JPS6314875B2 - - Google Patents
Info
- Publication number
- JPS6314875B2 JPS6314875B2 JP14568181A JP14568181A JPS6314875B2 JP S6314875 B2 JPS6314875 B2 JP S6314875B2 JP 14568181 A JP14568181 A JP 14568181A JP 14568181 A JP14568181 A JP 14568181A JP S6314875 B2 JPS6314875 B2 JP S6314875B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- dielectric
- tube
- gas
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000011521 glass Substances 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 8
- 230000005284 excitation Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 238000000752 ionisation method Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011491 glass wool Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/097—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
- H01S3/0971—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
この発明はガスレーザ発振器に関し、特にその
誘電体電極の構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas laser oscillator, and particularly to the structure of its dielectric electrode.
この種のレーザとして代表的なものはレーザ光
軸、直流グロー放電路、気体流れ方向が互いにほ
ぼ垂直になつている3軸直交型CO2レーザである
ので、これについて従来例を説明する。第1図
は、3軸直交型レーザの縦断面図、第2図は第1
図―線よりみた横断面図で、1は陽極、2は
陰極、3は陰極基板、4は安定化抵抗、5は直流
高電圧電源、6は放電励起部、7は全反射鏡、8
は部分反射鏡である。 A typical example of this type of laser is a three-axis orthogonal CO 2 laser in which the laser optical axis, DC glow discharge path, and gas flow direction are substantially perpendicular to each other, so a conventional example will be described. Figure 1 is a vertical cross-sectional view of a 3-axis orthogonal laser, and Figure 2 is a vertical cross-sectional view of the 3-axis orthogonal laser.
Figure - A cross-sectional view taken along the line, 1 is an anode, 2 is a cathode, 3 is a cathode substrate, 4 is a stabilizing resistor, 5 is a DC high voltage power supply, 6 is a discharge excitation part, 7 is a total reflection mirror, 8
is a partially reflective mirror.
次に動作について説明する。陽極1と陰極2の
間に、CO2,N2,Heの混合ガスから成るレーザ
ガスを毎秒数十mの流量で流し、直流高電圧を印
加すると電極間に放電が生じるが、安定化抵抗4
を介して電流が流れるため、放電はアークに移行
せずに、おだやかなグロー放電が維持される。グ
ロー放電により生じた放電励起部6ではレーザガ
ス中のCO2分子の特定の振動準位間に反転分布が
生じ、放電励起部6の間に全反射鏡7と適切な反
射率を有する部分反射鏡8とを対向して配置させ
ると、レーザ発振が生じ、部分反射鏡8からレー
ザ光線が出てくる。レーザ出力は放電電力を増す
と増大するが、例えば第1図で示すもので陰極2
の本数を一定とすると、放電電力の増大は、放電
密度の増大と等価となる。装置のコンパクト化、
低コスト化の観点からは、放電密度を増大させる
のが望ましいが、ある程度以上に放電電力を増大
させると、放電部の局所に高温部が発生し、安定
化抵抗4が存在しても、放電はアークに移行して
しまう。放電がアークに移行すると、もはやレー
ザ出力は得られず、レーザガスの劣化も著るしく
増大する。このため第1図に示す様な放電電極の
構成では、放電密度をある程度以上に増大させる
事が出来ない。 Next, the operation will be explained. When a laser gas consisting of a mixed gas of CO 2 , N 2 , and He is flowed between the anode 1 and the cathode 2 at a flow rate of several tens of meters per second and a high DC voltage is applied, a discharge occurs between the electrodes, but the stabilizing resistor 4
Because current flows through the discharge, the discharge does not turn into an arc, and a gentle glow discharge is maintained. In the discharge excitation part 6 generated by the glow discharge, a population inversion occurs between specific vibrational levels of CO 2 molecules in the laser gas, and between the discharge excitation part 6 a total reflection mirror 7 and a partial reflection mirror having an appropriate reflectance are connected. 8 are placed facing each other, laser oscillation occurs and a laser beam is emitted from the partially reflecting mirror 8. The laser output increases as the discharge power increases; for example, in the case shown in Figure 1, the cathode 2
Assuming that the number of lines is constant, an increase in discharge power is equivalent to an increase in discharge density. Making the device more compact;
From the viewpoint of cost reduction, it is desirable to increase the discharge density, but if the discharge power is increased beyond a certain level, a high temperature area will occur locally in the discharge area, and even if the stabilizing resistor 4 is present, the discharge will move to arc. When the discharge shifts to an arc, laser output can no longer be obtained and the deterioration of the laser gas increases significantly. Therefore, with the configuration of the discharge electrode as shown in FIG. 1, the discharge density cannot be increased beyond a certain level.
