JPS6310597B2 - - Google Patents

Info

Publication number
JPS6310597B2
JPS6310597B2 JP54157832A JP15783279A JPS6310597B2 JP S6310597 B2 JPS6310597 B2 JP S6310597B2 JP 54157832 A JP54157832 A JP 54157832A JP 15783279 A JP15783279 A JP 15783279A JP S6310597 B2 JPS6310597 B2 JP S6310597B2
Authority
JP
Japan
Prior art keywords
discharge
discharge tube
gas
dielectric
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54157832A
Other languages
Japanese (ja)
Other versions
JPS5680190A (en
Inventor
Norikazu Tabata
Shigenori Yagi
Shuji Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15783279A priority Critical patent/JPS5680190A/en
Publication of JPS5680190A publication Critical patent/JPS5680190A/en
Publication of JPS6310597B2 publication Critical patent/JPS6310597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、放電管状の励起部を有するガスレー
ザ装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a gas laser device having a discharge tube-shaped excitation section.

従来のガスレーザ装置は、第1図に示されるよ
うに、ガラスなどの誘電体より成る放電管1の内
部に、間隔をあけて一対の環状の電極(陽極2、
陰極3)を設け、この一対の電極2,3間に電圧
を印加するための直流高電圧電源4を設けて構成
されている。
As shown in FIG. 1, a conventional gas laser device has a pair of annular electrodes (anode 2, anode 2,
A cathode 3) is provided, and a DC high voltage power source 4 for applying voltage between the pair of electrodes 2 and 3 is provided.

また、前記放電管1の軸方向における両対向端
にはそれぞれ全反射鏡5および部分反射鏡6が取
り付けられている。そして、この放電管1は、内
部に送風機9および熱交換器10を備えた送気管
7,8に接続されて循環的に連通されている。
Furthermore, a total reflection mirror 5 and a partial reflection mirror 6 are attached to both opposite ends of the discharge tube 1 in the axial direction, respectively. The discharge tube 1 is connected to and cyclically communicated with air pipes 7 and 8 each having an air blower 9 and a heat exchanger 10 therein.

このような従来のガスレーザ装置の動作をCO2
レーザを例にとつて説明する。放電管1内には、
CO2、N2、Heの混合ガスが圧力数10Torrで充填
されている。この放電管1において一対の環状電
極2,3に直流高電圧電源4より電圧が印加され
ると放電管1内にグロー放電が起り、この結果、
放電によりガス中のCO2分子が励起され、全反射
鏡5と部分反射鏡6で構成される共振器内でレー
ザ発振が起る。レーザ光の一部は矢印11で示さ
れるように部分反射鏡6より外部にとり出され
る。放電によりガス温度が上昇するとレーザ発振
が不可能になるので、送風機9によりガスを循環
させて熱交換器10で冷却し、これにより放電管
内のガス温度は所定値以下に保持される。
The operation of conventional gas laser equipment such as CO 2
This will be explained using a laser as an example. Inside discharge tube 1,
It is filled with a mixed gas of CO 2 , N 2 , and He at a pressure of several 10 Torr. When voltage is applied from the DC high voltage power supply 4 to the pair of annular electrodes 2 and 3 in the discharge tube 1, a glow discharge occurs within the discharge tube 1, and as a result,
CO 2 molecules in the gas are excited by the discharge, and laser oscillation occurs within a resonator composed of a total reflection mirror 5 and a partial reflection mirror 6. A portion of the laser beam is taken out from the partial reflecting mirror 6 as indicated by an arrow 11. If the gas temperature rises due to discharge, laser oscillation becomes impossible, so the gas is circulated by a blower 9 and cooled by a heat exchanger 10, thereby maintaining the gas temperature in the discharge tube below a predetermined value.

