JPS6017975A - Silent discharge gas laser device - Google Patents

Silent discharge gas laser device

Info

Publication number
JPS6017975A
JPS6017975A JP12570383A JP12570383A JPS6017975A JP S6017975 A JPS6017975 A JP S6017975A JP 12570383 A JP12570383 A JP 12570383A JP 12570383 A JP12570383 A JP 12570383A JP S6017975 A JPS6017975 A JP S6017975A
Authority
JP
Japan
Prior art keywords
coolant
gas laser
heat
dielectric
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12570383A
Other languages
Japanese (ja)
Inventor
Kimiharu Yasui
公治 安井
Shigenori Yagi
重典 八木
Shuji Ogawa
小川 周治
Masaki Kuzumoto
昌樹 葛本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12570383A priority Critical patent/JPS6017975A/en
Publication of JPS6017975A publication Critical patent/JPS6017975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation

Abstract

PURPOSE:To emit a stable laser output by cooling a dielectric electrode by separately using evaporated heat based on the phase change of coolant having low specific dielectric constant, thereby reducing the induced current flowed through the coolant and simplifying a silent discharge gas laser device. CONSTITUTION:Specific dielectric constant of coolant 17 formed of insulating solution such as ammonia or halogenated fluoride carbon sealed in a dielectric electrode is approx. 2-5, thereby remarkably reducing the induced current flowed in the coolant 17. When the discharging power is approx. 20kW, in case of halogenated fluoride carbon as the coolant 1, its evaporation latent heat is 43.5cal/g (182.7J/g). Accordingly, the coolant 17 is evaporated at the ratio of approx. 328g. per minute to apply heat to the outer cylinder for forming a dielectric electrode 3, thereby liquefying it to return to the original. The heat applied to the outer cylinder is effectively dispersed to the exterior through heat sink fins 18. At this time, when the fins 18 are exposed with the circulating flow of the gas laser medium, its heat sink effect can be remarkably improved.

Description

【発明の詳細な説明】 この発明は、無声放電式ガスレーザ装置における電極の
冷却手段の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electrode cooling means in a silent discharge gas laser device.

従来この種の無声放電式ガスレーザ装置としては、第1
図に示すものがあった。第1図は従来の無声放電式ガス
レーザ装置の一例として、三軸直交型CO,レーザ装置
を示す概略構成図、第2図は、第1図における誘電体電
極を示す拡大断面図である。第1図において、レーザ発
振器1内には接地された金属電極2と高周波高電圧が印
加される誘電体電極3が相対向して配置されている。こ
の金属電極2と誘電体電極3間には放電空間4が形成さ
れ、この放電空間4内には炭酸ガス(COt ) 。
Conventionally, as this type of silent discharge gas laser device, the first
There was something shown in the figure. FIG. 1 is a schematic configuration diagram showing a three-axis orthogonal CO laser device as an example of a conventional silent discharge type gas laser device, and FIG. 2 is an enlarged sectional view showing a dielectric electrode in FIG. 1. In FIG. 1, inside a laser oscillator 1, a grounded metal electrode 2 and a dielectric electrode 3 to which a high frequency and high voltage is applied are arranged facing each other. A discharge space 4 is formed between the metal electrode 2 and the dielectric electrode 3, and carbon dioxide gas (COt) is present in the discharge space 4.

ヘリウムガス(1−Ie)、窒素ガス(N2)等の混合
ガスから成るガスレーザ媒質が熱交換器6にて冷却され
、送風ブロア7によシ力ロ速されて、毎秒的30m程度
の高速度で循環供給される様になっている。
A gas laser medium consisting of a mixed gas of helium gas (1-Ie), nitrogen gas (N2), etc. is cooled by a heat exchanger 6, and is blown at a high speed of about 30 meters per second by a blower 7. It is designed to be supplied in circulation.

