JPS6245717B2 - - Google Patents

Info

Publication number
JPS6245717B2
JPS6245717B2 JP14240982A JP14240982A JPS6245717B2 JP S6245717 B2 JPS6245717 B2 JP S6245717B2 JP 14240982 A JP14240982 A JP 14240982A JP 14240982 A JP14240982 A JP 14240982A JP S6245717 B2 JPS6245717 B2 JP S6245717B2
Authority
JP
Japan
Prior art keywords
discharge
dielectric
electrode
gas laser
silent discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14240982A
Other languages
Japanese (ja)
Other versions
JPS5932187A (en
Inventor
Shuji Ogawa
Shigenori Yagi
Masaki Kuzumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14240982A priority Critical patent/JPS5932187A/en
Publication of JPS5932187A publication Critical patent/JPS5932187A/en
Publication of JPS6245717B2 publication Critical patent/JPS6245717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、無声放電式ガスレーザ装置の電極
構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the electrode structure of a silent discharge type gas laser device.

従来、無声放電式ガスレーザ装置の一例として
三軸直交型CO2レーザ装置がある。
Conventionally, a three-axis orthogonal CO 2 laser device is an example of a silent discharge gas laser device.

第1図は従来の三軸直交型CO2レーザの構成原
理を示す図である。第2図はその誘電体電極の断
面図、第3図は第2図の−線による断面図で
放電状態を示す図である。第1図において、レー
ザ発振器1内には接地金属電極2と高周波高電圧
が印加される誘電体電極3が相対向して配置され
ている。この両電極2,3間には放電空間4が形
成され、この放電空間4内には炭酸ガス
(CO2)・ヘリウムガス(He)、窒素ガス(N2)等
の混合ガスから成るガスレーザ媒質が熱交換器6
にて冷却され、ブロア7により加速され毎秒30m
程度の高速度で循環供給されるようになつてい
る。放電空間4の両端には全反射鏡8および部分
反射鏡9が固定配置され、光共振器が形成されて
いる。誘電体電極3は、第2図に示すように金属
電極10を誘電体11が被覆し、さらに誘電体電
極3が接地金属電極2と対向する面である主要放
電部5以外の誘電体11の表面が無機セメント1
2で覆われた構造となつている。誘電体電極3に
は交流電源14から100KHz、10KV(実効値)
程度の高周波高電圧が印加され、放電空間4に無
声放電として知られている安定したグロー状の放
電が生起される。放電空間4においては、前記ブ
ロア7によるガスレーザの媒質ガス循環流Ga
両電極2,3間の無声放電Spとが第3図に示す
ように直交する状態となり、この時の放電エネル
ギーがガスレーザ媒質に与えられ、この例では炭
酸ガス(CO2)分子がレーザ励起され、前述した
媒質ガス循環流Gaおよび無声放電Spとが直交す
ることになる。すなわち、放電空間4とその両端
に固定配置された全反射鏡8と部分反射鏡9で形
成される光共振器の光軸に対してレーザビーム1
5の励起が行われ、光共振器による共振増幅が行
われた後、その一部が部分反射鏡9からレーザビ
ーム15として外部へ放出されるのである。放電
空間4における放電エネルギーによるガスレーザ
媒質の温度上昇は、レーザ発振のエネルギー効率
を低下させる原因となるので、放電空間4の媒質
ガスの循環流は熱交換器6にて冷却され、ブロア
7にて高速度で強制循環させられることにより、
ガスレーザ媒質の温度上昇を一定以下に抑制して
いる。また、誘電体電極3の温度上昇による誘電
体電極3を構成する誘電体11の破壊を防止する
ために、誘電体電極3の内部にはポンプ16から
冷却器17および純水器18を通つて冷却され、
かつ電気抵抗の増加された純水冷却水が供給さ
れ、誘電体電極3の発熱が直接冷却水によつて冷
却されるようになつている。
FIG. 1 is a diagram showing the principle of construction of a conventional three-axis orthogonal CO 2 laser. FIG. 2 is a sectional view of the dielectric electrode, and FIG. 3 is a sectional view taken along the - line in FIG. 2, showing a discharge state. In FIG. 1, inside a laser oscillator 1, a ground metal electrode 2 and a dielectric electrode 3 to which a high frequency and high voltage is applied are arranged facing each other. A discharge space 4 is formed between these electrodes 2 and 3, and a gas laser medium consisting of a mixed gas of carbon dioxide (CO 2 ), helium gas (He), nitrogen gas (N 2 ), etc. is formed in this discharge space 4. is heat exchanger 6
It is cooled by the blower 7 and accelerated to 30 m/s.
It is designed to be circulated and supplied at a relatively high speed. A total reflection mirror 8 and a partial reflection mirror 9 are fixedly arranged at both ends of the discharge space 4 to form an optical resonator. As shown in FIG. 2, the dielectric electrode 3 includes a metal electrode 10 covered with a dielectric 11, and a dielectric 11 covering the surface of the dielectric 11 other than the main discharge portion 5, which is the surface facing the ground metal electrode 2. Surface is inorganic cement 1
It has a structure covered with 2. Dielectric electrode 3 receives 100KHz, 10KV (effective value) from AC power supply 14
A stable glow-like discharge known as a silent discharge is generated in the discharge space 4. In the discharge space 4, the medium gas circulating flow G a of the gas laser caused by the blower 7 and the silent discharge S p between the electrodes 2 and 3 are in a state of being perpendicular to each other as shown in FIG. 3, and the discharge energy at this time is In this example, carbon dioxide (CO 2 ) molecules are excited by the laser, and the medium gas circulating flow Ga and the silent discharge Sp are orthogonal to each other. That is, the laser beam 1 is directed toward the optical axis of the optical resonator formed by the discharge space 4 and the total reflection mirror 8 and partial reflection mirror 9 fixedly arranged at both ends of the discharge space 4.
After the laser beam 5 is excited and resonantly amplified by the optical resonator, a portion of the laser beam is emitted from the partially reflecting mirror 9 to the outside as a laser beam 15. The temperature rise of the gas laser medium due to the discharge energy in the discharge space 4 causes a decrease in the energy efficiency of laser oscillation. By forced circulation at high speed,
The temperature rise of the gas laser medium is suppressed below a certain level. In addition, in order to prevent the dielectric 11 constituting the dielectric electrode 3 from being destroyed due to a rise in temperature of the dielectric electrode 3, a pump 16 is connected to a cooler 17 and a deionizer 18 to cooled,
Further, pure water cooling water with increased electrical resistance is supplied, so that the heat generated by the dielectric electrode 3 is directly cooled down by the cooling water.