実際の装置の例では、CO2:N2:Heのモル比
が1:10:1.4の混合ガスが放電管1内に20Torr
前後の圧力で充填され、電極間距離が1mでは電
源電圧が数10KVとなり、この場合放電管内のガ
ス温度は200〜300℃である。このため、放電管の
直径を25〜35mmとし且つ循環ガスの流速を100
m/sec位の高流速とすることが必要であつた。
In an example of an actual device, a mixed gas of CO 2 :N 2 :He with a molar ratio of 1:10:1.4 is placed inside the discharge tube 1 at 20 Torr.
When the discharge tube is filled with different pressures and the distance between the electrodes is 1 m, the power supply voltage is several tens of kilovolts, and in this case the gas temperature inside the discharge tube is 200 to 300°C. For this reason, the diameter of the discharge tube is set to 25 to 35 mm, and the flow rate of the circulating gas is set to 100 mm.
It was necessary to have a high flow rate of about m/sec.

このように従来のガスレーザ装置は、放電管内
のガス温度を所定の値以下にするために循環ガス
流速を大きくしなければならず、そのためガス循
環用の送風機が非常に大きくなり、又電力消費も
非常に大きい、という欠点があつた。
In this way, in conventional gas laser devices, the circulating gas flow rate must be increased in order to keep the gas temperature in the discharge tube below a predetermined value, which requires a very large blower for gas circulation and also consumes a lot of power. The drawback was that it was very large.

従つて、本発明の目的は、直流グロー放電を高
周波無声放電に変えることにより放電管構造を変
え、循環ガスの流速を低下させて従来の欠点を除
去しようとするものである。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to change the structure of the discharge tube by changing the direct current glow discharge to a high frequency silent discharge, thereby reducing the flow rate of the circulating gas and eliminating the drawbacks of the conventional method.

以下、本発明のガスレーザ装置を添付図面に示
された好適な実施例を参照して更に詳細に説明す
る。なお、本発明に係る実施例を示す図面の全体
に亘つて、第1図に示された従来のガスレーザ装
置と同じ部分或いは相当する部分は同一の参照符
号を付して説明する。
Hereinafter, the gas laser device of the present invention will be explained in more detail with reference to preferred embodiments shown in the accompanying drawings. It should be noted that throughout the drawings showing the embodiments of the present invention, the same or corresponding parts as in the conventional gas laser apparatus shown in FIG. 1 will be described with the same reference numerals.

第2a図および第2b図には、本発明のガスレ
ーザ装置における一実施例が示されている。この
実施例におけるガスレーザ装置では、参照符号1
および5〜10で示される部分は第1図の従来装
置の同一参照符号部分とその構成を同じにしてい
る。従つて、これらの部分についての説明を省略
し、当該従来装置との相違部分についてのみ説明
する。この実施例におけるガスレーザ装置は、放
電管1内に2つの細い誘電体管12,14が放電
管の軸方向に伸長して配置され、それぞれの誘電
体管の両端は屈曲されて放電管の側壁から外部へ
出ている。この各誘電体管12,14の内部には
線状電極13,15がそれぞれ配置され、一方の
線状電極13の一端は高周波電源16に接続さ
れ、又他方の線状電極15においては前記線状電
極13の前記一端とは放電管1の軸方向における
反対側に存する端部が高周波電源16に接続され
ている。この結果、誘電体管12,14とその内
部に挿入された線状電極13,15とで無声放電
用電極が構成される。
2a and 2b show an embodiment of the gas laser device of the present invention. In the gas laser device in this example, reference numeral 1
The parts indicated by numerals 5 to 10 have the same structure as the parts indicated by the same reference numerals in the conventional device shown in FIG. Therefore, a description of these parts will be omitted, and only the parts that are different from the conventional device will be described. In the gas laser device of this embodiment, two thin dielectric tubes 12 and 14 are disposed within a discharge tube 1 and extend in the axial direction of the discharge tube, and both ends of each dielectric tube are bent to form side walls of the discharge tube. It's coming out from there. Linear electrodes 13 and 15 are arranged inside each of the dielectric tubes 12 and 14, and one end of one of the linear electrodes 13 is connected to a high frequency power source 16, and the other linear electrode 15 is connected to the An end of the shaped electrode 13 located on the opposite side in the axial direction of the discharge tube 1 from the one end is connected to a high frequency power source 16 . As a result, the dielectric tubes 12 and 14 and the linear electrodes 13 and 15 inserted therein constitute electrodes for silent discharge.

