JPS5999776A - Manufacture of schottky gate type electric field effect transistor - Google Patents

Manufacture of schottky gate type electric field effect transistor

Info

Publication number
JPS5999776A
JPS5999776A JP20903182A JP20903182A JPS5999776A JP S5999776 A JPS5999776 A JP S5999776A JP 20903182 A JP20903182 A JP 20903182A JP 20903182 A JP20903182 A JP 20903182A JP S5999776 A JPS5999776 A JP S5999776A
Authority
JP
Japan
Prior art keywords
etching
film
mask
dry etching
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20903182A
Other languages
Japanese (ja)
Other versions
JPS6246073B2 (en
Inventor
Toshiyuki Terada
俊幸 寺田
Takamaro Mizoguchi
溝口 孝麿
Nobuyuki Toyoda
豊田 信行
Akimichi Hojo
北條 顕道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20903182A priority Critical patent/JPS5999776A/en
Publication of JPS5999776A publication Critical patent/JPS5999776A/en
Publication of JPS6246073B2 publication Critical patent/JPS6246073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form source and drain regions with low resistance by a method wherein a gate electrode metal is etched by means of assembling anisotropic and isotropic dry etching processes in this order to make a gate length a little shorter than the mask dimension and then the sides of an electrode metal are coated with an insulating film to implant ion in a substrate on both sides. CONSTITUTION:A W layer 13 with specified shape to be a gate electrode is formed on a semiinsulating GaAs substrate 11 with an n type GaAs active layer 12 and the W layer 13 is covered with an Au mask 14 and then anisotropic dry etching using gas and isotropic dry etching using mixed gas of CF4 and O2 are performed to leave an electrode 13 a little shorter than the mask 14 below the mask 14. Next overall surface is coated with an Si3N4 film 15 and the film 15 is left only on the sides of the electrode 13 under the mask 14 by means of anisotropic etching using CF4 gas to form source and drain regions 16, 17 by means of implanting Si<+> ion in the layer 12 on both sides. Through these procedures, an FET with high drain withstand voltage may be produced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はダートにショットキー障壁を用いたいわゆるシ
ョットキーダート型電界効果トランジスタの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a so-called Schottky dart type field effect transistor using a Schottky barrier in the dirt.

〔発明の技術、的背景とその問題点〕[Technology, background and problems of the invention]

ケ゛−トにショットキー障壁を用いた電界効果トランジ
スタ(FET )においては、ダート長及びソース・ダ
ート間に存在するソース直列抵抗がその特性を決定づけ
る大きな要因となっている。すなわち、ケ°−ト長(t
g)と、FETの信号伝搬遅延時間(tpd )との間
には tpd Cx−1g2 なる関係があるため、7gを短かくするほどtpaか小
さくなシ、高速動作が可能となる。また、ソース直列抵
抗(Rs)については、FETの真性相互コンダクタン
スをgmo 、実際の相互コンダクタンスをgmとすれ
ば gm = gmo / (1+4moRs )なる関係
があり、Rsが大きいほどgmを小テ<シてしまう。さ
らに、tgとgmoの間にはgmOoc l / 、/
=g なる関係がある。
In a field effect transistor (FET) using a Schottky barrier in its gate, the dart length and the source series resistance existing between the source and the dart are major factors that determine its characteristics. That is, the gate length (t
g) and the signal propagation delay time (tpd) of the FET has the following relationship: tpd Cx-1g2 Therefore, the shorter 7g is, the smaller tpa becomes, and high-speed operation becomes possible. Regarding the source series resistance (Rs), if the intrinsic mutual conductance of the FET is gmo and the actual mutual conductance is gm, then there is a relationship as follows: gm = gmo / (1+4moRs), and the larger Rs is, the smaller the gm is. It ends up. Furthermore, between tg and gmo there are gmOoc l /, /
=g There is a relationship.

すなわちIi”ETの動作速度を速くするためには、ダ
ート長tgを短くし、かつソース直列抵抗Raを小さく
する必要がある。、 しかしながら、r−ト長を短くすることは従来のフォト
エツチングの技術に限界がちυ、1μm以下のダート長
を得ることは困難とされている。
That is, in order to increase the operating speed of Ii''ET, it is necessary to shorten the dart length tg and reduce the source series resistance Ra. However, shortening the r-t length is difficult to achieve with conventional photoetching. Due to technical limitations, it is difficult to obtain a dart length of 1 μm or less.