従来の三軸直交型CO2レーザ装置の構成は以上
の通りであるが、以下接地金属電極2、誘電体電
極3間に印加される高周波高電圧に基づく無声放
電によるレーザ励起作用を説明する。
Although the configuration of the conventional triaxial orthogonal CO 2 laser device is as described above, the laser excitation effect by silent discharge based on the high frequency high voltage applied between the ground metal electrode 2 and the dielectric electrode 3 will be explained below.

無声放電は両電極2,3間に印加される高周波
高電圧(約10KV)に基づき放電空間4内に誘電
体11を介して生ずる交流放電であり、電源電圧
の各印加周期の上昇過程において放電開始電圧
(約5KV)に達するとパルス的放電が生じる。こ
の放電により誘電体11の表面には放電電流によ
り電荷が蓄積され、その結果放電空間4の電圧が
低下して、パルス放電が消滅する。以上のパルス
放電が電源電圧の各周期における上昇過程におい
て繰り返えされ、通常の場合、交流電源電圧の半
サイクル中数回〜数十回の繰り返えしパルス放電
が得られる。また、極性の反転する次の半サイク
ルには逆極性の同様のパルス放電が繰り返えされ
る。従つて、放電空間4への放電電力供給は継続
的な繰り返しとなるが、レーザ励起およびレーザ
発振出力はガスレーザ媒質中の窒素がエネルギー
プールとして作用するため時間的にほぼ一様の出
力として得ることができる。
The silent discharge is an alternating current discharge that occurs in the discharge space 4 via the dielectric 11 based on the high frequency high voltage (approximately 10 KV) applied between the electrodes 2 and 3, and the discharge occurs in the rising process of each application cycle of the power supply voltage. When the starting voltage (approximately 5KV) is reached, a pulsed discharge occurs. Due to this discharge, charge is accumulated on the surface of the dielectric 11 due to the discharge current, and as a result, the voltage in the discharge space 4 decreases, and the pulse discharge disappears. The above-described pulse discharge is repeated during the rising process of each cycle of the power supply voltage, and normally, pulse discharge is repeated several times to several tens of times during a half cycle of the AC power supply voltage. Further, in the next half cycle in which the polarity is reversed, similar pulse discharges of opposite polarity are repeated. Therefore, although the supply of discharge power to the discharge space 4 is repeated continuously, the laser excitation and laser oscillation outputs can be obtained as substantially uniform outputs over time because the nitrogen in the gas laser medium acts as an energy pool. Can be done.