このようなガスレーザ装置によると、線状電極
13,15は高周波電源16により数10〜数
100KHz、数KVの高周波電圧が印加される。する
と、放電管1内の誘電体管12と14との間に放
電が起るが、この放電空間は両電極間に誘導体管
が介在したものでいわゆる無声放電と呼ばれる。
この無声放電は、電源周波数の各半サイクル毎に
発生と消滅を繰り返えす交流放電である。この
点、第1図に示された従来のガスレーザ装置にお
ける直流グロー放電とは放電形式が全く異るが、
レーザ発振に必要なCO2分子の励起作用には直流
グロー放電と同様に有効であることが確認されて
いる。
According to such a gas laser device, the linear electrodes 13 and 15 are connected to several tens to several
A high frequency voltage of 100KHz and several KV is applied. Then, a discharge occurs between the dielectric tubes 12 and 14 in the discharge tube 1, but this discharge space is a so-called silent discharge because the dielectric tube is interposed between both electrodes.
This silent discharge is an alternating current discharge that repeatedly occurs and disappears every half cycle of the power supply frequency. In this respect, the discharge format is completely different from the DC glow discharge in the conventional gas laser device shown in Figure 1.
It has been confirmed that it is as effective as DC glow discharge for the excitation effect of CO 2 molecules necessary for laser oscillation.

現在多く用いられている直流グロー放電と同程
度の放電密度を得るためには電源周波数は100K
Hz近傍が必要であるが、印加電圧は電極間距離が
小さいため数KVと低くてもよい。
In order to obtain the same discharge density as the currently widely used DC glow discharge, the power supply frequency must be 100K.
Although a voltage around Hz is required, the applied voltage may be as low as several KV because the distance between the electrodes is small.

放電空間は放電管1内の誘電体管12と14と
の間に限られているが、混合ガスは放電管1内の
全体を循環して流れており、特に流れの状態を乱
流にしておくと、放電空間内で温度が上昇したガ
スは放電空間外のガスと混合することによつて放
電空間内のガス温度上昇を抑える。このようにガ
スを混合させながら放電空間を両誘導体管の間に
限定できるは無声放電形式の利点であり、直流グ
ロー放電は実現不可能である。
Although the discharge space is limited between the dielectric tubes 12 and 14 in the discharge tube 1, the mixed gas circulates throughout the discharge tube 1, and the flow is particularly turbulent. Then, the gas whose temperature has increased within the discharge space mixes with the gas outside the discharge space, thereby suppressing the rise in gas temperature within the discharge space. The ability to limit the discharge space between the two dielectric tubes while mixing the gases is an advantage of the silent discharge type, and direct current glow discharge is not possible.

放電管内体積に比べて放電空間体積を数分の1
にすると、従来と同量のガスを循環させ、且つ放
電空間のガス温度上昇を従来と同程度に抑える場
合、ガス流速を数分の1に減少できる。そのため
送風機9の大きさおよび必要電力を大きく低減す
ることができる。
The volume of the discharge space is reduced to a fraction of the volume inside the discharge tube.
In this case, when the same amount of gas as before is circulated and the gas temperature rise in the discharge space is suppressed to the same level as before, the gas flow rate can be reduced to a fraction of that. Therefore, the size and required power of the blower 9 can be significantly reduced.

第3a図および第3b図には本発明の他の実施
例について放電管のみが示されている。当該実施
例によれば、誘電体管12,14内に冷却液体を
流して電極13,15および誘電体管12,14
を冷却し、電極の温度上昇による信頼性の低下を
防止している。また、このようにして冷却する
と、放電空間内のガス温度上昇防止にも効果があ
る。冷却液体としては、脱イオン水、絶縁油、エ
チレングリコールなどの絶縁性液体が用いられ
る。
In FIGS. 3a and 3b, only the discharge vessel is shown for another embodiment of the invention. According to this embodiment, the cooling liquid is caused to flow in the dielectric tubes 12 and 14 to cool the electrodes 13 and 15 and the dielectric tubes 12 and 14.
This prevents a decrease in reliability due to a rise in electrode temperature. Cooling in this manner is also effective in preventing a rise in gas temperature within the discharge space. As the cooling liquid, an insulating liquid such as deionized water, insulating oil, or ethylene glycol is used.

