JPS59217382A - Gas laser oscillator - Google Patents

Gas laser oscillator

Info

Publication number
JPS59217382A
JPS59217382A JP9185183A JP9185183A JPS59217382A JP S59217382 A JPS59217382 A JP S59217382A JP 9185183 A JP9185183 A JP 9185183A JP 9185183 A JP9185183 A JP 9185183A JP S59217382 A JPS59217382 A JP S59217382A
Authority
JP
Japan
Prior art keywords
discharge
electrode
wall
dielectric
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9185183A
Other languages
Japanese (ja)
Inventor
Masaaki Tanaka
正明 田中
Yukio Sato
行雄 佐藤
Masao Hishii
菱井 正夫
Haruhiko Nagai
治彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9185183A priority Critical patent/JPS59217382A/en
Publication of JPS59217382A publication Critical patent/JPS59217382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enable the effective utilization of the power source capacity with a simple structure by providing one of electrodes on the outer wall of a cylindrical dielectric, and constructing the other in the form of passing the electrode wire along the inner wall. CONSTITUTION:The electrode 11-2 for power supply placed on the water-cooled side is provided on the inner wall of the dielectric 2, and the electrode 11-1 provided on the outer wall is on the side of ground for the power source. Thereby, since electrical insulation is kept in structure, a partition plate is unnecessitated, resulting in the simple structure of a laser oscillator by voiceless discharge, which can be manufactured at a low cost. Further, the most part of the current supplied from the power source flows to a discharge space 4, the current becoming a loss through the partition plate or cooling water can be neglected, and the power source capacity reduces.

Description

【発明の詳細な説明】 本発明はガスレーザ発振器、とくに同軸型のガスレーザ
発振器の放電管の構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the structure of a discharge tube of a gas laser oscillator, particularly a coaxial type gas laser oscillator.

同軸型のガスレーザ発振器としてCO2レーザを例に挙
げて説明する。この種のレーザは気体中での放電により
ガス励起を行ないレーザ光を発振するものであるが、こ
の放電の形式として、直流グロー放電によるものと交流
の無声放電によるものとがあり、これらの構造を第1図
に示す。第1図(a)は従来の直流グロー放電式ガスレ
ーザ発掘器の構成図で、(1)は陰極、(2)はガラス
などの誘電体で形成された放電管、(3)は陽極、(4
)は放電空間、(5)は冷却用のジャケラl−,+61
は冷却水通路、(7)は冷却水入口、(8)は冷却水出
口、(9)は全反射ミラー。
A CO2 laser will be described as an example of a coaxial gas laser oscillator. This type of laser oscillates laser light by exciting the gas by discharging it in the gas, but there are two types of discharge: direct current glow discharge and alternating current silent discharge. is shown in Figure 1. Figure 1(a) is a configuration diagram of a conventional DC glow discharge type gas laser excavator, in which (1) is a cathode, (2) is a discharge tube made of a dielectric material such as glass, (3) is an anode, ( 4
) is the discharge space, (5) is the cooling jacket l-, +61
is a cooling water passage, (7) is a cooling water inlet, (8) is a cooling water outlet, and (9) is a total reflection mirror.

FIGは部分反射ミラーである。陰極(1)と陽極(3
)との間に直流高電圧が印加されると放電空間(4)で
グロー放電と呼ばれる放電が形成される。CO2レーザ
の場合には通常CO2−N2− Heの混合気体が数十
Torrの圧力で(4)の放電空間内に封入されており
FIG is a partially reflecting mirror. Cathode (1) and anode (3
), a discharge called glow discharge is formed in the discharge space (4). In the case of a CO2 laser, a gas mixture of CO2-N2-He is normally sealed in the discharge space (4) at a pressure of several tens of Torr.

ここでグロー放電が生じると、結果的にCO2分子が上
位準位に励起され、その状態から下位準位にもどるとき
に10.6μmの波長の光が放出されるが。
When a glow discharge occurs here, as a result, the CO2 molecules are excited to the upper level, and when they return from that state to the lower level, light with a wavelength of 10.6 μm is emitted.

これを19)の全反射鏡と1101の部分透過鏡で光共
撮。
This was photographed using the total reflection mirror 19) and the partial transmission mirror 1101.