このような難点の解消を図るため、予備電離を
グロー放電の近傍で行なわせ主放電のグローが均
一、安定になるのを助けて、グロー放電を維持し
たままで放電密度を増大させる試みがなされてい
る。予備電離の方法としては電子ビーム、または
パルス放電による紫外線照射、または無声放電に
よるもの等がある。 In order to solve these difficulties, attempts have been made to increase the discharge density while maintaining the glow discharge by performing preliminary ionization near the glow discharge to help the glow of the main discharge become uniform and stable. ing. Pre-ionization methods include electron beam, ultraviolet irradiation by pulse discharge, and silent discharge.
この発明は、従来の無声放電による予備電離方
式によるものであるので、この方式の従来例につ
いて先ず説明する。 Since this invention is based on the conventional preliminary ionization method using silent discharge, a conventional example of this method will be explained first.
第3図は無声放電による予備電離方式の横方向
励起型ガスレーザ発振器の縦断面図、第4図は第
3図―線よりみた横断面図で、9は誘電体電
極、10はこの電極を冷却するための冷却水入
口、11は冷却水出口、12は高電圧ターミナ
ル、13は無声放電を生じさせるための交流高電
圧電源、14はヒユーズであり、第5図は誘電体
電極9の断面図であり、9―1は鉄管で、9―2
は鉄管に密着する様に形成された誘電体層(例え
ばガラス)であり、云わゆる“ホウロウ引き”の
ガラスライニングの電極である。 Figure 3 is a longitudinal cross-sectional view of a horizontally pumped gas laser oscillator using a pre-ionization method using silent discharge, and Figure 4 is a cross-sectional view taken from the line in Figure 3, where 9 is a dielectric electrode, and 10 is a cooling electrode. 11 is a cooling water inlet, 11 is a cooling water outlet, 12 is a high voltage terminal, 13 is an AC high voltage power source for producing silent discharge, 14 is a fuse, and FIG. 5 is a cross-sectional view of the dielectric electrode 9. , 9-1 is an iron pipe, 9-2
is a dielectric layer (for example, glass) formed in close contact with the iron pipe, and is a so-called "enameled" glass-lined electrode.
次に動作について説明する。誘電体電極9に交
流高電圧を印加すると、陰極2と陽極1の間に無
声放電が起る。この状態で直流高電圧を印加する
と主放電のグローが生じて放電励起部6が形成さ
れ、無声放電の予備電離を行なわない時に比べ
て、安定したグロー放電の状態で2〜3倍の電力
密度を投入することが出来る。 Next, the operation will be explained. When an AC high voltage is applied to the dielectric electrode 9, a silent discharge occurs between the cathode 2 and the anode 1. When a DC high voltage is applied in this state, a main discharge glow occurs and a discharge excitation part 6 is formed, which increases the power density by 2 to 3 times in a stable glow discharge state compared to when preliminary ionization of silent discharge is not performed. can be input.
実験によれば、無声放電の電力は主放電(グロ
ー)の電力の約1/20でよい事が判かつている。 Experiments have shown that the power for silent discharge is approximately 1/20 of the power for main discharge (glow).
