性
に影響を与え、120Å程度の低い蒸着レートで形成した
Wショットキゲートの逆方向特性は著しく劣化するの
で、蒸着レートは少なくとも150Å以上にする必要があ
る。このように蒸着レートは高い方が良いが、蒸着レー
ト毎分1000Å以上でW膜を形成した場合、W膜には著し
いピンホールが生じるため微細パターン形成には適しな
い。従って良好なGaAs MESFETを形成するにはW膜の蒸
着レートは毎分150Å〜1000Åが良い。
In addition, the deposition rate of sputter deposition affects the reverse current-voltage characteristics. Figure 3 shows W as a Schottky gate
It is a figure which shows the GaAs MESFET current-voltage characteristic formed with the sputtering deposition rate of a film | membrane 120Å and 500Å / min. As shown in this figure, the vapor deposition rate particularly affects the reverse current-voltage characteristic, and the reverse characteristic of the W Schottky gate formed at a low vapor deposition rate of about 120 Å is significantly deteriorated, so the vapor deposition rate is at least 150 Å or more. Need to As described above, the higher the vapor deposition rate is, the better, but when the W film is formed at a vapor deposition rate of 1000 Å / min or more, remarkable pinholes are generated in the W film, which is not suitable for forming a fine pattern. Therefore, in order to form a good GaAs MESFET, the deposition rate of the W film is preferably 150Å to 1000Å / min.

(実施例) 第1図(a)〜(c)本発明の実施例を説明するため
のGaAs MESFETの構造断面図であり、以下図面に沿って
説明する。
(Embodiment) FIGS. 1A to 1C are structural cross-sectional views of a GaAs MESFET for explaining an embodiment of the present invention, which will be described below with reference to the drawings.

まず第1図(a)に示すように半絶縁性のGaAs基板1
の表面にn型活性層2を選択的に形成し、その上にスパ
ッタ装置を用いて、基板温度150℃、Arガスのスパッタ
圧1mTorr、蒸着レート毎分500Åの条件のもとに、W膜
3を1000Å程度蒸着する。
First, as shown in FIG. 1 (a), a semi-insulating GaAs substrate 1
The n-type active layer 2 is selectively formed on the surface of the W film, and a W film is formed on the n-type active layer 2 under the conditions of a substrate temperature of 150 ° C., an Ar gas sputtering pressure of 1 mTorr, and a vapor deposition rate of 500 Å / min. Evaporate 3 to about 1000Å.

次に第1図(b)で示すように、W膜3の上にNi等の
イオン阻止能のある金属のゲートパターン体4を形成
し、ゲートパターン体4をマスクとしてW膜3をサイド
エッチングしてゲート電極5を形成する。しかる後、ゲ
ートパターン体4をマスクとしてイオン注入することに
よりn+領域6を形成し、ゲートパターン体4を除去す
る。しかる後、表面にプラズマCVD法により図示しないS
i3N4膜を1000Å程度厚さに被覆し、As圧雰囲気中で800
℃、20分のn+領域6の活性化アニールを行い、このSi3N
4膜を除去する。
Next, as shown in FIG. 1B, a gate pattern body 4 made of a metal having an ion blocking ability such as Ni is formed on the W film 3 and the W film 3 is side-etched using the gate pattern body 4 as a mask. Then, the gate electrode 5 is formed. Thereafter, the gate pattern body 4 is used as a mask to perform ion implantation to form an n + region 6, and the gate pattern body 4 is removed. After that, S (not shown) is formed on the surface by the plasma CVD method.
i 3 N 4 film is coated to a thickness of about 1000Å, and 800
° C., subjected to activation annealing of the n + region 6 of the 20 minutes, the Si 3 N
4 Remove the film.

次に第1図(c)で示すように、n+領域上にオーミッ
ク電極7を形成し、GaAs MESFETを得る。
Next, as shown in FIG. 1C, an ohmic electrode 7 is formed on the n + region to obtain a GaAs MESFET.