第4a図および第4b図には、本発明の更に別
の実施例が示されている。この実施例において
は、誘導体管12,14内に配置される電極1
7,18が金属管の外表面に誘導体をライニング
したもので構成されている。誘電体管12,14
内に冷却液体を流すことは、第3図に示された実
施例の場合と同様である。電圧はこの電極を構成
する金属管に印加される。このような電極構造で
は万一誘電体が絶縁破壊を起しても冷却液体が放
電管1内に漏れる恐れがない。
A further embodiment of the invention is shown in Figures 4a and 4b. In this embodiment, the electrodes 1 arranged within the dielectric tubes 12, 14
7 and 18 are made of metal tubes whose outer surfaces are lined with a dielectric. Dielectric tubes 12, 14
The flow of cooling liquid therein is similar to that of the embodiment shown in FIG. A voltage is applied to the metal tube that makes up this electrode. With such an electrode structure, there is no risk of the cooling liquid leaking into the discharge tube 1 even if dielectric breakdown occurs in the dielectric.

更に第5a図および第5b図には、本発明の更
に他の実施例が示されている。この実施例におい
て、参照符号1および12〜15で示される構成
は第2a図および第3a図に示された同一符号部
分の構成と同じである。この実施例では特に放電
管1の外表面にその径方向に対向して背後電極1
9,20が密着して設けられている。背後電極1
9は線状電極13と同電位に、また背後電極20
は線状電極15と同電位に荷電されている。
Furthermore, FIGS. 5a and 5b show a further embodiment of the invention. In this embodiment, the structures designated by reference numerals 1 and 12-15 are the same as those of like-numbered parts shown in FIGS. 2a and 3a. In this embodiment, in particular, a back electrode 1 is provided on the outer surface of the discharge tube 1, facing in the radial direction.
9 and 20 are provided in close contact with each other. Back electrode 1
9 is at the same potential as the linear electrode 13, and the back electrode 20
is charged to the same potential as the linear electrode 15.

この背後電極19,20が無い場合には、放電
は大部分が誘電体管12,13の対向間で起る
が、しかし一部は誘導体管の後方にも延びる。ま
た、放電管の外部に接地電位の物体が近づいてく
ると、その方向に電界が強くなり、放電がその方
向に傾く。
In the absence of this back electrode 19, 20, the discharge would mostly occur between the opposing dielectric tubes 12, 13, but a portion would also extend to the rear of the dielectric tube. Furthermore, when an object at ground potential approaches the outside of the discharge tube, the electric field becomes stronger in that direction, causing the discharge to tilt in that direction.

これに対し前述の実施例に示される如く、放電
管1における誘導体管の背後に位置する外表面に
背後電極19,20を設けると、誘電体管12と
14との間に電界が集中して放電が両誘電体管の
間に限定され、放電がレーザ発振に有効に利用さ
れる。この背後電極は放電管外表面にアルミを溶
射することにより容易に形成することができる。
On the other hand, when the back electrodes 19 and 20 are provided on the outer surface of the discharge tube 1 located behind the dielectric tubes as shown in the above embodiment, the electric field is concentrated between the dielectric tubes 12 and 14. The discharge is confined between both dielectric tubes, and the discharge is effectively used for laser oscillation. This back electrode can be easily formed by spraying aluminum onto the outer surface of the discharge tube.

第4図に示された実施例の場合にも、背後電極
を設けることによつて第5図に示された実施例の
場合と同様の効果が得られる。
In the case of the embodiment shown in FIG. 4, the same effect as in the case of the embodiment shown in FIG. 5 can be obtained by providing a back electrode.

以上、CO2レーザについて説明したが、他のガ
スレーザに対しても用いられることは当然であ
り、更に数eVの電子を反応に用いるガス反応器
にもレーザ励起と同様にこの装置が適用できる。
Although the CO 2 laser has been described above, it is natural that it can be used for other gas lasers as well, and this device can also be applied to gas reactors that use electrons of several eV for reaction, as well as laser excitation.