光増幅させレーザ光として取り出して、その光を材料の
加工や切断に利用する。ここで、放電を行なわせると(
4)の放電空間の温度は上昇するが、一方し−ザ発援の
励起効率の点からはこの空間温度は約200℃以下に抑
える必要があるため、レーザガスを(4)の放電空間に
高速(数十rn/ sec )で流しで放電により発生
する熱を持ち去ったり、(6)の冷却水により(4)の
放電空間を冷却している。レーザ光の出力によって、す
なわち放電の入力によっては。
The light is amplified and extracted as laser light, and the light is used for processing and cutting materials. Here, if we let the discharge occur (
The temperature of the discharge space (4) rises, but on the other hand, from the point of view of the excitation efficiency of the laser, the temperature of this space needs to be kept below approximately 200°C, so the laser gas is flowed into the discharge space (4) at high speed. (several tens of rn/sec), the heat generated by the discharge is carried away in the sink, and the discharge space (4) is cooled by the cooling water (6). By the output of the laser light, i.e. by the input of the discharge.

放電空間にガス流を流すものや(大出力)、流さないも
の(小出力)があるが、小なくとも後者は。
There are those that flow a gas flow into the discharge space (high output) and those that do not (low output), but at least the latter is small.

(2)で示す言わゆる放電管は、水冷されている。The so-called discharge tube shown in (2) is water-cooled.

1        以上はグロー放電式のガスレーザ発
振器について述べたが、この方式のものは、数Torr
かも高々数十Torr程度のレーザガスの圧力の下でし
か安定に放電が維持できない。一方、レーザガスの放電
によるガス劣化(組成の変化)の観点からは比較的高い
圧力(100Torr前後以上)の方がよく、レーザガ
スの封じ切りと云う点からはグロー放電式のものは必ず
しも最適なものではなく、実際は。
1 The above has described a glow discharge type gas laser oscillator, but this type has a power of several Torr.
However, stable discharge can only be maintained under a laser gas pressure of several tens of Torr at most. On the other hand, from the viewpoint of gas deterioration (change in composition) due to laser gas discharge, a relatively high pressure (around 100 Torr or more) is better, and a glow discharge type is not necessarily optimal from the viewpoint of sealing off the laser gas. Not really.

この方式のものはレーザ出力を安定化させるために、定
期的にレーザガスをつめ代えるメンテナンスを必要とし
ている。そこで最近では、前述の無声放電式のレーザが
考えられ、使用されている。
This method requires maintenance to periodically replace the laser gas in order to stabilize the laser output. Therefore, recently, the above-mentioned silent discharge type laser has been considered and used.

第1図(b)は、従来の無声放電式ガスレーザ発掘器の
構成図、第1図(c)は第1図(b)A −A’線に祐
ける断面図である。図において、 (11−1)、 (
11−2)は放電空間(4)を内包する円筒状の誘電体
+21 (′ffラス、チタン酸バリウム等でできてい
る。)K密着する一対の電極で、これら一対の電極(n
−1)、 (11−2) K数KV程度の高周波の交流
高電圧を印加すると、誘電体(2)を介して無声放電と
呼ばれる穏やかな放電が放電空間(4)に生成し、前述
の直流グロー放電式ガスレーザ発振器と、同様の原理で
レーザ光を発振させる。無声放電は大気圧の下でさえ非
常に安定した放電が維持されるものであり、レーザ発振
に使われる100Torr前後の放電条件は極めて安定
であり、かつ、ガスの劣化即ち1組成変化もほとんど起
こらない特徴がある。しかしながら、この様な無声放電
を利用するものは、第1図(C)に示すように、しきり
板0力が必要となる。なぜなら、電極(11−1)、 
(11−2)間に交流高′亀圧を印加すると誘電体(2
)は水冷されているために、その水がイオン交換樹脂な
どで脱イオン化されていても、水の比誘電率は80であ
るため、電極(11−1)、 (11−2)から供給さ
れる電流の多くは水を通して流れてしまうために、しき
り板Q2) h′−設置されている。しかし、このしき
り板0乃も誘電体で作られており、しきり板(12)に
誘導電流カー流れて、供給される電流の幾分かは放電空
間(4)を流れず、その分だけ電流容隈の損失となって
いた。また、このようなしきり板OQを作ることは、装
置のコストの上昇にむすびつくなどの欠点を有していた
FIG. 1(b) is a configuration diagram of a conventional silent discharge type gas laser excavator, and FIG. 1(c) is a sectional view taken along line A-A' in FIG. 1(b). In the figure, (11-1), (
11-2) is a pair of electrodes in close contact with the cylindrical dielectric body +21 (made of 'ff lath, barium titanate, etc.) containing the discharge space (4), and these pair of electrodes (n
-1), (11-2) When a high frequency AC high voltage of approximately KV is applied, a gentle discharge called a silent discharge is generated in the discharge space (4) through the dielectric (2), and the above-mentioned It oscillates laser light using the same principle as a DC glow discharge type gas laser oscillator. Silent discharge maintains a very stable discharge even under atmospheric pressure, and the discharge conditions of around 100 Torr used for laser oscillation are extremely stable, and gas deterioration, that is, a single composition change, hardly occurs. There are some features that don't exist. However, as shown in FIG. 1(C), a device that utilizes such silent discharge requires zero force from the diaphragm plate. Because the electrode (11-1),
When an AC high torque is applied between (11-2), the dielectric (2
) is water-cooled, so even if the water is deionized with an ion exchange resin, the relative dielectric constant of water is 80, so it is not supplied from the electrodes (11-1) and (11-2). Since most of the current flows through the water, a barrier plate Q2) h'- is installed. However, this diaphragm plate 0 is also made of dielectric material, and when an induced current flows through the diaphragm plate (12), some of the supplied current does not flow through the discharge space (4), and only that much current flows. It was Yokuma's loss. Further, producing such a partition plate OQ has the disadvantage that it leads to an increase in the cost of the apparatus.