本発明の実施例によれば、ショットキ障壁をなすW膜
3を、基板温度150℃、スパッタ圧1mTorr、蒸着レート
毎分500Åで、スパッタ蒸着しているので、基板1から
ゲート電極5の剥離を防ぎ、ショットキ特性や逆方向電
流電圧特性の良好なGaAs MESFETを得ることができる。
According to the embodiment of the present invention, the W film 3 forming the Schottky barrier is sputter-deposited at the substrate temperature of 150 ° C., the sputter pressure of 1 mTorr, and the deposition rate of 500 Å / min. It is possible to obtain a GaAs MESFET having excellent Schottky characteristics and reverse current-voltage characteristics.

また本発明の実施例ではアニール時の保護膜として、
プラズマCVD法により形成したSi3N4膜を用いているの
で、第1表に示すような良好なショットキ特性を示す。
In the embodiment of the present invention, as a protective film during annealing,
Since the Si 3 N 4 film formed by the plasma CVD method is used, it exhibits good Schottky characteristics as shown in Table 1.

(発明の効果) この発明は以上説明したように、GaAs基体のn型活性
層上にスパッタ装置を用いて、基板温度150℃、Arガス
のスパッタ圧1mTorr、蒸着レート毎分500Åの条件のも
とにW膜を形成し、このW膜を選択除去してショットキ
ゲートを形成しているので、密着性、ショットキ特性及
び逆方向電流電圧特性などが良好なGaAs MESFETを得る
ことができる。
(Effects of the Invention) As described above, the present invention uses a sputtering apparatus on the n-type active layer of a GaAs substrate and uses a substrate temperature of 150 ° C., an Ar gas sputtering pressure of 1 mTorr, and a vapor deposition rate of 500Å / min. Since the W film is formed at the same time and the W film is selectively removed to form the Schottky gate, it is possible to obtain a GaAs MESFET having excellent adhesion, Schottky characteristics, reverse current-voltage characteristics, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明の1実施例を説明するた
めの構造断面図、第2図はスパッタ圧を1mTorrと24mTor
rとで蒸着したWショットキゲートFETの電流電圧特性を
表わす図、第3図は、スパッタ蒸着レートを毎分120Å
と500Åとで蒸着したWショットキゲートFETの電流電圧
特性を表わす図である。 1……GaAs基板、2……n型活性層、3……W膜、4…
…ゲートパターン体、5……ゲート電極、6……n+
域、7……オーミック電極。
1 (a) to 1 (c) are structural cross-sectional views for explaining one embodiment of the present invention, and FIG. 2 shows sputter pressures of 1 mTorr and 24 mTor.
Fig. 3 shows the current-voltage characteristics of W Schottky gate FETs deposited with r and Fig. 3. The sputtering deposition rate is 120Å / min.
It is a figure showing the current-voltage characteristic of W Schottky gate FET vapor-deposited by and 500Å. 1 ... GaAs substrate, 2 ... n-type active layer, 3 ... W film, 4 ...
… Gate pattern, 5 …… gate electrode, 6 …… n + region, 7 …… ohmic electrode.