本発明は、放電管内の一部に放電空間を限定
し、放電空間内のガスと放電空間外のガスを混合
することによつて放電空間内のガス温度上昇を抑
え、放電管内の循環ガス流速を低減させ、送風機
の大きさおよび必要電力を低減することができ
る。
The present invention limits the discharge space to a part of the discharge tube and mixes the gas in the discharge space with the gas outside the discharge space to suppress the rise in gas temperature in the discharge space and increase the flow rate of the circulating gas in the discharge tube. can reduce the size of the blower and the required power.

更に、無声放電を用いることによつて印加電圧
が低減できるので電極と他の接地部との間の絶縁
用距離を小さくして装置の小形化を図ることがで
きる。
Furthermore, since the applied voltage can be reduced by using silent discharge, the insulating distance between the electrode and other grounding parts can be reduced, and the device can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスレーザ装置を概略的に示す
断面図、第2a図はガスレーザ装置の一実施例を
示す第1図と同様な断面図、第2b図は第2a図
における2b−2b線に沿つて得た放電管の断面
図、第3a図、第4a図、第5a図はそれぞれ本
発明の他の実施例における放電管部分を示す断片
的な断面図、第3b図、第4b図、第5b図はそ
れぞれ第3a図、第4a図、第5a図における3
b−3b線、4b−4b線、5b−5b線に沿つ
て得た放電管の断面図である。 1……放電管、12,14……誘導体管、1
3,15……線状電極、16……高周波電源、1
7,18……誘電体被覆金属管電極、19,20
……背後電極。なお、図中同一参照符号は同一部
分又は相当部分を示す。
Fig. 1 is a cross-sectional view schematically showing a conventional gas laser device, Fig. 2a is a cross-sectional view similar to Fig. 1 showing an embodiment of the gas laser device, and Fig. 2b is taken along the line 2b-2b in Fig. 2a. 3a, 4a and 5a are fragmentary sectional views showing the discharge tube portion in other embodiments of the present invention, FIGS. 3b and 4b, respectively. Figure 5b is 3 in Figure 3a, Figure 4a, and Figure 5a, respectively.
FIG. 3 is a cross-sectional view of the discharge tube taken along the line b-3b, line 4b-4b, and line 5b-5b. 1...discharge tube, 12, 14...dielectric tube, 1
3, 15... Linear electrode, 16... High frequency power supply, 1
7, 18... Dielectric coated metal tube electrode, 19, 20
...back electrode. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 管状の放電管1を用い且つ該放電管の軸方向
に光軸を置くと共にガスの流れ方向としたガスレ
ーザ装置において、前記放電管の径方向に対向し
て設けられた一対の無声放電極であつて各々が前
記放電管の軸方向に伸長する誘電体管および該誘
電体管に設けられ交流電圧を印加される電極装置
を備える一対の無声放電極と、内部に送風機およ
び熱交換器を備え前記放電管に循環的に連通され
た送気管とを含むガスレーザ装置。 2 前記電極装置が前記誘電体管12,14内に
配置された線状電極13,15よりなることを特
徴とする特許請求の範囲第1項に記載のガスレー
ザ装置。 3 前記電極装置が外表面を誘電体で被つてなる
金属管17,18よりなることを特徴とする特許
請求の範囲第1項に記載のガスレーザ装置。 4 前記放電管外表面に一対の背後電極19,2
0を設け、その電位を前記無声放電極と同電位と
したことを特徴とする特許請求の範囲第1項に記
載のガスレーザ装置。
[Claims] 1. In a gas laser device that uses a tubular discharge tube 1 and has its optical axis in the axial direction of the discharge tube and in the gas flow direction, A pair of silent discharge electrodes each comprising a dielectric tube extending in the axial direction of the discharge tube and an electrode device provided in the dielectric tube to which an alternating current voltage is applied, and a blower inside. and an air pipe provided with a heat exchanger and cyclically connected to the discharge tube. 2. The gas laser device according to claim 1, wherein the electrode device comprises linear electrodes 13, 15 disposed within the dielectric tubes 12, 14. 3. The gas laser device according to claim 1, wherein the electrode device comprises metal tubes 17 and 18 whose outer surfaces are covered with a dielectric material. 4 A pair of back electrodes 19, 2 on the outer surface of the discharge tube
2. The gas laser device according to claim 1, wherein a potential of 0 is provided and the potential thereof is the same as that of the silent discharge electrode.
JP15783279A 1979-12-05 1979-12-05 Gas laser device Granted JPS5680190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15783279A JPS5680190A (en) 1979-12-05 1979-12-05 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15783279A JPS5680190A (en) 1979-12-05 1979-12-05 Gas laser device