放電空間4の両端には全反射鏡8及び部分反射鏡9が配
置され、光共振器が形成されている。誘電体電極3は、
第2図に示す様に、金属パイプ110表面に誘電体12
が被覆された構造を有し、その内部には電極冷却用の脱
イオン水10が流入される様に形成されている。誘電体
電極3には交流電源13から約1. OQKHz 、 
10KV(実効値)程度の高周波高電圧が印加され、放
電空間4に無声放電とI〜で知られている安定なグロー
状の放電が生起される。放電空間4においては、前記送
風ブロア7によるガスレーザ媒質の循環流と前記各金属
電極2.誘電体電極3間の無声放電とが直交する状態と
なシ、この時の放電エネルギーがガスレーザ媒質に与え
られる。この例では、炭酸ガス(CO□)分子がレーザ
励起され、前述したガスレーザ媒質の循環流及び無声放
電が直交することになる。すなわち、放電空間4と、そ
の両端に固定配置された全反射鏡8及び部分反射鏡9と
で形成される光共振器の光軸に対して、レーザビーム5
の励起が行われ、この光共振器による共振増幅が行われ
た後、その一部が部分反射鏡9からレーザビーム5とし
て外部へ放出されるのである。放電空間4における放電
エネルギーによるガスレーザ媒質の温度上昇は、レーザ
発振のエネルギー効率を低下させる原因となるので、放
電空間4内のガスレーザ媒質の循環流は熱交換器6にて
冷却され、送風ブロア7にて高速度で強制循環させられ
ることにより、ガスレーザ媒質の温度上昇を抑制してい
る。また、誘電体電極3の温度上昇による誘電体電極3
を構成する誘電体12の破壊を防止するため、誘電体電
極3の内部には、ポンプ(P) 14から冷却器([−
(E)15及び純水器(DI)16を通って冷却され、
かつ電気抵抗の増加された電極冷却用の脱イオン水10
が供給され、誘電体電極30発熱が、直接に脱イオン水
10からなる冷却水によって冷却される様になっている
A total reflection mirror 8 and a partial reflection mirror 9 are arranged at both ends of the discharge space 4 to form an optical resonator. The dielectric electrode 3 is
As shown in FIG. 2, a dielectric material 12 is placed on the surface of the metal pipe 110.
It has a structure in which deionized water 10 for cooling the electrode flows into the inside thereof. Approximately 1.0 mm is supplied to the dielectric electrode 3 from the AC power source 13. OQKHz,
A high frequency high voltage of about 10 KV (effective value) is applied, and a stable glow-like discharge known as a silent discharge and I~ is generated in the discharge space 4. In the discharge space 4, a circulating flow of the gas laser medium by the blower 7 and each of the metal electrodes 2. When the silent discharge between the dielectric electrodes 3 is in a perpendicular state, the discharge energy at this time is applied to the gas laser medium. In this example, carbon dioxide (CO□) molecules are excited by the laser, and the aforementioned circular flow of the gas laser medium and silent discharge are orthogonal to each other. That is, the laser beam 5 is directed toward the optical axis of the optical resonator formed by the discharge space 4 and the total reflection mirror 8 and partial reflection mirror 9 fixedly arranged at both ends of the discharge space 4.
Excitation is performed, and after resonance amplification is performed by this optical resonator, a part of the excitation is emitted from the partial reflection mirror 9 to the outside as a laser beam 5. An increase in the temperature of the gas laser medium due to the discharge energy in the discharge space 4 causes a decrease in the energy efficiency of laser oscillation, so the circulating flow of the gas laser medium in the discharge space 4 is cooled by a heat exchanger 6, By forced circulation at high speed, the temperature rise of the gas laser medium is suppressed. In addition, the temperature of the dielectric electrode 3 may increase due to the temperature rise of the dielectric electrode 3.
In order to prevent damage to the dielectric 12 constituting the dielectric electrode 3, a pump (P) 14 to a cooler (
(E) 15 and a water deionizer (DI) 16 to be cooled;
and deionized water 10 for electrode cooling with increased electrical resistance.
is supplied, and the heat generated by the dielectric electrode 30 is directly cooled by cooling water made of deionized water 10.