この発明は、無声放電式のガスレーザ発掘器における上
記のような欠点を除去するためになされたもので、電極
の一方は1円筒状誘電体の外壁に設け、他方の電極は1
円筒状誘電体の内壁に電極線を沿わせて構成することに
より、簡単な構造で。
This invention was made in order to eliminate the above-mentioned drawbacks of a silent discharge type gas laser excavator.
A simple structure with electrode wires running along the inner wall of a cylindrical dielectric.

電源の容量が有効に使える装置を提供することを目的と
している。
The purpose is to provide a device that can effectively use the capacity of the power supply.

以下、この発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図(a)はこの発明の一実施例によるガスL・−ザ
発振器の構成図、第2図(b)は、第2図(3) B−
B’線における断面図である。図において、 (11−
1)は一対の電極のうちの一方の電極で9円筒状誘電体
(2)の外壁に、内側を密着させた円筒状の電極である
FIG. 2(a) is a block diagram of a gas L.
It is a sectional view taken along the B' line. In the figure, (11-
1) is one of a pair of electrodes, and is a cylindrical electrode whose inner side is in close contact with the outer wall of a cylindrical dielectric (2).

(11−2)は他方の電極で9円筒状誘電体(2)の内
壁に沿わせた例えば金属よりなる電極線である。
(11-2) is the other electrode, which is an electrode wire made of, for example, metal and runs along the inner wall of the cylindrical dielectric (2).

このような構成のガスレーザ発振器では、電極(11−
1)と(11−2)との間に交流電圧を印加すると。
In a gas laser oscillator with such a configuration, the electrode (11-
When an AC voltage is applied between 1) and (11-2).

誘電体(2)を介した放電となるため、放電空間(4)
では、やはり第1図(b)で示したものと同じ無声放電
と呼ばれる穏やかな放電が形成される。
Since the discharge occurs through the dielectric (2), the discharge space (4)
Then, a gentle discharge called a silent discharge is formed, which is the same as that shown in FIG. 1(b).

この無声放電によりレーザ光を発振する原理は従来のも
のと同じであり、この発明では、電極の一方を電極線(
11−2)としているため、電力の損失がなく141の
放電空間で放出されるレーザエネルギーは有効に取り出
され9例えば(2)の誘電体の内径が10籠のものに対
して、電極線(11−2)の直径が1鴎程度のものの場
合、レーザの発振効率は全く低下しないことが実験で確
認された。
The principle of oscillating laser light by this silent discharge is the same as the conventional one, and in this invention, one of the electrodes is connected to the electrode wire (
11-2), the laser energy emitted in the discharge space 141 is effectively extracted without power loss. It has been experimentally confirmed that when the diameter of 11-2) is about one seagull, the laser oscillation efficiency does not decrease at all.