この様な電極構成において、誘電体電極9の電
流供給用の電極は鉄管9―1であるために無声放
電は電極面のすべてで生じる。放電が生じると熱
が発生するが、誘電体9―2は温度が100℃以上
になると急激に耐電圧が降下するために、温度は
これ以下に保たなければならない。陽極1と陰極
2に対向している部分の誘電体電極9は、毎秒数
十mと云う高速ガス流中に置かれているために、
無声放電によつて生じる熱は有効にガス流に持ち
去られて、冷却され、誘電体9―2の温度は数十
度までした上昇しない。しかし、誘電体電極9の
端部(ターミナル部の附近)は、レーザガス流が
滞留するために、そこの部分の放電により発生す
る熱はレーザガスによつて持ち去られない。従つ
て、この様な状態で、誘電体電極9を強制的に冷
却しないとすれば、誘電体電極9の端部の誘電体
9―2の温度が上昇し、耐電圧の低下により誘電
体9―2は破壊されてしまう。このため従来は、
第3図で示している様に誘電体電極9内に冷却水
を流す構造にする必要があり、誘電体に応力がか
かつたり、サージ電圧が印加されてしまつたりし
て、誘電体が破壊される事故が生じる事が考えら
れるので、その時の水もれを防止するため、機械
的強さを考慮して、第5図で示す様な鉄管にガラ
スライニング行なつた構造の誘電体電極が使用さ
れていた。 In such an electrode configuration, since the current supplying electrode of the dielectric electrode 9 is the iron tube 9-1, silent discharge occurs on the entire electrode surface. When a discharge occurs, heat is generated, but the dielectric 9-2's dielectric strength drops rapidly when the temperature exceeds 100°C, so the temperature must be kept below this. Since the dielectric electrode 9 facing the anode 1 and cathode 2 is placed in a high-speed gas flow of several tens of meters per second,
The heat generated by the silent discharge is effectively carried away by the gas flow and cooled, and the temperature of the dielectric 9-2 does not rise more than several tens of degrees. However, since the laser gas flow remains at the end of the dielectric electrode 9 (near the terminal part), the heat generated by the discharge in that part is not carried away by the laser gas. Therefore, if the dielectric electrode 9 is not forcibly cooled in such a state, the temperature of the dielectric 9-2 at the end of the dielectric electrode 9 will rise, and the withstand voltage will drop, causing the dielectric 9 to cool down. -2 will be destroyed. For this reason, conventionally,
As shown in Figure 3, it is necessary to have a structure in which cooling water flows into the dielectric electrode 9, which may cause stress or surge voltage to be applied to the dielectric, causing the dielectric to deteriorate. In order to prevent water leakage, a dielectric electrode with a glass-lined iron pipe structure, as shown in Figure 5, is used to ensure mechanical strength. was used.
しかし鉄管のガラスライニングはガラス粉を鉄
管に焼き付ける方法により製作されるため、ガラ
スに残留応力が必ず存在し、焼きなまし時に、ガ
ラスと鉄の熱膨張率の差によつて、残留応力が発
生するため直径の小さな誘電体電極を作る事は困
難で、その最小直径は10〜15mmである。さらに製
作の工程が多いため高価である。 However, since the glass lining of iron pipes is manufactured by baking glass powder onto the iron pipe, there is always residual stress in the glass, and during annealing, residual stress is generated due to the difference in thermal expansion coefficient between glass and iron. It is difficult to make dielectric electrodes with small diameters, and the minimum diameter is 10 to 15 mm. Furthermore, it is expensive because there are many manufacturing steps.
ところで、レーザ発振器の主放電のギヤツプ
長、すなわち陽極1と陰極2との距離は20mm〜50
mm程度であり、第3図で示している様に、誘電体
電極9がギヤツプ内に配置されると、ギヤツプの
長さの1/2〜1/5程度を誘電体電極9が占める事に
なる。よく知られている様にグロー放電が安定す
るためには、レーザガスが高速で、しかも整流で
流れている事が好ましく、この観点からは、誘電
体電極9はレーザガスの流れの乱れを発生する障
害物となつている。しかしながら従来、無声放電
を予備電離としたグロー放電励起方式が採用され
ているのは、レーザガスの乱れによる放電の不安
性よりも、無声放電の予備電離の効果の方が大と
なるために、結果的に、大きな放電密度が得られ
るためである。 By the way, the gap length of the main discharge of the laser oscillator, that is, the distance between the anode 1 and the cathode 2, is 20 mm to 50 mm.