そこで従来用い′られてきた方法として、第1図に示す
ように、耐熱性金漁でダート電極3を形成し、これをマ
スクとしてり°−トの両脇にイオン注入を行ない、高濃
度層4,5を形成してRsを低減する方法がある。図中
、1は例えば半絶縁性GaAs基体、2はn型GaAs
層である。しかし、この方法ではアニール時の高濃度層
4,5の不純物凋拡散によシク゛−ト電極3と高濃度層
4゜bが1在るため、ダート容量が垢・太し、かつドレ
イン面]汗が4V程度と低く外ってし21う。
Therefore, as shown in Fig. 1, the conventional method used is to form a dirt electrode 3 using heat-resistant goldfish, and using this as a mask, ions are implanted on both sides of the dart to form a highly concentrated layer. There is a method to reduce Rs by forming 4,5. In the figure, 1 is, for example, a semi-insulating GaAs substrate, and 2 is an n-type GaAs substrate.
It is a layer. However, in this method, the dirt capacitance becomes thicker and thicker due to the diffusion of impurities in the high-concentration layers 4 and 5 during annealing, and the dirt capacitance becomes thicker and thicker due to the presence of the first electrode 3 and the high-concentration layer 4゜b. Sweat is coming off as low as 4V.

丑だ、別の例として、第2図に示すようにダート電極3
をエツチングする際にオーバーエツチングをかけてケ゛
−ト長を短縮し、さらにエッチフグマスクであるフォト
レジスト6をそのままイオン注入のマスクとじて用すて
高濃度層4゜5を形成する方法がある。しかしこの方法
では、ダー)を極のエツチングに従来のウェットエツチ
ング法や等方的なプラズマエツチング法等ヲ用いた場合
には、金秩膜の膜厚分布によ漫オーバーエツチングの量
が異なってしまい、ダート長の精密な制御が11iff
 Lい。さらに、イオン注入の際には、面ナヤンネリン
グの効果等を避けるため、基板を5〜10°傾けること
が多く、この方法を用いた場合には、ダート電極にソー
ス領域もしくはドレイン領域のどちらか一方が必要以上
に近接してし址う可能性もある。
As another example, as shown in Figure 2, the dart electrode 3
There is a method of shortening the gate length by over-etching when etching, and then using the photoresist 6, which is an etch mask, as it is as a mask for ion implantation to form a high concentration layer 4.5. . However, in this method, if a conventional wet etching method or an isotropic plasma etching method is used for etching the electrode, the amount of overetching will vary depending on the thickness distribution of the gold film. Precise control of dirt length is 11iff.
L. Furthermore, during ion implantation, the substrate is often tilted by 5 to 10 degrees in order to avoid the effect of in-plane tunneling. When this method is used, either the source region or the drain region is attached to the dart electrode There is also a possibility that they may end up being closer together than necessary.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点にかんがみなされたもので、高度なリ
ングラフィ技術を使用せずにザブミクロンまでのダート
長の短縮ができ、さらにソース直列抵抗が小さくかつド
レイン耐圧の高いショットキーr−)型FET ′ff
:製造する方法を提供するものである。
The present invention was developed in consideration of the above points, and it is possible to shorten the dart length to submicrons without using advanced phosphorography technology, and furthermore, the Schottky r-) type has low source series resistance and high drain breakdown voltage. FET'ff
:Provides a manufacturing method.

〔発明の概要〕[Summary of the invention]