以上のような無声放電では誘電体電極3内の金
属電極10の電圧は約10KV(実効値)と、放電
空間4内の放電開始電圧約5KVよりも大きいの
で、第3図に示すように誘電体11の背後まで沿
面放電が広がる可能性がある。また、この放電
(以下沿面放電と称する)により放電エネルギー
が有効に放電空間4内(すなわち光共振器空間)
に入らないため発振効率が低下することになる。
In the silent discharge as described above, the voltage of the metal electrode 10 in the dielectric electrode 3 is about 10 KV (effective value), which is higher than the discharge starting voltage of about 5 KV in the discharge space 4. There is a possibility that the creeping discharge will spread to the back of the body 11. In addition, this discharge (hereinafter referred to as creeping discharge) allows the discharge energy to be effectively transferred within the discharge space 4 (that is, the optical resonator space).
Since it does not enter the range, the oscillation efficiency decreases.

そこでこの対策として従来のレーザ発振器1の
誘電体電極3は主要放電部5以外の誘電体11の
表面を無機セメント12で覆つていた。また、絶
縁物として無機セメント12を用いた理由は、無
機セメントは沿面放電にさらされても発振効率を
低下させる有機性アウトガスの発生がないためで
ある。
As a countermeasure against this problem, the surface of the dielectric electrode 3 of the conventional laser oscillator 1 is covered with an inorganic cement 12, except for the main discharge section 5. Furthermore, the reason why the inorganic cement 12 is used as the insulator is that even when inorganic cement is exposed to creeping discharge, it does not generate organic outgas that reduces oscillation efficiency.

従来の無声放電式ガスレーザ装置の電極は以上
のように構成され柔軟性のない無機セメント12
が誘電体11に密着しているので放電に基づく誘
電体電極3の熱膨張による歪みのために誘電体1
1が破壊される事故が頻発し、また、沿面放電を
減少させる目的で無機セメント12の層の厚さを
増すと、ますます接合面で生ずる歪を増す結果と
なるので厚く無機セメント12の層を施すことが
できないという欠点があつた。
The electrodes of conventional silent discharge gas laser devices are constructed as described above and are made of inorganic cement 12 which has no flexibility.
Since the dielectric electrode 3 is in close contact with the dielectric 11, the dielectric 1 is distorted due to thermal expansion of the dielectric electrode 3 due to discharge.
Accidents in which the inorganic cement 12 is destroyed frequently occur, and if the thickness of the inorganic cement 12 layer is increased for the purpose of reducing creeping discharge, the strain that occurs at the joint surface will further increase. The disadvantage was that it was not possible to apply

この発明は、上述の点にかんがみてなされたも
ので、誘電体の主要放電部以外の表面を柔軟性を
有する絶縁物層で被覆することにより上述の欠点
を解消し、高効率、高信頼性を有する無声放電式
ガスレーザ装置を提供することを目的とする。以
下この発明を図面に基づいて説明する。
This invention was made in view of the above points, and it solves the above drawbacks by coating the surface of the dielectric other than the main discharge part with a flexible insulating layer, thereby achieving high efficiency and high reliability. An object of the present invention is to provide a silent discharge type gas laser device having the following features. The present invention will be explained below based on the drawings.