上記のような、この発明にかかわる放電管の構造と従来
のものとの相違点は、先ず、この発明のものは(2)の
誘電体の内壁と外壁に各々電極が設置しであるために電
気的な絶縁性が構造上保たれるために、従来例のような
しきり板02は不要である。
The difference between the structure of the discharge tube according to the present invention and the conventional one as described above is that first, the structure of the discharge tube according to the present invention has electrodes installed on the inner and outer walls of the dielectric (2). Since electrical insulation is structurally maintained, the partition plate 02 as in the conventional example is unnecessary.

このためレーザ発振器の構造が簡単になり安価に作成で
きる。
Therefore, the structure of the laser oscillator is simplified and can be manufactured at low cost.

また、第1図(b)に示される。水冷側に設置される給
電用の電極(11−2)を、第2図(a)に示すように
It is also shown in FIG. 1(b). The power supply electrode (11-2) installed on the water cooling side is shown in FIG. 2(a).

誘電体(2)の内壁に設け、誘電体の外壁に設ける電極
(11−1)を電源の接地側とすることができるため。
This is because the electrode (11-1) provided on the inner wall of the dielectric (2) and the electrode (11-1) provided on the outer wall of the dielectric can be used as the ground side of the power source.

1        冷却水の水質は全く問題なく、従来
の様に、イオン交換樹脂を通した脱イオン水を使用する
必要性はなく、ガスレーザ発掘器のコストは安価になる
とともに水質保障のメンテナンスも不要となり信頼性が
向上する。さらに、電源から供給される電流は、大部分
(4)の放電空間に流れて、従来例のように、しきり板
02)や冷却水を通じて損失となる電流は無視でき、電
源容量も従来よりも小さいものとなる利点がある。
1 There is no problem with the quality of the cooling water, there is no need to use deionized water passed through an ion exchange resin as in the past, and the cost of the gas laser excavator is lower and there is no need for maintenance to ensure water quality, making it more reliable. Improves sex. Furthermore, the current supplied from the power supply flows through most of the discharge space (4), and the current loss through the diaphragm plate 02) and cooling water, as in the conventional example, can be ignored, and the power supply capacity is also greater than in the conventional example. It has the advantage of being small.

ところで無声放電の場合、電源周波数、印加電圧が同じ
であれば、放電空間(4)に投入される電力は電極(1
1−1)、 (11−2)に密着している誘電体(2)
の面積に比例する。しかるに、従来例のものは、その構
造の上から、誘電体(2)の表面の一部にしか密着させ
ることができず、この発明のものは誘電体の全面(全周
)に渡り電極を密着できるため、誘電体(2)を有効利
用していることとなり、その結果放電空間(4)への電
力投入が容易になる。すなわち。
By the way, in the case of silent discharge, if the power supply frequency and applied voltage are the same, the power input into the discharge space (4) is equal to the electrode (1).
1-1), dielectric (2) in close contact with (11-2)
is proportional to the area of However, in the conventional example, the electrode can only be brought into close contact with only a part of the surface of the dielectric (2) from above the structure, and in the case of the present invention, the electrode can be attached over the entire surface (entire circumference) of the dielectric. Since they can be in close contact with each other, the dielectric (2) is effectively utilized, and as a result, it becomes easier to input power into the discharge space (4). Namely.

従来のものと同じ放電電力を投入する場合、この発明の
方が低い印加電圧で済むことになり、装置としての電気
絶縁の面からも信頼性がよくなる利点をもっている。
When applying the same discharge power as the conventional device, the present invention requires a lower applied voltage, and has the advantage that the device is more reliable in terms of electrical insulation.

また、放電空間(4)で形成される放電域はレーザ発掘
の観点から均一である方がよく、この点からも誘電体(
2)の全周を電極としているこの発明のものが優れてい
ることも容易に理解できる。
In addition, it is better for the discharge region formed in the discharge space (4) to be uniform from the point of view of laser excavation, and from this point of view as well, the dielectric (
It is also easy to understand that the invention in which the entire circumference of 2) is used as an electrode is superior.