本発明は要約すれば、■異方性と等方性のドライエツチ
ング技術をこの順に連続的に組み合わせてケ゛−ト電極
金属膜をエツチングすることによシ、制御性よくマスク
寸法よりわずかに小さいケ゛−ト長を得ること、■次に
マスクを残したままステップカバレージに優れた堆積法
にょシ絶縁膜を形成じ光後、異方性ドライエツチングを
行ない、ケ゛−ト電極の側面即ちマスクのひ式しの下に
のみこのP縁膜を残し、この状態でイオン注入によシ低
抵抗ソース、ドレイン領域を形成すること、を特徴とす
る。
In summary, the present invention consists of: 1. By sequentially combining anisotropic and isotropic dry etching techniques in this order to etch the cathode metal film, it is possible to etch an etching film slightly smaller than the mask dimension with good controllability. Obtaining the gate length. Next, an insulating film is formed using a deposition method with excellent step coverage while leaving the mask, and after photo-etching, anisotropic dry etching is performed to extend the sides of the gate electrode, that is, the mask. The feature is that this P edge film is left only under the base plate, and in this state, low resistance source and drain regions are formed by ion implantation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ドライエツチング技術の組合せによシ
サプミクロンまで制御性よくダート長を短縮することが
できる。壕だダート電極の側面に絶縁膜をっけた状態で
イオン注入を行う結果、ダート電極とソース、ドレイン
領域の間を制御性よく微小間隔だけ離すことができ、従
ってダート容量が/J−ざく、高速動作が可能で、かつ
ドレイン耐圧の関いショットキーゲート型FETが得ら
れる。
According to the present invention, the dart length can be shortened to 10 microns with good controllability by combining dry etching techniques. As a result of performing ion implantation with an insulating film placed on the side surface of the dirt electrode, it is possible to separate the dirt electrode and the source and drain regions by a very small distance with good controllability. A Schottky gate type FET that is capable of high-speed operation and has a high drain breakdown voltage can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、基板にGaAsを用いた実施例について、第3図
を参照して詳細貴説明する□。例えば、クロム(Cr)
をドープした半絶縁性GaAs基体11′に活性層とな
るn型GaAs層12を成長□さ□せた基板を用い、こ
の表面にダート細極となる耐熱性金属膜としてタングス
テン(W)膜13を4000スの厚さに全面被着し、更
にそのダート電極とガる部分に耐エツチングマスクとし
て1μm幅の金1(Au)膜14を約200’OXの膜
厚□で形成する(第3図(a))’。この際、Au膜1
′4のシゃターニングにはリフトオフ法を用いれば、微
細パターンを精度よく形成できる。
Hereinafter, an example using GaAs for the substrate will be explained in detail with reference to FIG. For example, chromium (Cr)
A tungsten (W) film 13 is used as a heat-resistant metal film to form a dirt electrode on the surface of a substrate in which an n-type GaAs layer 12 which becomes an active layer is grown on a semi-insulating GaAs substrate 11' doped with A gold 1 (Au) film 14 with a width of 1 μm and a thickness of about 200 mm is formed on the entire surface of the dirt electrode and the gap as an etching-resistant mask. Figure (a))'. At this time, Au film 1
If a lift-off method is used for the shunting of '4, a fine pattern can be formed with high precision.

次にとのAu#J4をマスクとして、W膜13を平行平
板型及応性イオンエツチング(RIE )装置によシ完
全にエツチングする(第3図(b))。
Next, using the Au#J4 as a mask, the W film 13 is completely etched using a parallel plate reactive ion etching (RIE) device (FIG. 3(b)).

エツチングガスとしてld: CF4、流量は20 a
c/mi n 。
Etching gas: CF4, flow rate 20a
c/min.