mm, and as shown in Figure 3, when the dielectric electrode 9 is placed inside the gap, the dielectric electrode 9 occupies about 1/2 to 1/5 of the length of the gap. Become. As is well known, in order for the glow discharge to be stable, it is preferable that the laser gas flows at high speed and in a rectified manner.From this point of view, the dielectric electrode 9 is an obstacle that causes disturbance in the flow of the laser gas. It has become a thing. However, conventionally, a glow discharge excitation method using silent discharge as pre-ionization has been adopted because the effect of pre-ionization of silent discharge is greater than the instability of the discharge due to disturbance of the laser gas. This is because a large discharge density can be obtained.
従つて、誘電体電極を流路抵抗の少い形状、例
えば径を細くすればレーザガス流の乱れが少なく
なり、放電密度を上昇させ、レーザ発振器をコン
パクトにする事ができるが、前述の様に、従来の
鋼管にガラスライニングを施す構成のものでは、
ある程度以上小径にすることができなかつた。 Therefore, if the dielectric electrode is shaped to have a low flow path resistance, for example by making the diameter thinner, the disturbance in the laser gas flow will be reduced, the discharge density will be increased, and the laser oscillator can be made more compact, but as mentioned above, , in the case of a conventional steel pipe with a glass lining,
It was not possible to make the diameter smaller than a certain point.
この発明は、この様な従来の欠点を除去するた
めになされたもので、構造が簡単で、強制冷却の
必要も無い。誘電体電極を備えた横方向励起型気
体レーザ発振器を提供しようとするものである。 This invention was made to eliminate these conventional drawbacks, and has a simple structure and does not require forced cooling. It is an object of the present invention to provide a laterally pumped gas laser oscillator equipped with a dielectric electrode.
第6図はこの発明の一実施例の縦断面図、第7
図はその誘電体電極の縦断面図で、9―3はガラ
ス等の誘電体管、9―4は誘電体管、9―3の内
面に密着して設けられた金属の蒸着膜などの導電
部、9―5は高電圧給電線である。次に動作につ
いて説明する。導電部9―4は、陽極1、陰極2
に対向している部分のみ形成されているので無声
放電はこの部分しか生じない。この部分では無声
放電により熱が発生するが、レーザガス流が毎秒
数十mで流れているため、その熱はすべてガス流
により持ち去られ誘電体管9―3の温度は上昇し
ない。一方レーザガスの流れていない高電圧ター
ミナル12の附近や、他の一方の端部では、導電
部9―4は形成されていないため無声放電は生ぜ
ず、従つて熱も発生しないので誘電体管9―3の
温度は上昇しない。このため誘電体電極9を水冷
する必要は無くなり構造が簡単となる。 FIG. 6 is a vertical sectional view of one embodiment of the present invention, and FIG.
The figure is a longitudinal cross-sectional view of the dielectric electrode, where 9-3 is a dielectric tube made of glass, etc., 9-4 is a dielectric tube, and a conductive material such as a vapor-deposited metal film is provided in close contact with the inner surface of 9-3. Section 9-5 is a high voltage power supply line. Next, the operation will be explained. The conductive part 9-4 includes an anode 1 and a cathode 2.
Since only the portion facing the is formed, silent discharge occurs only in this portion. Heat is generated in this portion by silent discharge, but since the laser gas flow is flowing at several tens of meters per second, all of the heat is carried away by the gas flow and the temperature of the dielectric tube 9-3 does not rise. On the other hand, near the high voltage terminal 12 where the laser gas is not flowing or at the other end, the conductive part 9-4 is not formed, so silent discharge does not occur, and therefore no heat is generated, so the dielectric tube 9 -3 temperature does not rise. Therefore, there is no need to water-cool the dielectric electrode 9, which simplifies the structure.