この放電域の均一性をさらによくする放電管の構造を第
3図忙示す。第3図(a)は、この発明の他の実施例に
よるガスレーザ発掘器の構成図、第3図(b)は、第3
図(a)のC−σ線における断面図である。第3図では
、電極線(11−2)が螺線状に1円筒状誘電体(2)
の内壁に沿って設けられており、このような構成にすれ
ば、レーザ光が出力される方向から見たとき、電極線(
11−2)から放電空間(4)に流れる電流は、誘電体
の内壁全周に渡って均一となるため、形成される放電は
、より均一となり、レーザ発掘の効率を向上させる。こ
の理由から、電極線(11−2)を放電管の円周方向に
1回転させればその効果を生むが、これ以上の回転数で
も同等の効果があり、その巻数は任意である。
Figure 3 shows the structure of the discharge tube that further improves the uniformity of the discharge area. FIG. 3(a) is a configuration diagram of a gas laser excavator according to another embodiment of the present invention, and FIG. 3(b) is a configuration diagram of a gas laser excavator according to another embodiment of the present invention.
It is a sectional view taken along the C-σ line in Figure (a). In Figure 3, the electrode wire (11-2) is spirally connected to one cylindrical dielectric body (2).
The electrode wire (
Since the current flowing from 11-2) to the discharge space (4) becomes uniform over the entire circumference of the inner wall of the dielectric, the formed discharge becomes more uniform, improving the efficiency of laser excavation. For this reason, the effect is produced by rotating the electrode wire (11-2) once in the circumferential direction of the discharge tube, but the same effect can be obtained even if the electrode wire (11-2) is rotated at a higher rotation speed than this, and the number of turns is arbitrary.

以上の説明は、電極線(11−2)が金属の場合であっ
たが、金属にガラスやセラミック等の無機物をコーティ
ングしたものでも同様の効果がある。
Although the above explanation is for the case where the electrode wire (11-2) is made of metal, the same effect can be obtained even if the electrode wire (11-2) is coated with an inorganic material such as glass or ceramic.

また、上記実施例では、  CO2レーザ発撮発振器い
てのべたが、放電をレーザ励起として使うものであれば
何でもよく、レーザ光の発振も、連続発振でも、パルス
的に発振する例えばTEA(横方向励起大気圧: Tr
ansversely Excited Atmosp
heric )レーザでも、この発明の構成のものを使
うことにより、同様の効果を奏する。
In addition, in the above embodiment, the CO2 laser oscillator is used, but any device that uses discharge as laser excitation may be used. Laser light oscillation may be continuous oscillation, or pulsed oscillation such as TEA (lateral direction Excitation atmospheric pressure: Tr
anversely Excited Atmosp
A similar effect can be obtained by using a laser having the structure of the present invention.

以上のように、この発明によれば、電極の一方を1円筒
状誘電体の外壁に設け、他方の電極を円筒状誘電体の内
壁に、電極線を沿わせて構成したので、構造が簡単とな
り、電流の損失をほどんど無くする効果がある。
As described above, according to the present invention, one of the electrodes is provided on the outer wall of the cylindrical dielectric, and the other electrode is configured by having the electrode wire run along the inner wall of the cylindrical dielectric, resulting in a simple structure. This has the effect of almost eliminating current loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来の直流グロー放電式ガス【・−ザ発
撮器の構成図、第1図0))は従来の無声放電式ガスレ
ーザ発掘器の構成図、第1図(c)は第1図(b)のA
 −A’線における断面図、第2図(、)は、この発明
の一実施例によるガスレーザ発掘器の構成図、第2図(
b)は第2図(a)のB −B’線における断面図、第
3図(a)はこの発明の他の実施例によるガスレーザ発
振器の構成図、第3図(b)は第3図(a)のc −c
’線における断面図である。図において、(2)は円筒
状誘電体、(4)は放電空間、 (11−1)は一方の
電極。 (11−2)は電極線よりなる他方の電極である。 なお9図中、同一符号は同−又は相当部分を示す。 代理人大岩増雄 第11X1 (α) 第2図 第3図 1、事件の表示   特願昭58−091851号21
発明の名称   ガスレーザ発振器3、補正をする者 代表者片山仁へ部 4、代理人 & 補正の対象 明細書の発明の詳細な説明の欄。 6 補正の内容 明細書第8頁第1行の「水質保障」を「水質保証」に訂
正する。 以上
Figure 1 (a) is a diagram of a conventional DC glow discharge type gas laser excavator (Fig. 1 (0)) is a diagram of a conventional silent discharge type gas laser excavator; Figure 1 (c) is a diagram of a conventional silent discharge type gas laser excavator. is A in Figure 1(b)
- A' line sectional view, FIG.
b) is a sectional view taken along the line B-B' in FIG. 2(a), FIG. 3(a) is a block diagram of a gas laser oscillator according to another embodiment of the present invention, and FIG. 3(b) is a sectional view taken along line B-B' in FIG. (a) c - c
FIG. In the figure, (2) is a cylindrical dielectric, (4) is a discharge space, and (11-1) is one electrode. (11-2) is the other electrode made of an electrode wire. In addition, in FIG. 9, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa No. 11
Title of the invention: Gas laser oscillator 3, Representative Hitoshi Katayama of the person making the amendment Section 4, Agent & Detailed description of the invention in the specification to be amended. 6. "Water quality guarantee" in the first line of page 8 of the detailed statement of amendments is corrected to "water quality guarantee."that's all