エツチングガス圧は0.05Torrで、高周波電力は
200Wである。この条件でのW膜13のエツチング速
度は300X/minであシ□、エツチングは完全な異
方性で進行する。なお、Au膜14、GaA’s層12
吉の選択比はそ五ぞれ〜1.〜1oと充□分翼得られて
いる。と□o”arEにひきつづき、通常の円筒型プラ
グ”!7’+:ノチング装置にてW膜13J’エツチン
グする。エツチングガスとしてはCF4と02の混合ガ
スを用い、流量はそれぞれ15 CC/’rn’in’
 + ”5 CI:/’mi’n + 臣ツチングガス
圧は0.ITor’rで、高周波油:力i+:’ i 
0o wである二円筒型プラズマエツチング装随では、
W膜13は船一方的にエツチングされ、エツチング速度
は]、OOi/minである。この条件1F”で20分
間エツチング士ると、Au膜14とGaAs層12はま
ったくエツチングされ々い/こめ、W膜14の側壁が仮
退してAu膜j4のひさしくΔχ口がO,ムμm形成さ
オlる(第3図(′c))。 ′          
  □□コノ”Lつic %’ ”tず異方性ドライエ
ソナングであるRIEでW膜の側壁を垂直に加工1〜だ
後;等方性ドライエレチングであするプラズマエツチン
グでサイドエツチングをかける方法をとっているため、
ザイドエソチ量(ΔX)の制御が非常に精密にできる。
The etching gas pressure was 0.05 Torr and the high frequency power was 200W. Under these conditions, the etching rate of the W film 13 is 300X/min, and the etching progresses with complete anisotropy. Note that the Au film 14 and the GaA's layer 12
The selection ratio of Kichi is 5 to 1. ~1 o and enough blades were obtained. And □o”Continuing from arE, it is a normal cylindrical plug”! 7'+: W film 13J' is etched using a notching device. A mixed gas of CF4 and 02 was used as the etching gas, each with a flow rate of 15 CC/'rn'in'.
+ ``5 CI:/'mi'n + Retaining gas pressure is 0.ITor'r, high frequency oil: force i +:' i
In a two-cylindrical plasma etching system with 0oW,
The W film 13 is etched unilaterally, and the etching rate is OOi/min. When etching is carried out for 20 minutes under these conditions 1F'', the Au film 14 and the GaAs layer 12 are not etched at all, and the side wall of the W film 14 temporarily retracts, causing the very large Δχ opening of the Au film j4 to become O, mm μm. It is formed (Fig. 3('c)).'
□□ After processing the side wall of the W film vertically using RIE, which is anisotropic dry etching, method of side etching using plasma etching using isotropic dry etching. Because we are taking
The amount of zide (ΔX) can be controlled very precisely.

雀だ、子べてドライエソチング工程であるため、ウェー
1面内及びウエノ・間の均一性も非常によい。例えば、
この状態で2インチφウニ・・全面でダート長を測定し
た所、W膜の膜厚分布が±700X程度あったにもかか
わらず、r−ト長は0.6μm±005μmであった。
Because it is a dry ethosing process, the uniformity within one wafer surface and between wafers is very good. for example,
In this state, when the dart length was measured over the entire surface of the 2-inch φ sea urchin, the dart length was 0.6 μm±005 μm even though the film thickness distribution of the W film was approximately ±700×.

迩ちにAu膜のひさしΔXは面内で11とんど/ぐラツ
キがなく、±0.05μmの分布はAu膜の、パターン
を形成した時点で9バラツギと考え尿こむできる。
At the same time, the eaves ΔX of the Au film has no fluctuation in the plane of 11 mm, and the distribution of ±0.05 μm is considered to be 9 variations in the Au film at the time the pattern is formed.

上記のようにケ゛−′)□電析を形成し滉核、減圧CV
D (LPCVD )法によりSi3N4膜15を〜6
000X堆積する。この方法はステノプカ・ぐレージが
非常に良いため、基板上の凹凸を完全に力・N4−でき
る(第3図(d))。どの後、全面にCF4ガスによ、
K1゜を行ヵう。2o結果、8、。。異方性のためにA
u膜14のひさしの下部にのみSi3N4膜15が残る
(第3図(e))。
As mentioned above, the electrodeposition is formed and the nucleation is carried out by low pressure CV.
Si3N4 film 15 ~ 6 by D (LPCVD) method
000X deposit. Since this method has very good stain resistance, it is possible to completely remove the unevenness on the substrate with a force of N4- (Fig. 3(d)). After that, the entire surface is covered with CF4 gas.
Go through K1°. 2o result, 8. . A for anisotropy
The Si3N4 film 15 remains only under the eaves of the U film 14 (FIG. 3(e)).

この状態で28st+イオンを1.加速電圧200ke
V 、ドーズ量3×1013ど6 でイオン注入し、8
00〜850℃で15分間のアニールを行って低抵抗の
ソース領域16.ドレイン領域17を形成した後、ソー
ス、ドレイン領域J 6.、 Z 7にAuGe合金か
らなるオーミック電極18.19を形成した(第3図(
f))。
In this state, 1.28st+ ions were added. Acceleration voltage 200ke
Ion implantation was carried out at a dose of 3×1013 6 and 8
Anneal for 15 minutes at 00-850°C to form low resistance source region 16. After forming the drain region 17, the source and drain regions J6. Ohmic electrodes 18 and 19 made of AuGe alloy were formed on Z 7 (see Fig. 3).
f)).