また誘電体管9―3として、例えばガラス管を
使い、その内面をメツキ等で導電部9―4を形成
させれば、非常に細い管でも自由に製作できるか
ら、直径5mm程度のものにすれば、レーザガスの
流れの乱れは極めて少なくなる。従つて、この誘
電体電極を適用すれば予備電離としての無声放電
の電力が、従来よりも、さらに少なくとも、グロ
ー放電(主放電)の放電密度を安定して高める事
ができる。無声放電の電力が少なくて済むと、誘
電体管9―3の温度上昇も少なくなり、この様な
相乗効果により、より信頼性が高まる事になる。 Furthermore, if a glass tube is used as the dielectric tube 9-3, and the conductive portion 9-4 is formed on the inner surface by plating, etc., even a very thin tube can be freely manufactured, so the diameter can be as small as 5 mm. For example, turbulence in the flow of laser gas is extremely reduced. Therefore, by applying this dielectric electrode, it is possible to stably increase the power of silent discharge as preliminary ionization and at least the discharge density of glow discharge (main discharge) compared to the conventional method. If the silent discharge requires less power, the temperature rise in the dielectric tube 9-3 will also be reduced, and this synergistic effect will further improve reliability.
第8図はこの発明にかかる誘電体電極の他の実
施例の縦断面図で9―6は陽極1、陰極2に対向
する部分にのみ充填されたスチールウールなどの
繊維状の金属で、高圧給電線9―5に接続され無
声放電の電流を供給する導電部をする。 FIG. 8 is a vertical cross-sectional view of another embodiment of the dielectric electrode according to the present invention, and 9-6 is a fibrous metal such as steel wool filled only in the portion facing the anode 1 and cathode 2, and the high voltage It serves as a conductive part that is connected to the power supply line 9-5 and supplies silent discharge current.
このようにすれば、ウール状の金属9―6を誘
電体管9―3内につめ込むだけと云う極めて簡単
な構成で給電部分が形成できるのが特徴である。
なお、この実施例で示したスチール・ウールは給
電用の役割をするものであるので、他に金属粒、
金網、などの導電性のものであれば何でもよい事
は容易に理解できよう。 In this way, the power supply portion can be formed with an extremely simple structure of simply stuffing the wool-like metal 9-6 into the dielectric tube 9-3.
Note that since the steel wool shown in this example serves as a power supply, metal grains,
It is easy to understand that any conductive material such as wire mesh can be used.
第9図は、誘電体電極の他の実施例の縦断面図
で、9―7は例えばガラスビーズ,グラスウール
などを充填した絶縁物である。このようにウール
状の金属9―6の両端を絶縁物9―7で埋める
と、スチールウール9―6の電極端の電界が弱め
られて、端部からの端放電が防止されるため無声
放電を生じさせるための印加電圧が高くでき、従
つてグロー放電の放電密度もさらに上昇させるこ
とができる。また、高電圧給電線9―5が絶縁物
9―3で覆われるため給電線9―5の絶縁を同時
に施すことができる利点もある。 FIG. 9 is a longitudinal sectional view of another embodiment of the dielectric electrode, where 9-7 is an insulator filled with glass beads, glass wool, etc., for example. By filling both ends of the wool-like metal 9-6 with the insulator 9-7, the electric field at the electrode end of the steel wool 9-6 is weakened and end discharge from the ends is prevented, resulting in a silent discharge. The applied voltage for generating can be increased, and therefore the discharge density of glow discharge can also be further increased. Further, since the high voltage power supply line 9-5 is covered with the insulator 9-3, there is an advantage that the power supply line 9-5 can be insulated at the same time.
第10図は更に他の実施例の縦断面図で、9―
8は高圧給電線9―5を中心孔にとおした筒で、
例えばガラス管やセラミツク管である。このよう
な絶縁管9―8を用いると、誘電体管9―3の中
心に高圧給電線9―5を配置させることができる
ので、給電線の絶縁がより確実に、かつ中心軸出
しの手間もかからない特徴がある。 FIG. 10 is a longitudinal sectional view of still another embodiment, 9-
8 is a cylinder through which the high-voltage power supply line 9-5 is passed through the center hole.