従来の三軸直交型CO,レーザ装置の構成は以上の通シ
であるが、以下に、各金属電極2.誘電体電極3間に印
加される高周波高電圧に基づく無声放電によるレーザ励
起作用について説明する。無声放電は、各金属電極2、
誘電体電極3間に印加される高周波高電圧(約10KV
)に基づき、放電空間4内に誘電体12を介して生ずる
交流放電であシ、電源電圧の各印加周期の上昇過程にお
いて、放電開始電圧(約sKV’)に達するとパルス 
3− 的放電が生じる。この放電によシ誘電体120表面には
放電電流による電荷が蓄積され、その結果、放電空間4
の電圧が低下して、I(ルス放電が消滅する。以上のパ
ルス放電が電源電圧の各周期における上昇過程において
繰シ返され、通常の場合、交流電源電圧の半サイクル中
、数回〜数十回の繰シ返17バルス放電が得られる。ま
た、極性の反転する次の半サイクルには逆極性の同様な
l(ルス放電が繰シ返される。したがって、放電空間4
への放電電力供給はV続的な繰シ返しとなるが、レーザ
励起及び1/−ザ発振出力は、ガスレーザ媒質中の窒素
がエネルギーブールとして作用するため、時間的にほぼ
一様の出力とし、て得ることができる。
The configuration of the conventional three-axis orthogonal CO laser device is as described above, and each metal electrode 2. The laser excitation effect by silent discharge based on the high frequency and high voltage applied between the dielectric electrodes 3 will be explained. Silent discharge is caused by each metal electrode 2,
High frequency high voltage (approximately 10KV) applied between the dielectric electrodes 3
), it is an alternating current discharge that occurs in the discharge space 4 through the dielectric 12, and in the rising process of each application period of the power supply voltage, when the discharge starting voltage (approximately sKV') is reached, a pulse is generated.
3- Target discharge occurs. Due to this discharge, charges due to the discharge current are accumulated on the surface of the dielectric 120, and as a result, the discharge space 4
voltage decreases, and the pulse discharge (I) disappears. The above pulse discharge is repeated during the rising process of each cycle of the power supply voltage, and in normal cases, it occurs several times to several times during a half cycle of the AC power supply voltage. A 17-pulse discharge is obtained ten times. In the next half cycle, when the polarity is reversed, a similar pulse discharge with the opposite polarity is repeated. Therefore, the discharge space 4
The discharge power is supplied repeatedly over time, but the laser excitation and 1/- laser oscillation outputs are almost uniform over time because nitrogen in the gas laser medium acts as an energy boule. , you can get it.

従来の三軸直交型CO□レーザ装置における誘電体電極
3の構造は以上の様に構成されているので、この誘電体
電極3を冷却するための脱イオン水10を生成する水の
脱イオン化装置、及びその循環用のポンプ(P) 14
等が必須である上に、脱イオン化された水ですら比誘電
率が約80程度であシ、この値は誘電体電極3における
被覆される誘電体 4− 12の比誘電率約5に対し非常に大きいため、これに比
例した膨大な誘導電流が脱イオン水10中を通って接地
部分、例えばレーザ発振器1の筐体壁に流れ、これを補
うためには使用する電源容量を十分に太き(する必要が
あるなどの欠点があった。
Since the structure of the dielectric electrode 3 in the conventional three-axis orthogonal CO□ laser device is configured as described above, a water deionization device that generates deionized water 10 for cooling the dielectric electrode 3 is required. , and its circulation pump (P) 14
In addition, even deionized water has a relative permittivity of about 80, and this value is higher than the relative permittivity of about 5 of the dielectric material 4-12 covered in the dielectric electrode 3. Since this is very large, a huge induced current proportional to this flows through the deionized water 10 to the grounded part, for example, the wall of the housing of the laser oscillator 1. To compensate for this, the power supply capacity used must be sufficiently large. There were drawbacks such as the need to