この結果、ダートのマスク寸法が1μmであるにもかか
わらず、実際のダート長が、O:6μmと短く、甘な、
ソース、ドレインとダート間が0.2μmと小さいだめ
ソース直列抵抗もダート容量も十分に小5く、高速動作
が可能!、かつドレイン酊Ef−がi”’OV以上とい
う高性能のFETが得られたtしかもFET特性はウエ
ノ・面内及びウエノ・間でもバラツキが少なく、非常に
均一性の」:いものであった。
As a result, although the dart mask dimension is 1 μm, the actual dart length is as short as O: 6 μm, which is a sweet
The distance between the source, drain and dart is small at 0.2μm, and the source series resistance and dart capacitance are sufficiently small5, enabling high-speed operation! A high-performance FET was obtained in which the drain current Ef was equal to or higher than i''OV.Furthermore, the FET characteristics were highly uniform with little variation within the plane and between the substrates. .

才だ、比較例として上記実施例中のAu膜の部分にhi
2o、、膜を用い、第3図(e)の状態で、イオン注入
し常圧CVD法による5IO2でパッシベーショフした
後、熱処理してFET’i形成した。これを上記実施例
と比較すると、上記実施例のものの方が、r7ト電極自
身の抵抗が3割程度低く、またノース直列抵抗の・々ラ
ツキも1/2程度に小さかった。比較例の場合、直列抵
抗のバラツキはイオン注入時に基板を7°傾けているた
めと考えられるが、ダート電極の側壁にS i 3N4
膜を形成した上記実施例のものは、この513N4膜が
イオン注入のマスクとなるため、基板を傾けてもバラツ
キが小さく寿っている。さらに、同じ理由から、ドレイ
ン耐圧も、比較例の場合で6〜12Vに対し、上記実施
例のものでは10〜12Vとバラツキが小さく々ってい
た。
As a comparative example, hi was applied to the Au film part in the above example.
Using the 2o, film, in the state shown in FIG. 3(e), ions were implanted, passivation was performed with 5IO2 by atmospheric pressure CVD, and heat treatment was performed to form an FET'i. Comparing this with the above embodiment, in the above embodiment, the resistance of the r7 electrode itself was about 30% lower, and the unevenness of the north series resistance was about 1/2 smaller. In the case of the comparative example, the variation in series resistance is thought to be due to the substrate being tilted by 7° during ion implantation, but Si 3N4 was applied to the side wall of the dart electrode.
In the above embodiment in which a film is formed, this 513N4 film serves as a mask for ion implantation, so even if the substrate is tilted, the variation remains small. Further, for the same reason, the drain breakdown voltage also showed small variations, being 6 to 12 V in the comparative example, and 10 to 12 V in the above example.

また、比較例のものは、熱処理時のひさしの部分のパッ
シベーションの不完全さに起因する翻 不良品率が非常に高かつ孤が、上記実施例のものについ
ては、不良品はほとんどなかった。
In addition, the comparative examples had a very high rate of defective products due to incomplete passivation of the eaves during heat treatment, while the samples of the above examples had almost no defective products.

本発明は上記実施例に限られない。例えはゲート電極用
金属膜はWに限らず耐熱性で〃・つドライエツチングが
可能な金属であればよく、MやWN、 wst %を用
い得る。さらに順エツチングマスクもAuに限らず、8
00℃の高温で下のダート金属と反応せず、ドライエツ
チングのマスクとなればよく、例えばpt等を用いても
よい。また513N4膜の代シに同様の堆積法による5
t02膜を用いることができる。その化エツチングガス
や膜の堆積方法も所期の目的を達成できるものであれば
、上記実施例のものに限られない。
The present invention is not limited to the above embodiments. For example, the metal film for the gate electrode is not limited to W, but any metal that is heat resistant and capable of dry etching may be used, and M, WN, or wst % may be used. Furthermore, the sequential etching mask is not limited to Au.
It is sufficient that it does not react with the underlying dirt metal at a high temperature of 00° C. and serves as a mask for dry etching, and for example, PT or the like may be used. In addition, 513N4 film was replaced with 5
A t02 film can be used. The etching gas and film deposition method are not limited to those of the above embodiments as long as they can achieve the intended purpose.