第4図はこの発明の一実施例をなす誘電体電極
の断面図、第5図は第4図の−線による断面
図で、無声放電Spおよび媒質ガス循環流Gaの状
態を示す図である。第4図、第5図において、第
1図〜第3図と同一符号を付した部分は同一部分
を示すので説明は省略する。第4図、第5図に示
すように誘電体電極3′は金属電極10を誘電体
11で被覆し、さらにシリコンゴム系絶縁物層1
3にて誘電体電極3′が接地金属電極2と対向す
る誘電体11の主要放電部5以外の表面を被覆す
る構造となつている。
FIG. 4 is a cross-sectional view of a dielectric electrode constituting an embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the - line in FIG. 4, showing the state of silent discharge S p and medium gas circulating flow G a It is. In FIGS. 4 and 5, parts given the same reference numerals as those in FIGS. 1 to 3 indicate the same parts, and therefore the description thereof will be omitted. As shown in FIGS. 4 and 5, the dielectric electrode 3' includes a metal electrode 10 covered with a dielectric 11, and a silicone rubber insulating layer 1.
3, the dielectric electrode 3' covers the surface of the dielectric 11 facing the ground metal electrode 2 other than the main discharge portion 5.

上述のように、第4図、第5図に示す実施例に
おいては、誘電体電極3′が接地金属電極2と対
向する誘電体11の主要放電部5以外の表面を、
柔軟性を有し、有機性アウトガスの発生の少ない
シリコンゴム系絶縁物層13により被覆する構造
とした。従つて放電エネルギーにより誘電体電極
3′が熱膨脹してもシリコンゴム系絶縁物層13
がその柔軟性により誘電体11の膨張変化を吸収
することになり、誘電体11が破壊されるという
ことはない。さらにシリコンゴム系絶縁物層13
は厚さを増すことができ、第5図に示すように誘
電体電極3′の主要放電部5以外の沿面放電を防
ぎ有効に放電エネルギーがガスレーザ媒質に与え
られることになる。また、シリコンゴム系絶縁物
層13はその性質上多少の沿面放電にさらされて
も有機性アウトガスの発生が極めて少ない。
As described above, in the embodiment shown in FIGS. 4 and 5, the dielectric electrode 3' covers the surface of the dielectric 11 other than the main discharge portion 5 facing the ground metal electrode 2.
The structure is such that it is covered with a silicone rubber-based insulating layer 13 that is flexible and generates little organic outgas. Therefore, even if the dielectric electrode 3' thermally expands due to discharge energy, the silicone rubber insulator layer 13
Because of its flexibility, it absorbs the expansion change of the dielectric 11, and the dielectric 11 is not destroyed. Furthermore, silicone rubber insulator layer 13
The thickness of the dielectric electrode 3' can be increased, and as shown in FIG. 5, creeping discharge other than the main discharge portion 5 of the dielectric electrode 3' can be prevented and discharge energy can be effectively applied to the gas laser medium. Furthermore, due to its properties, the silicone rubber insulator layer 13 generates very little organic outgas even if it is exposed to some creeping discharge.

なお、上記実施例では誘電体電極3′が接地金
属電極2と対向する誘電体11の主要放電部5以
外の表面をシリコンゴム系絶縁物層13で覆うこ
とにより主要放電部5以外の沿面放電を防ぎ無声
放電を放電空間4内のみに発生させてレーザの発
振効率を増すようにしたが、シリコンゴム系絶縁
物層13を以下の(イ)、(ロ)で示す条件を満す材料お
よび構造のものに換えても上記実施例と同様の効
果を得ることができる。
In the above embodiment, by covering the surface of the dielectric 11 other than the main discharge part 5 of the dielectric 11 facing the ground metal electrode 2 with the silicone rubber insulator layer 13, the dielectric electrode 3' prevents creeping discharge other than the main discharge part 5. In order to increase the laser oscillation efficiency by preventing silent discharge from occurring only in the discharge space 4, the silicone rubber insulating layer 13 is made of a material that satisfies the conditions shown in (a) and (b) below. Even if the structure is changed, the same effects as in the above embodiment can be obtained.