この発明は上記の様な従来のものの欠点を除去するため
になされたもので、無声放電式ガスレーザ装置において
一誘電体電極の中に比誘電率の低い冷媒を封入し、この
冷媒の相変化に基づく気化熱を利用して、前記誘電体電
極を冷却する様にして成る構成を有し、冷媒中を流れる
誘導電流を減らすと共に、装置を簡素化してコンパクト
となし、安定なレーザ出力を放射する無声放電式ガスレ
ーザ装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and in a silent discharge type gas laser device, a refrigerant with a low dielectric constant is sealed in one dielectric electrode, and the phase change of this refrigerant is It has a configuration in which the dielectric electrode is cooled using the heat of vaporization based on the cooling medium, which reduces the induced current flowing in the coolant, simplifies the device to make it compact, and emits stable laser output. The purpose is to provide a silent discharge type gas laser device.

以下、この発明の一実施例を図について説明する。第3
図はこの発明の一実施例である無声放電式ガスレーザ装
置を示す概略構成図、第4図は、第3図における誘電体
電極を示す拡大断面図で、第1図及び第2図と同一部分
は同一符号を用いて表示してあシ、その詳mな説明は省
略する。第3図及び第4図において、17は、例えばア
ンモニア、フッ化ハロゲン化炭素等の絶縁性液体からな
る冷媒、18は誘電体電極3の誘電体12の外周に設け
られた放熱用フィンである。冷媒17の比誘電率は約2
〜5であシ、この値は上記従来例のものにおける脱イオ
ン水10の比誘電率約80に比べて十分に小さく、この
ため、冷媒17中を流れる誘導電流を激減せしめ得る。
An embodiment of the present invention will be described below with reference to the drawings. Third
The figure is a schematic configuration diagram showing a silent discharge type gas laser device which is an embodiment of the present invention, and FIG. 4 is an enlarged sectional view showing the dielectric electrode in FIG. 3, showing the same parts as FIGS. 1 and 2. are indicated using the same reference numerals, and detailed explanation thereof will be omitted. In FIGS. 3 and 4, 17 is a refrigerant made of an insulating liquid such as ammonia or fluorohalogenated carbon, and 18 is a heat dissipation fin provided on the outer periphery of the dielectric 12 of the dielectric electrode 3. . The dielectric constant of the refrigerant 17 is approximately 2
~5, and this value is sufficiently smaller than the dielectric constant of about 80 of the deionized water 10 in the conventional example, and therefore the induced current flowing in the refrigerant 17 can be drastically reduced.

また、冷媒17の冷却効果について述べると、上記した
従来例のものが、放電電力約20KWにおいて、脱イオ
ン水10は約IKW程度の熱を持ち去っていたが、この
発明の一実施例のものにおいては、例えばフッ化ハロゲ
ン化炭化水素の蒸発の潜熱が43.5cg/9 (1B
2.7J/り)であるため、毎分約3282の割合いで
冷媒17が蒸発し、誘電体電極3を構成する外筒に熱を
伝え液化して元に戻る。そして、外筒に伝えられた熱は
、放電にさらされていない放熱用フィン18を通して、
外部に有効に放散されることになる。この時、放熱用フ
ィン18がガスレーザ媒質の循環流にさらされていれば
、その放散効果はさらに顕著となる。第3図及び第4図
に示すこの発明の一実施例である無声放電式ガスレーザ
装置におけるその他の構成ならびに作用については、上
記した第1図及び第2図に示す従来例のものと同様であ
シ、その説明は省略する。
Regarding the cooling effect of the refrigerant 17, in the conventional example described above, at a discharge power of approximately 20 KW, the deionized water 10 carried away approximately IKW of heat, but in the example of the present invention, the deionized water 10 removed approximately IKW of heat. For example, the latent heat of vaporization of fluorinated halogenated hydrocarbon is 43.5 cg/9 (1B
2.7 J/liter), the refrigerant 17 evaporates at a rate of about 3282 per minute, transfers heat to the outer cylinder constituting the dielectric electrode 3, liquefies and returns to its original state. The heat transferred to the outer cylinder passes through the heat dissipation fins 18 that are not exposed to electric discharge.
It will be effectively dissipated to the outside. At this time, if the heat dissipation fins 18 are exposed to the circulating flow of the gas laser medium, the dissipation effect will be even more remarkable. The other structure and operation of the silent discharge gas laser device which is an embodiment of the present invention shown in FIGS. 3 and 4 are the same as those of the conventional example shown in FIGS. 1 and 2 described above. I'll omit that explanation.