Publications (2)

Publication Number Publication Date
JPS5680190A JPS5680190A (en) 1981-07-01
JPS6310597B2 true JPS6310597B2 (en) 1988-03-08

Family

ID=15658297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15783279A Granted JPS5680190A (en) 1979-12-05 1979-12-05 Gas laser device

Country Status (1)

Country Link
JP (1) JPS5680190A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227797A (en) * 1988-07-15 1990-01-30 Matsushita Electric Ind Co Ltd Shielding case
JPH0339896U (en) * 1989-08-30 1991-04-17
JPH067298U (en) * 1992-06-26 1994-01-28 株式会社トプコン Metal case joint structure
JPH0710999U (en) * 1993-07-15 1995-02-14 株式会社アドバンテスト Shield cover for printed circuit board

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846687A (en) * 1981-09-16 1983-03-18 Mitsubishi Electric Corp Gas circulating type laser
JPS5848485A (en) * 1981-09-16 1983-03-22 Mitsubishi Electric Corp Pulse laser oscillator
DE3428653C2 (en) * 1984-08-03 1994-06-01 Trumpf Gmbh & Co Cross-flow CO¶2¶ laser
JPS61219191A (en) * 1985-03-20 1986-09-29 ユルゲン・ヘルト Apparatus for causing discharge in laser gas
JPH0186258U (en) * 1987-11-30 1989-06-07
JP2670285B2 (en) * 1988-02-18 1997-10-29 株式会社東芝 Gas laser oscillation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837423U (en) * 1971-09-07 1973-05-08
JPS5041493A (en) * 1973-02-14 1975-04-15
JPS5097289A (en) * 1973-12-26 1975-08-02
JPS545958A (en) * 1977-06-14 1979-01-17 Nisshin Flour Milling Co Ltd Prparation of vitamine k's

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837423U (en) * 1971-09-07 1973-05-08
JPS5041493A (en) * 1973-02-14 1975-04-15
JPS5097289A (en) * 1973-12-26 1975-08-02
JPS545958A (en) * 1977-06-14 1979-01-17 Nisshin Flour Milling Co Ltd Prparation of vitamine k's

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227797A (en) * 1988-07-15 1990-01-30 Matsushita Electric Ind Co Ltd Shielding case
JPH0339896U (en) * 1989-08-30 1991-04-17
JPH067298U (en) * 1992-06-26 1994-01-28 株式会社トプコン Metal case joint structure
JPH0710999U (en) * 1993-07-15 1995-02-14 株式会社アドバンテスト Shield cover for printed circuit board

Also Published As

Publication number Publication date
JPS5680190A (en) 1981-07-01

Similar Documents

Publication Publication Date Title
JPS6310597B2 (en)
US4677637A (en) TE laser amplifier
JPS603170A (en) Silent discharge type gas laser device
JPS6026310B2 (en) gas laser equipment
JPH0225268B2 (en)
GB2107512A (en) Apparatus for producing a laser-active state in a fast subsonic flow
JPS639395B2 (en)
JPS6346995B2 (en)
JP2578014Y2 (en) Dielectric plate of laser device
JP2002026429A (en) Gas laser device
JP2003264328A (en) Waveguide gas laser oscillator
JPS6017975A (en) Silent discharge gas laser device
JPS5968986A (en) Voiceless discharge system gas laser device
JPS61219191A (en) Apparatus for causing discharge in laser gas
JPS6246992B2 (en)
JP2827680B2 (en) Metal vapor laser device
JPH05327071A (en) Cooler of laser device
JPH01273375A (en) Discharge excitation excimer laser device
JPS62126683A (en) Gas laser device
JP2980381B2 (en) Laser equipment
JPH02281671A (en) Gas laser oscillation device
JPH0582863A (en) Laser oscillator
JPS5886784A (en) Sealed type gas laser
JPH06232482A (en) Gas laser equipment
JPS5917871B2 (en) gas laser equipment