さらに上記実施例は基板がGaAaである場合について
示したが、−Stや他の化合物半導体についても電極用
金属やドナー不純物を変更するだけで適用可能である。
Further, although the above embodiments have been described with reference to the case where the substrate is GaAa, it is also possible to apply the present invention to -St or other compound semiconductors by simply changing the electrode metal or the donor impurity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来法によるショットキーダート
型FETの断面図、第3図(、)〜(f)は本発明の一
実施例のショットキーゲート型FETの製造工程を示す
断面図である。 11−・半絶縁性GaAs基板、12− n型GaA 
s層、13・・・W膜(ダート電極)、14・・・Au
膜(耐エツチングマスク)、15・・・LPCVD −
5t3N4膜、16・・・ソース領域、17・・・ドレ
イン領域、18゜19・・・オーミック電極。 出願人代理人  弁理士 鈴 江 武 彦第2図 第3図 L 第3図
FIGS. 1 and 2 are cross-sectional views of a Schottky dart type FET according to a conventional method, and FIGS. 3(a) to (f) are cross-sectional views showing the manufacturing process of a Schottky gate type FET according to an embodiment of the present invention. It is. 11- Semi-insulating GaAs substrate, 12- n-type GaA
s layer, 13...W film (dart electrode), 14...Au
Film (etching resistant mask), 15...LPCVD -
5t3N4 film, 16... Source region, 17... Drain region, 18°19... Ohmic electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3 L Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上にショットキー障壁を形成するダー
ト金属膜を全面に形成する工程と、この金属膜上に耐エ
ツチングマスクを形成する工程と、異方性ドライエツチ
ング法で前記金属膜を選択的にエツチング除去し、続い
て等方性ドライエツチング法によシ残された金属膜の側
壁を後退させて前記耐エツチングマスクのひさしを形成
する工程と、前記耐エツチングマスクを残した状態でス
テップカバレージのよい堆積法によシ全面に絶縁膜を堆
積する工程と、堆積した絶縁膜を異方性ドライエツチン
グ法によシエッチングして前記耐エツチングマスクのひ
さし下にのみ残置させる工程と、残された絶縁膜と・前
記金属膜をマスクとしてイオン注入して低抵抗のソース
およびドレイ/領域を形成する工程と、これらソースお
よびドレイン領域にオーミック電極を形成する工程とを
具備したことを特徴とするショットキーダート型電界効
果トランジスタの製造方法。       。
(1) A process of forming a dirt metal film to form a Schottky barrier on the entire surface of the semiconductor substrate, a process of forming an etching-resistant mask on this metal film, and selecting the metal film using an anisotropic dry etching method. a step of removing the metal film by etching, and then receding the side wall of the remaining metal film by an isotropic dry etching method to form the eaves of the etching-resistant mask; and a step with the etching-resistant mask remaining. a step of depositing an insulating film over the entire surface using a deposition method with good coverage; a step of etching the deposited insulating film using an anisotropic dry etching method to leave the remaining insulating film only under the eaves of the etching-resistant mask; and a step of forming a low-resistance source and drain/region by ion implantation using the metal film as a mask, and a step of forming an ohmic electrode in the source and drain regions. A method for manufacturing a Schottky dart field effect transistor. .
(2)  前記半導体゛一基板は半絶縁性GaAs基体
にn型GaAs層を成□長させたものであυ、前記ゲー
ト金属膜はW膜であシ、前記耐エツチングマスクはAu
膜であシ、、前記絶縁膜は減圧CVDによる513N4
膜であシ、前記異方性ドライエツチング法はCF4ガス
を用いた反応性イオンエツチングで・あシ、前記等方性
ドライエツチング法はCF4.+02ガスを用い・たグ
ラズマエッチングである特許請求の範囲第1項記載の7
甘ツトキーグート型電界効果トランソスタの製造方法。
(2) The semiconductor substrate is a semi-insulating GaAs base with an n-type GaAs layer grown on it, the gate metal film is a W film, and the etching-resistant mask is an Au film.
The insulating film is made of 513N4 by low pressure CVD.
The anisotropic dry etching method is reactive ion etching using CF4 gas, and the isotropic dry etching method is reactive ion etching using CF4 gas. 7 of Claim 1, which is glazma etching using +02 gas.
A method for manufacturing an Amatutkygut type field effect transformer.
JP20903182A 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor Granted JPS5999776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20903182A JPS5999776A (en) 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20903182A JPS5999776A (en) 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor

Publications (2)