(イ) 絶縁材料面と誘電体面との間に誘電体が熱膨
張しても歪みが生じない(ストレスが誘電体に
かからない)構造または材料であること。
(b) The structure or material should not cause distortion (no stress is applied to the dielectric) even when the dielectric expands thermally between the insulating material surface and the dielectric material surface.

(ロ) 沿面放電にさらされても有機性アウトガスの
発生が少ない絶縁材料であること。
(b) The insulating material must generate little organic outgas even when exposed to creeping discharge.

第6図は上記(イ)、(ロ)の条件を満すこの発明の他
の実施例を示す図である。この図において、第1
図乃至第3図と同一符号を付した部分は同一部分
を示すので説明は省略する。19はセラミツクス
パウダ等からなる無機質粉体、20は絶縁性枠で
ある。無機質粉体19は適当な手段にて圧縮充填
し、空隙含有率の小さい状態とされ、実質的に主
要放電部5以外の沿面放電が進展するのを防ぐ作
用を奏する。また、第6図に示す類似の構造であ
れば、グラスウール等の無機質繊維をもつてセラ
ミツクスパウダにかえることも可能である。
FIG. 6 is a diagram showing another embodiment of the present invention that satisfies the conditions (a) and (b) above. In this figure, the first
The parts given the same reference numerals as those in FIGS. 3 to 3 indicate the same parts, and therefore the description thereof will be omitted. 19 is an inorganic powder such as ceramic powder, and 20 is an insulating frame. The inorganic powder 19 is compressed and filled by an appropriate means to have a small void content, and has the effect of substantially preventing creeping discharge from developing in areas other than the main discharge portion 5. Further, if the structure is similar to that shown in FIG. 6, it is also possible to use inorganic fibers such as glass wool to make ceramic powder.

以上説明したようにこの発明に係る無声放電式
ガスレーザ装置は、誘電体電極を構成する金属電
極を被覆する誘電体の接地金属電極と対向する部
分以外の表面に柔軟性を有する絶縁物層を設けた
ので、誘電体電極の熱膨張による誘電体の破壊を
防止し、電極の信頼性が向上すると共に、沿面放
電の進展を抑え発振効率が上昇するという極めて
すぐれた効果を有するものである。
As explained above, in the silent discharge gas laser device according to the present invention, a flexible insulating layer is provided on the surface of the dielectric covering the metal electrode constituting the dielectric electrode other than the portion facing the ground metal electrode. Therefore, it has extremely excellent effects of preventing breakdown of the dielectric due to thermal expansion of the dielectric electrode, improving the reliability of the electrode, and suppressing the progress of creeping discharge and increasing the oscillation efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無声放電式ガスレーザの一例を
示す概略図、第2図は第1図の要部電極構造を示
す断面図、第3図は第2図の−線による断面
図、第4図はこの発明に係るガスレーザの実施例
の要部電極構造を示す断面図、第5図は第4図の
−線による断面図、第6図はこの発明の他の
実施例を示す断面図である。 図中、2は接地金属電極、3,3′は誘電体電
極、4は放電空間、5は主要放電部、10は金属
電極、11は誘電体、13はシリコンゴム系絶縁
物層、14は交流電源、19は無機質粉体、20
は絶縁性枠である。なお、図中の同一符号は同一
または相当部分を示す。
Fig. 1 is a schematic diagram showing an example of a conventional silent discharge type gas laser, Fig. 2 is a sectional view showing the main electrode structure of Fig. 1, Fig. 3 is a sectional view taken along the - line in Fig. 2, and Fig. 4 The figure is a sectional view showing the main electrode structure of an embodiment of a gas laser according to the present invention, FIG. 5 is a sectional view taken along the - line in FIG. 4, and FIG. 6 is a sectional view showing another embodiment of the invention. be. In the figure, 2 is a grounded metal electrode, 3 and 3' are dielectric electrodes, 4 is a discharge space, 5 is a main discharge part, 10 is a metal electrode, 11 is a dielectric, 13 is a silicone rubber insulator layer, and 14 is a AC power supply, 19 is inorganic powder, 20
is an insulating frame. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 相対向して配置された接地金属電極と誘電体
電極の間に交流高電圧を印加し前記両電極間に無
声放電を発生させ、この無声放電をレーザ励起源
とする無声放電式ガスレーザ装置において、前記
誘電体電極を構成する金属電極を被覆する誘電体
の前記接地金属電極と対向する部分以外の表面に
柔軟性を有する絶縁物層を設けたことを特徴とす
る無声放電式ガスレーザ装置。 2 柔軟性を有する絶縁物層として、シリコンゴ
ム系絶縁物層を用いることを特徴とする特許請求
の範囲第1項記載の無声放電式ガスレーザ装置。 3 柔軟性を有する絶縁物層として、無機質粉体
の層を用いることを特徴とする特許請求の範囲第
1項記載の無声放電式ガスレーザ装置。 4 柔軟性を有する絶縁物層として、無機質繊維
の層を用いることを特徴とする特許請求の範囲第
1項記載の無声放電式ガスレーザ装置。
[Claims] 1. A high AC voltage is applied between a grounded metal electrode and a dielectric electrode that are arranged opposite each other to generate a silent discharge between the two electrodes, and this silent discharge is used as a laser excitation source. A silent discharge type gas laser device, characterized in that a flexible insulating layer is provided on a surface of a dielectric covering a metal electrode constituting the dielectric electrode other than a portion facing the ground metal electrode. Discharge type gas laser device. 2. The silent discharge gas laser device according to claim 1, wherein a silicone rubber-based insulating layer is used as the flexible insulating layer. 3. The silent discharge gas laser device according to claim 1, wherein a layer of inorganic powder is used as the flexible insulating layer. 4. The silent discharge gas laser device according to claim 1, wherein an inorganic fiber layer is used as the flexible insulating layer.
JP14240982A 1982-08-17 1982-08-17 Silent discharge type gas laser device Granted JPS5932187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14240982A JPS5932187A (en) 1982-08-17 1982-08-17 Silent discharge type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14240982A JPS5932187A (en) 1982-08-17 1982-08-17 Silent discharge type gas laser device