Claims (4)

【特許請求の範囲】[Claims] (1)放電空間を内包する円筒状の誘電体に密着する一
対の電極に交流電圧を印加して放電を起こし、レーザ光
を発振させるものにおいて、上記電極の一方は、上記円
筒状誘電体の外壁に設け、上記電極の他方は上記円筒状
誘電体の内壁に電極線を沿わせて構成したことを特徴と
するガスレーザ発振器。
(1) In a device that applies an alternating current voltage to a pair of electrodes that are in close contact with a cylindrical dielectric body containing a discharge space to cause a discharge and oscillate laser light, one of the electrodes is attached to a cylindrical dielectric body that includes a discharge space. A gas laser oscillator characterized in that the other electrode is provided on an outer wall, and the other electrode is configured with an electrode wire running along the inner wall of the cylindrical dielectric.
(2)電極の一方は円筒状誘電体の外壁に内側を密着さ
せた円筒状の電極で構成したことを特徴とする特許請求
の範囲第1項記載のガスレーザ発振器。
(2) The gas laser oscillator according to claim 1, wherein one of the electrodes is constituted by a cylindrical electrode whose inner side is in close contact with the outer wall of a cylindrical dielectric.
(3)電極線は1円筒状誘電体の内壁に螺線状に沿わせ
たことを特徴とする特許請求の範囲第1項又は第2項記
載のガスレーザ発振器。
(3) The gas laser oscillator according to claim 1 or 2, wherein the electrode wire is spirally arranged along the inner wall of the cylindrical dielectric.
(4)電極線は誘電体で被覆したことを特徴とする特許
請求の範囲第1項ないし第3項のいずれかに記載のガス
レーザ発振器。
(4) The gas laser oscillator according to any one of claims 1 to 3, wherein the electrode wire is coated with a dielectric material.
JP9185183A 1983-05-25 1983-05-25 Gas laser oscillator Pending JPS59217382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9185183A JPS59217382A (en) 1983-05-25 1983-05-25 Gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9185183A JPS59217382A (en) 1983-05-25 1983-05-25 Gas laser oscillator

Publications (1)

Publication Number Publication Date
JPS59217382A true JPS59217382A (en) 1984-12-07

Family

ID=14038070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9185183A Pending JPS59217382A (en) 1983-05-25 1983-05-25 Gas laser oscillator

Country Status (1)

Country Link
JP (1) JPS59217382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364378A (en) * 1986-09-04 1988-03-22 Fanuc Ltd Laser tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364378A (en) * 1986-09-04 1988-03-22 Fanuc Ltd Laser tube

Similar Documents

Publication Publication Date Title
JPS637038B2 (en)
JPS603170A (en) Silent discharge type gas laser device
JPS59217382A (en) Gas laser oscillator
JPS6310597B2 (en)
JPS639393B2 (en)
JPS6026310B2 (en) gas laser equipment
US4606035A (en) Lateral excitation type gas laser
JP2640345B2 (en) Gas laser oscillation device
JPH0234196B2 (en) GASUREEZASOCHI
JPS6310916B2 (en)
JPS60178681A (en) Gas laser device
JP2003264328A (en) Waveguide gas laser oscillator
JPS6185881A (en) Laser oscillator
JPS6398162A (en) Gas laser
JPH0225267B2 (en)
JPH0243780A (en) High frequency vapor laser oscillator
JPH0225268B2 (en)
JPS6052070A (en) Coaxial type laser oscillator
JPH01228184A (en) Metal vapor laser oscillator
JPH0240978A (en) Gas laser oscillator
JPS63116479A (en) Gas laser system
JPS5851581A (en) Lateral excitation type gas laser
JPS6235278B2 (en)
JP3221347B2 (en) Gas laser oscillation device
JPH0240973A (en) Gas laser oscillator