なお、上記実施例では、放熱用フィン18をレーザ発振
器1の筐体内に設けた場合について説明したが、放熱用
フィン18に相当する部分を筐体の外部に取り出し、放
熱用フィン18に対し、自然冷却、風の吹き付は冷却、
水冷却などを行っても上記実施例と同様の効果を奏する
In the above embodiment, the case where the heat dissipation fins 18 were provided inside the housing of the laser oscillator 1 was explained, but the portion corresponding to the heat dissipation fins 18 was taken out of the housing and Natural cooling, wind blowing cooling,
Even if water cooling or the like is performed, the same effects as in the above embodiments can be obtained.

以上の様に、この発明の無声放電式ガスレーザ装置によ
れば、誘電体電極の中に比誘電率の低い冷媒を封入し、
この冷媒の相変化に基づく気化熱を利用して、前記誘電
体電極を冷却する様にして成る構成としたので、■冷媒
中に流れ込む誘導電流が著しく減少し、このため、使用
する電源容量を小さくできる■脱イオン化装置、又は脱
イオン水用循環用ポンプ等の外部系機器を取シ除くこと
 7− ができるなどによシ、装置を極めて簡素化してコンパク
ト化を達成し得る効果を奏する。さらに、比誘電率の低
い冷媒の相変化に基づく気化熱を利用しているため、熱
伝達速度が数千〜致方KCat/ぜ・hr・℃と著しく
高く、この結果、熱的変動に対し非常に迅速な制御を行
うことができるなどの優れた効果を奏するものである。
As described above, according to the silent discharge gas laser device of the present invention, a coolant with a low relative dielectric constant is sealed in the dielectric electrode,
Since the dielectric electrode is cooled by using the heat of vaporization caused by the phase change of the refrigerant, the induced current flowing into the refrigerant is significantly reduced, which reduces the power supply capacity used. The device can be made smaller by removing external equipment such as the deionization device or the pump for circulation of deionized water.This has the effect of greatly simplifying the device and making it more compact. Furthermore, because it utilizes the heat of vaporization based on the phase change of a refrigerant with a low dielectric constant, the heat transfer rate is extremely high, ranging from several thousand to 1,000 KCat/ze・hr・℃, and as a result, it is resistant to thermal fluctuations. This has excellent effects such as very quick control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無声放電式ガスレーザ装置の一例として
、三軸直交型CQ、レーザ装置を示す概略構成図、第2
図は、第1図における誘電体電極を示す拡大断面図、第
3図はこの発明の一実施例である無声放電式ガスレーザ
装置を示す概略構成図、第4図は、第3図における誘電
体電極を示す拡大断面図である。 図において、1−・・レーザ発振器、2・−・金属電極
、3・・・誘電体電極、4・・・放電空間、5−・レー
ザビーム、6・・・熱交換器、7・・・送風ブロア、8
・−全反射鏡、9・・・部分反射鏡、lO・・・脱イオ
ン水、11・・・金属パイプ、12・・・誘電体、13
・−・交流電源、148− ・・・ポンプ(P)、15・・・冷却器(HE)、16
・−・純水器(DI)、17・・・冷媒、18・・−放
熱用フィンである。 なお、図中、同一符号は同一、又は相当部分を示す、 代理人 大岩増雄 第1図 第2図 第3図 3  6 第4困1 8 手続補正書(自発) 1.事件の表示 !l、′li願昭58−122570
3号2、発明の名称 無声放電式ガスレーザ装置3、補
正をする者 事件との関係 1”I” :!’l−出IQ(i人代表
者片111仁八部 4、代理人 (、帳J1i7Q O:1(2]3)3121i&、+
’l’部)5、補正の対象 明細書の「特許請求の範囲
」及び「発明の詳細な説明」の欄。 6、補正の内容 (1)明細書の「特許請求の範囲」を別紙の通夛に補正
する。 (2)同省第6頁第8行目の「無声放電式」を、「横方
向励起無声放電式」と補正する。 別 紙 2、特許請求の範囲 (1)少なくとも一方がその表面を誘電体で被覆された