For example, glass tubes and ceramic tubes. When such an insulating tube 9-8 is used, the high-voltage feeder line 9-5 can be placed in the center of the dielectric tube 9-3, which ensures more reliable insulation of the feeder line and reduces the trouble of centering the line. It has the characteristic that it does not cost much.
この発明はレーザガスの気流を挾み相対向する
ように配設されている陽極および陰極との間で無
声放電を生成する誘電体電極を備えたガスレーザ
発振器において、上記誘電体電極を、誘電体で形
成された管体と、この管体内の上記レーザガス気
流にさらされて冷却される部分のみに形成されて
いる導電部と、この導電部に当該管体外から管内
をとおして給電する高圧給電線とで構成されたも
のであることを特徴とするもので、誘電体電極を
流路抵抗の少い小径にできるので、発振器の小形
化、高出力化が図れる効果がある。 The present invention provides a gas laser oscillator equipped with a dielectric electrode that generates a silent discharge between an anode and a cathode that are arranged to sandwich a laser gas airflow and face each other, in which the dielectric electrode is made of a dielectric material. A conductive portion formed only in a portion of the tube that is exposed to the laser gas flow and cooled, and a high-voltage power supply line that supplies power to the conductive portion from outside the tube through the inside of the tube. Since the dielectric electrode can be made small in diameter with low flow path resistance, the oscillator can be made smaller and have higher output.
第1図は従来の横方向励起型ガスレーザ装置の
縦断面図、第2図は第1図―線よりみた横断
面図、第3図は従来の誘電体電極を備えたガスレ
ーザ装置の縦断面図、第4図は第3図―線よ
りみた横断面図、第5図は従来の誘電体電極の断
面図、第6図はこの発明の一実施例の縦断面図、
第7図はこの発明に係る誘電体電極の縦断面図、
第8図,第9図,第10図はそれぞれこの発明に
係る誘電体電極の他の実施例の縦断面図である。
図において、1は陽極、2は陰極、5は高圧直
流電源、6は放電励起部、9は誘電体電極、9―
1は鉄管、9―2は誘電体管、9―3は誘電体
管、9―4は導電部、9―5は高圧給電線、9―
6はグラスウール、9―7は絶縁物、9―8は絶
縁筒、13は交流高圧電源である。なお、図中同
一符号はそれぞれ同一または相当部分を示す。
Figure 1 is a vertical cross-sectional view of a conventional horizontally pumped gas laser device, Figure 2 is a cross-sectional view taken from the line in Figure 1, and Figure 3 is a vertical cross-sectional view of a conventional gas laser device equipped with dielectric electrodes. , FIG. 4 is a cross-sectional view taken along the line of FIG. 3, FIG. 5 is a cross-sectional view of a conventional dielectric electrode, and FIG. 6 is a vertical cross-sectional view of an embodiment of the present invention.