フロントページの続き (56)参考文献 特開 昭57−152166(JP,A) 特開 昭57−152168(JP,A) 特開 昭59−99776(JP,A) 特開 昭56−147434(JP,A) 特開 昭58−177469(JP,A)Continuation of the front page (56) Reference JP-A-57-152166 (JP, A) JP-A-57-152168 (JP, A) JP-A-59-99776 (JP, A) JP-A-56-147434 (JP , A) JP-A-58-177469 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】GaAs基板にn型活性層を形成する工程と、
該GaAs基板にタングステンからなるゲート金属膜をスパ
ッタリング法により被着し、該ゲート金属膜を選択的に
除去してショットキゲート電極を形成する工程と、該シ
ョットキゲート電極の両側にオーミック電極を形成する
工程とを備えた化合物半導体素子の製造方法において、 前記スパッタリング法を、基板温度を100℃〜450℃、ス
パッタ圧を0.5mTorr〜12mTorr、被着レートを150Å/分
〜1000Å/分の条件下で行うことを特徴とする化合物半
導体素子の製造方法。
1. A step of forming an n-type active layer on a GaAs substrate,
A step of forming a Schottky gate electrode by depositing a gate metal film made of tungsten on the GaAs substrate by a sputtering method, and selectively removing the gate metal film, and forming ohmic electrodes on both sides of the Schottky gate electrode. In the method for producing a compound semiconductor device comprising a step, the sputtering method, substrate temperature 100 ℃ ~ 450 ℃, sputter pressure 0.5mTorr ~ 12mTorr, deposition rate 150 Å / min ~ 1000 Å / min under the conditions A method of manufacturing a compound semiconductor device, which comprises:
JP59176835A 1984-08-27 1984-08-27 Method for manufacturing compound semiconductor device Expired - Lifetime JPH0812868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176835A JPH0812868B2 (en) 1984-08-27 1984-08-27 Method for manufacturing compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176835A JPH0812868B2 (en) 1984-08-27 1984-08-27 Method for manufacturing compound semiconductor device

Publications (2)

Publication Number Publication Date
JPS6155966A JPS6155966A (en) 1986-03-20
JPH0812868B2 true JPH0812868B2 (en) 1996-02-07

Family

ID=16020666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176835A Expired - Lifetime JPH0812868B2 (en) 1984-08-27 1984-08-27 Method for manufacturing compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0812868B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147434A (en) * 1980-04-18 1981-11-16 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPS57152168A (en) * 1981-03-13 1982-09-20 Nec Corp Manufacture of schottky barrier gate field effect transistor
JPS57152166A (en) * 1981-03-13 1982-09-20 Nec Corp Manufacture of schottky barrier gate field effect transistor
JPS58177469A (en) * 1982-04-09 1983-10-18 Fujitsu Ltd Method and device for formation of thin film
JPS5999776A (en) * 1982-11-29 1984-06-08 Toshiba Corp Manufacture of schottky gate type electric field effect transistor

Also Published As

Publication number Publication date
JPS6155966A (en) 1986-03-20

Similar Documents

Publication Publication Date Title
US4478881A (en) Tungsten barrier contact
US4545115A (en) Method and apparatus for making ohmic and/or Schottky barrier contacts to semiconductor substrates
JP2673109B2 (en) Method of manufacturing self-aligned T-gate gallium arsenide metal semiconductor field effect transistor
JPH07161659A (en) Semiconductor device and its manufacture
JP3079851B2 (en) Method for manufacturing silicon carbide electronic device
JPH0620081B2 (en) Method of manufacturing self-aligned MESFET having T-shaped gate shape
US4954852A (en) Sputtered metallic silicide gate for GaAs integrated circuits
US5528081A (en) High temperature refractory metal contact in silicon integrated circuits
JPH0361346B2 (en)
JPS6257255A (en) Manufacture of compound semiconductor device
JPH0812868B2 (en) Method for manufacturing compound semiconductor device
US5342793A (en) Process for obtaining multi-layer metallization of the back of a semiconductor substrate
US5877031A (en) Method for forming a metallic barrier layer in semiconductor device
JPH0359580B2 (en)
EP0443296B1 (en) Process for obtaining multilayer metallization of the back of a semiconductor substrate
JPS61290775A (en) Semiconductor device
JP2773937B2 (en) Method for manufacturing semiconductor device
JPH0260215B2 (en)
JPS6273673A (en) Manufacture of field-effect transistor
JP3072335B2 (en) Method for manufacturing field effect transistor
EP0455284A1 (en) Method for applying metal silicides to silicon
JPS60225477A (en) Formation of electrode
JPH01194468A (en) Ohmic electrode structure
JPH03289142A (en) Manufacture of compound semiconductor device
JPS61174671A (en) Schottky junction type semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term