誘電体電極を有する1対の電極間に交流高電圧を印加し
、前記1対の電極間に無声放電を発生させ、この無声放
電をレーザ励起の低い冷媒を封入し、該冷媒の相変化に
基づく気化熱を利用して、前記誘電体電極を冷却する様
にして成ることを特徴とする無声放電式ガスレーザ装置
。 (2)前記冷媒として、アンモニア、フッ化ハロゲン化
炭素の内どちらか、もしくは両者の混合物を用いること
を特徴とする特許請求の範囲第1項記載の無声放電式ガ
スレーザ装置。  2−
FIG. 1 is a schematic configuration diagram showing a three-axis orthogonal CQ laser device as an example of a conventional silent discharge type gas laser device;
The figures are an enlarged sectional view showing the dielectric electrode in Fig. 1, Fig. 3 is a schematic configuration diagram showing a silent discharge gas laser device as an embodiment of the present invention, and Fig. 4 is an enlarged sectional view showing the dielectric electrode in Fig. 3. FIG. 3 is an enlarged cross-sectional view showing an electrode. In the figure, 1--Laser oscillator, 2--Metal electrode, 3--Dielectric electrode, 4--Discharge space, 5--Laser beam, 6--Heat exchanger, 7-- Air blower, 8
- Total reflection mirror, 9... Partial reflection mirror, lO... Deionized water, 11... Metal pipe, 12... Dielectric, 13
... AC power supply, 148- ... Pump (P), 15 ... Cooler (HE), 16
... Deionizer (DI), 17... Refrigerant, 18... - Heat dissipation fin. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 Figure 3 6 4th Problem 1 8 Procedural Amendment (Voluntary) 1. Display of the incident! l,'li Gansho 58-122570
No. 3 No. 2, Title of the invention Silent discharge gas laser device 3, Relationship to the case of the person making the amendment 1 “I”:! 'l-out IQ (i person representative piece 111 jin 8 part 4, agent (, book J1i7Q O: 1 (2] 3) 3121i &, +
Section 'l') 5. Subject of amendment: "Claims" and "Detailed Description of the Invention" columns of the specification. 6. Contents of the amendment (1) The "Claims" of the specification will be amended to include multiple attachments. (2) "Silent discharge method" on page 6, line 8 of the Ministry of Education is corrected to "lateral excitation silent discharge method." Attachment 2, Claims (1) An AC high voltage is applied between a pair of electrodes, at least one of which has a dielectric electrode whose surface is coated with a dielectric, and a silent discharge is generated between the pair of electrodes. A silent discharge type characterized in that the silent discharge is filled with a coolant having low laser excitation, and the dielectric electrode is cooled using the heat of vaporization based on the phase change of the coolant. Gas laser equipment. (2) The silent discharge type gas laser device according to claim 1, wherein either ammonia, fluorohalogenated carbon, or a mixture of both is used as the refrigerant. 2-

Claims (2)