FIG. 7 is a longitudinal cross-sectional view of a dielectric electrode according to the present invention;
FIG. 8, FIG. 9, and FIG. 10 are longitudinal sectional views of other embodiments of the dielectric electrode according to the present invention. In the figure, 1 is an anode, 2 is a cathode, 5 is a high voltage DC power supply, 6 is a discharge excitation part, 9 is a dielectric electrode, 9 -
1 is an iron pipe, 9-2 is a dielectric pipe, 9-3 is a dielectric pipe, 9-4 is a conductive part, 9-5 is a high-voltage feeder line, 9-
6 is glass wool, 9-7 is an insulator, 9-8 is an insulating tube, and 13 is an AC high-voltage power source. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
設されている陽極および陰極との間で無声放電を
生成する誘電体電極を備えたガスレーザ発振器に
おいて、上記誘電体電極を、誘電体で形成された
管体と、この管体内の上記レーザガス気流にさら
されて冷却される部分のみに形成されている導電
部と、この導電部に当該管体外から管内をとおし
て給電する高圧給電線とで構成されたものである
ことを特徴とするガスレーザ発振器。 2 管体内に形成された導電部の両端を充填する
粒状またはウール状の絶縁物を備えた特許請求の
範囲第1項記載のガスレーザ発振器。 3 高圧給電線を通す絶縁管を備えた特許請求の
範囲第1項または第2項記載のガスレーザ発振
器。 4 導電部が金属の蒸着膜、粒状またはウール状
の金属、もしくは金網である特許請求の範囲第1
項ないし第3項のいずれかに記載のガスレーザ発
振器。[Scope of Claims] 1. In a gas laser oscillator equipped with a dielectric electrode that generates a silent discharge between an anode and a cathode that are arranged to sandwich a laser gas airflow and face each other, the dielectric electrode is , a tube made of a dielectric material, a conductive part formed only in a portion of the tube that is exposed to the laser gas flow and cooled, and power is supplied to the conductive part from outside the tube through the inside of the tube. A gas laser oscillator comprising a high-voltage power supply line. 2. The gas laser oscillator according to claim 1, comprising a granular or wool-like insulator filling both ends of a conductive portion formed inside the tube. 3. The gas laser oscillator according to claim 1 or 2, comprising an insulating tube through which a high-voltage power supply line is passed. 4 Claim 1 in which the conductive part is a metal vapor deposited film, granular or wool-like metal, or wire mesh
The gas laser oscillator according to any one of Items 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14568181A JPS5848486A (en) | 1981-09-16 | 1981-09-16 | Gas laser oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14568181A JPS5848486A (en) | 1981-09-16 | 1981-09-16 | Gas laser oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5848486A JPS5848486A (en) | 1983-03-22 |
JPS6314875B2 true JPS6314875B2 (en) | 1988-04-01 |
Family
ID=15390622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14568181A Granted JPS5848486A (en) | 1981-09-16 | 1981-09-16 | Gas laser oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5848486A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3428653C2 (en) * | 1984-08-03 | 1994-06-01 | Trumpf Gmbh & Co | Cross-flow CO¶2¶ laser |
JPS61168276A (en) * | 1985-01-21 | 1986-07-29 | Mitsubishi Electric Corp | Voiceless discharge type gas laser |
JPS62124782A (en) * | 1985-11-25 | 1987-06-06 | Mitsubishi Electric Corp | Silent discharge type gas laser device |
-
1981
- 1981-09-16 JP JP14568181A patent/JPS5848486A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5848486A (en) | 1983-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6636545B2 (en) | Supersonic and subsonic laser with radio frequency excitation | |
US3437950A (en) | Ion laser having a metal tube shrink-fitted onto the ceramic discharge tube | |
JP2000286094A (en) | Plasma treatment device and plasma treatment method | |
US3544915A (en) | Gas laser plasma guide | |
JPS6314875B2 (en) | ||
US4736379A (en) | Conduction cooled ion laser | |
JPS6310597B2 (en) | ||
US5117434A (en) | Metal vapor laser apparatus | |
JPS6245717B2 (en) | ||
JP2628313B2 (en) | Gas laser device | |
JPS6346995B2 (en) | ||
JPS59207678A (en) | Gas laser oscillator | |
JPS63253680A (en) | Metal vapor laser device | |
JP2827680B2 (en) | Metal vapor laser device | |
JP2714286B2 (en) | Metal vapor laser equipment | |
EP0543676B1 (en) | Ion-laser tube | |
JPH0779174B2 (en) | Gas laser device | |
JPS6239083A (en) | Gas laser device | |
RU2102825C1 (en) | Sectionalized cermet discharge tube | |
JPS6114777A (en) | Gas laser generator | |
JPS5851581A (en) | Lateral excitation type gas laser | |
JP3221347B2 (en) | Gas laser oscillation device | |
JPS6114782A (en) | Gas laser generator | |
JPH01108786A (en) | Gas laser device | |
JPH08293637A (en) | Laser |