Publication Number Publication Date
JPS5999776A true JPS5999776A (en) 1984-06-08
JPS6246073B2 JPS6246073B2 (en) 1987-09-30

Family

ID=16566107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20903182A Granted JPS5999776A (en) 1982-11-29 1982-11-29 Manufacture of schottky gate type electric field effect transistor

Country Status (1)

Country Link
JP (1) JPS5999776A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081872A (en) * 1983-10-11 1985-05-09 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS6143481A (en) * 1984-08-08 1986-03-03 Oki Electric Ind Co Ltd Manufacture of schottky gate field effect transistor
JPS6155966A (en) * 1984-08-27 1986-03-20 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6181672A (en) * 1984-09-28 1986-04-25 Nec Corp Manufacture of semiconductor device
FR2572587A1 (en) * 1984-11-01 1986-05-02 Toshiba Kk METHOD FOR MANUFACTURING SCHOTTKY GRID TYPE FIELD EFFECT TRANSISTOR
JPS6196735A (en) * 1984-10-17 1986-05-15 Toshiba Corp Conductor pattern forming process
JPS6215863A (en) * 1985-07-12 1987-01-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of self-aligning metal-semiconductor fet
JPS62156878A (en) * 1985-12-28 1987-07-11 Nec Corp Semiconductor device
JPS62239586A (en) * 1986-04-07 1987-10-20 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of fet device
JPS62243359A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Compound semiconductor device
JPH01170051A (en) * 1987-12-25 1989-07-05 Fujitsu Ltd Semiconductor element
JP2007165448A (en) * 2005-12-12 2007-06-28 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415108Y2 (en) * 1987-01-12 1992-04-06
JPH022071U (en) * 1988-06-17 1990-01-09

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081872A (en) * 1983-10-11 1985-05-09 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS6143481A (en) * 1984-08-08 1986-03-03 Oki Electric Ind Co Ltd Manufacture of schottky gate field effect transistor
JPS6155966A (en) * 1984-08-27 1986-03-20 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6181672A (en) * 1984-09-28 1986-04-25 Nec Corp Manufacture of semiconductor device
JPS6196735A (en) * 1984-10-17 1986-05-15 Toshiba Corp Conductor pattern forming process
FR2572587A1 (en) * 1984-11-01 1986-05-02 Toshiba Kk METHOD FOR MANUFACTURING SCHOTTKY GRID TYPE FIELD EFFECT TRANSISTOR
JPS6215863A (en) * 1985-07-12 1987-01-24 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of self-aligning metal-semiconductor fet
JPS62156878A (en) * 1985-12-28 1987-07-11 Nec Corp Semiconductor device
JPS62239586A (en) * 1986-04-07 1987-10-20 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of fet device
JPS62243359A (en) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd Compound semiconductor device
JPH01170051A (en) * 1987-12-25 1989-07-05 Fujitsu Ltd Semiconductor element
JP2007165448A (en) * 2005-12-12 2007-06-28 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6246073B2 (en) 1987-09-30

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
EP0005741B1 (en) A process for providing ion-implanted regions in a semiconductive substrate
JPS5999776A (en) Manufacture of schottky gate type electric field effect transistor
US5496779A (en) Method for fabricating a self-aligned T-gate metal semiconductor field effect transistor
JP2553699B2 (en) Method for manufacturing semiconductor device
USRE32613E (en) Method of making contact electrodes to silicon gate, and source and drain regions, of a semiconductor device
JPS6351550B2 (en)
JPH0156534B2 (en)
JPH02130852A (en) Semiconductor device
JPS6189668A (en) Manufacture of semiconductor device
JPH0353774B2 (en)
JPS61154177A (en) Manufacture of semiconductor device
JPH01161873A (en) Manufacture of semiconductor device
JPH01251669A (en) Manufacture of field effect transistor
JPS6112079A (en) Manufacture of semiconductor element
JP2726730B2 (en) Manufacturing method of field effect transistor
JPS6258154B2 (en)
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS60198869A (en) Manufacture of semiconductor device
JPH0156537B2 (en)
JPS6068662A (en) Semiconductor device and manufacture thereof
JPS6122671A (en) Manufacture of schottky barrier gate-type field effect transistor
JPS6364891B2 (en)
JPH03289142A (en) Manufacture of compound semiconductor device
JPS6187378A (en) Manufacture of compound semiconductor device