Publications (2)

Publication Number Publication Date
JPS5932187A JPS5932187A (en) 1984-02-21
JPS6245717B2 true JPS6245717B2 (en) 1987-09-28

Family

ID=15314665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14240982A Granted JPS5932187A (en) 1982-08-17 1982-08-17 Silent discharge type gas laser device

Country Status (1)

Country Link
JP (1) JPS5932187A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197047A (en) * 1984-10-18 1986-05-15 日本酸素株式会社 Attritor
US4737964A (en) * 1985-11-12 1988-04-12 Hughes Aircraft Company RF discharge suppression in low pressure gas devices
JPH0770770B2 (en) * 1986-02-07 1995-07-31 三菱電機株式会社 Silent discharge gas laser device
JP2628313B2 (en) * 1987-09-07 1997-07-09 株式会社小松製作所 Gas laser device
JP4767128B2 (en) * 2005-08-16 2011-09-07 株式会社山本製作所 Production method and production apparatus for pregelatinized flour

Also Published As

Publication number Publication date
JPS5932187A (en) 1984-02-21

Similar Documents

Publication Publication Date Title
US6430205B2 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
JPS637038B2 (en)
JPS6245717B2 (en)
JPS6026310B2 (en) gas laser equipment
JPS639393B2 (en)
JP4618658B2 (en) Gas laser oscillator
JPS62183580A (en) Silent discharge gas laser device
JPS60178681A (en) Gas laser device
JP2640345B2 (en) Gas laser oscillation device
GB1128947A (en) Laser system
JPS6239555B2 (en)
JPH01108786A (en) Gas laser device
JPS61137381A (en) Silent discharge gas laser
JPS6314875B2 (en)
JPH01214184A (en) Pulse laser oscillation device
JPS604285A (en) Silent discharge system gas laser device
JP2714286B2 (en) Metal vapor laser equipment
JP3159528B2 (en) Discharge pumped excimer laser device
JPH0122996B2 (en)
JPS6346995B2 (en)
JPS6017975A (en) Silent discharge gas laser device
JP3221347B2 (en) Gas laser oscillation device
JPS6324686A (en) Gas laser
JPS5848487A (en) Gas laser oscillator
JPH08293637A (en) Laser