【特許請求の範囲】[Claims] (1)少な(ども一方がその表面を誘電体で被覆された
誘電体電極を有する1対の電極間に交流高電圧を印加し
、前記1対の電極間に魚肉放電を発生させ、この無声放
電なレーザ励起に用いた無声放電式ガスレーザ装置にお
いて、前記誘電体電極の中に比誘導率の低い冷媒を封入
し、該冷媒の相変化に基づく気化熱を利用して、前記誘
電体電極を冷却する様にして成ることを特徴とする無声
放電式ガスレーザ装置。
(1) A high AC voltage is applied between a pair of electrodes, one of which has a dielectric electrode whose surface is coated with a dielectric, and a fish meat discharge is generated between the pair of electrodes. In a silent discharge gas laser device used for discharge laser excitation, a refrigerant with a low specific inductivity is sealed in the dielectric electrode, and the dielectric electrode is heated using the heat of vaporization based on the phase change of the refrigerant. A silent discharge gas laser device characterized in that it is cooled.
(2) 前記冷媒として、アンモニア、フッ化ハロゲン
化炭素の内どちらか、もしくは両者の混合物を用いるこ
とを特徴とする特許請求の範囲第1項記載の無声放電式
ガスレーザ装置。
(2) The silent discharge gas laser device according to claim 1, wherein either ammonia, fluorohalogenated carbon, or a mixture of both is used as the refrigerant.
JP12570383A 1983-07-11 1983-07-11 Silent discharge gas laser device Pending JPS6017975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12570383A JPS6017975A (en) 1983-07-11 1983-07-11 Silent discharge gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12570383A JPS6017975A (en) 1983-07-11 1983-07-11 Silent discharge gas laser device

Publications (1)

Publication Number Publication Date
JPS6017975A true JPS6017975A (en) 1985-01-29

Family

ID=14916628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12570383A Pending JPS6017975A (en) 1983-07-11 1983-07-11 Silent discharge gas laser device

Country Status (1)

Country Link
JP (1) JPS6017975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428741A1 (en) * 1989-05-29 1991-05-29 Fanuc Ltd. Discharge tube for laser generator
JPH0541163U (en) * 1991-10-31 1993-06-01 三菱重工業株式会社 Saturable core cooling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428741A1 (en) * 1989-05-29 1991-05-29 Fanuc Ltd. Discharge tube for laser generator
US5113407A (en) * 1989-05-29 1992-05-12 Fanuc Ltd. Discharge tube for laser oscillator
JPH0541163U (en) * 1991-10-31 1993-06-01 三菱重工業株式会社 Saturable core cooling device

Similar Documents

Publication Publication Date Title
JPS6017975A (en) Silent discharge gas laser device
EP0504652B1 (en) Gas laser oscillating device
JPS6310597B2 (en)
JPS639393B2 (en)
JPS6026310B2 (en) gas laser equipment
JP2003264328A (en) Waveguide gas laser oscillator
JPS6310916B2 (en)
JPS61236179A (en) Gas laser oscillating apparatus
JPS5932187A (en) Silent discharge type gas laser device
JPS6348881A (en) Gas laser oscillator
JPS5886784A (en) Sealed type gas laser
JPH05167142A (en) Solid state laser equipment
JPH02281671A (en) Gas laser oscillation device
JPS6288384A (en) Gas laser device
JPS6312185A (en) Cooling equipment for gas laser oscillator
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
Schawlow Optical and infra-red masers
JPH01108786A (en) Gas laser device
RU2101816C1 (en) Radiation generating unit of cross-pumped gas flow laser
JPH05299730A (en) Laser apparatus
Shimizu et al. Improved Performance of Fast-Axial-Flow, RF-Discharge-Excited, Room-Temperature CO Laser with Kr-Added Mixtures
JPS5843914B2 (en) Laterally excited gas circulation type laser device
JPS59217382A (en) Gas laser oscillator
JPH01286376A (en) Discharge tube for gas laser device
JPS59213185A (en) Silent discharge type gas laser device