JPS6398162A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPS6398162A
JPS6398162A JP24315586A JP24315586A JPS6398162A JP S6398162 A JPS6398162 A JP S6398162A JP 24315586 A JP24315586 A JP 24315586A JP 24315586 A JP24315586 A JP 24315586A JP S6398162 A JPS6398162 A JP S6398162A
Authority
JP
Japan
Prior art keywords
discharge
pipe
dielectric material
gas laser
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24315586A
Other languages
Japanese (ja)
Inventor
Satoru Hayashi
悟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24315586A priority Critical patent/JPS6398162A/en
Publication of JPS6398162A publication Critical patent/JPS6398162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To suppress a current flowing to a tube wall which does not contribute to a discharge thereby to improve the efficiency of a gas laser by forming a part contacted with an electrode (cooling block) and its periphery of a pipe made of a dielectric of a high dielectric and the residual part made of a low dielectric. CONSTITUTION:A discharge in a discharge space 4 is almost generated in the opposing range of opposed cooling blocks 11a, 11b, i.e., electrodes which are also used as discharge electrodes, by a voltage applied to the blocks 11a, 11b, and a loss current which does not contribute to the discharge flows along tube walls 15, 16 out of the opposing range. Then, a part contacted with the blocks 11a, 11b of a pipe 1 and high dielectrics 13a, 13b in its vicinity are formed of crystallized glass or titanium oxide having high dielectric constant, and low dielectrics 14a, 14b formed of alumina ceramics having linear expansion coefficient approx similar to high dielectric and low dielectric constant are bonded to the high dielectrics 13a, 13b by low melting point glass. Thus, the power loss of the current flowing along the tube wall can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無声放電式の軸流形ガスレーザ装置に係り
、特にこの装置における管状の放電管の効率を向上させ
るための構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a silent discharge type axial flow gas laser device, and particularly to a structure for improving the efficiency of a tubular discharge tube in this device. .

〔従来の技術〕[Conventional technology]

第3図(a)は例えば特願昭60−179115号明細
書および図面に記載された軸流形ガスレーザ装置の構成
を示す正面断面図、(b)はそのA−A断面図である。
FIG. 3(a) is a front cross-sectional view showing the configuration of an axial flow type gas laser device described in, for example, Japanese Patent Application No. 179115/1982 and the drawings, and FIG. 3(b) is a cross-sectional view taken along line A-A thereof.

図において、(1〉は結晶化ガラスや酸化チタン等の誘
電体よりなるパイプ、(3)は交流高電圧を発生させる
電源、(4)は放電空間、(5)は部分反射鏡、(6)
は全反射鏡、(7)は部分反射鏡(5)より出力するレ
ーザ光、(ILa) 。
In the figure, (1> is a pipe made of dielectric material such as crystallized glass or titanium oxide, (3) is a power source that generates AC high voltage, (4) is a discharge space, (5) is a partial reflecting mirror, and (6) is a power source that generates AC high voltage. )
is a total reflection mirror, and (7) is a laser beam output from a partial reflection mirror (5), (ILa).

(Ilb)はアルミニウム等の金属で形成され、パイプ
(1)に密着して対向配置された一対の冷却ブロックで
あり、それぞれが電源(3)およびアースに接続されて
給電電極の機能をも兼ね、また両端部にはそれぞれに冷
却水入口(12a)および冷却水出口が設けられている
(Ilb) is a pair of cooling blocks made of metal such as aluminum and placed facing each other in close contact with the pipe (1), each of which is connected to the power source (3) and ground, and also functions as a power supply electrode. Further, a cooling water inlet (12a) and a cooling water outlet are provided at both ends, respectively.

上記のような構成の従来の軸流体ガスレーザ装置におい
て、給電電極を兼ねた一対の冷却ブロック(lla) 
、 (llb)に電源(3)からの電圧が印加されると
、放電空間(4)に無声放電が発生し、この放電はパイ
プ(1)を通じて起るので誘電体のキヤハシティーブ・
バラスト(CAPACITIVE BALAST)効果
によって、極めて安定したグロー状の放電となる。CO
レーザ装置の場合、Co2;  N2:He−8:60
 : 32の割合で混合されたガスが放電空間(4)数
十Torrの圧力で充填されており、無声放電によって
CO2分子が励起されて、部分反射鏡(5)と全反射鏡
(6)とで構成される光共振器内でレーザ発振が起り、
矢印で示すように一部のレーザ光(7)が部分反射鏡(
5)より出力する。
In the conventional axial fluid gas laser device configured as described above, a pair of cooling blocks (lla) also serve as power supply electrodes.
, (llb) from the power supply (3), a silent discharge occurs in the discharge space (4), and since this discharge occurs through the pipe (1), the dielectric's capacitive
The CAPACITIVE BALAST effect results in an extremely stable glow-like discharge. C.O.
For laser equipment, Co2; N2:He-8:60
: The discharge space (4) is filled with gas mixed at a ratio of 32 to 32 at a pressure of several tens of Torr, and the CO2 molecules are excited by the silent discharge, causing a partial reflection mirror (5) and a total reflection mirror (6). Laser oscillation occurs within an optical resonator consisting of
As shown by the arrow, a part of the laser beam (7) passes through the partially reflecting mirror (
5) Output.

また、レーザの発振効率(レーザ出力/放電電力)は放
電空間(4)のガス温度が高くなると低下するので、パ
イプ(1)に対向配置した一対の冷却ブロック(Ha)
 、 (llb)内に冷却水を循環させ、パイプ(1)
を冷却させながらガス温度の上昇を抑制するようにして
いる。
In addition, since the laser oscillation efficiency (laser output/discharge power) decreases as the gas temperature in the discharge space (4) increases, a pair of cooling blocks (Ha) placed opposite to each other on the pipe (1)
, (llb) to circulate cooling water in the pipe (1)
This is to suppress the rise in gas temperature while cooling the gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようなガスレーザ装置では、パイプ(1)に印加
された電圧によって放電が生じる場合、投入された電力
の一部が管壁に沿って流れるために、放電エネルギに変
換されずに損失電力となるので、この損失電力の分だけ
効率が低下してしまうという問題があった。
In the gas laser device described above, when a discharge occurs due to the voltage applied to the pipe (1), a part of the input power flows along the pipe wall, so it is not converted into discharge energy and is lost power. Therefore, there is a problem in that the efficiency decreases by the amount of power loss.

この発明は、かかる問題点を解消するためになされたも
ので、パイプ(1)の管壁を流れる損失電力を抑制して
、投入電力に対する効率の高い放電を行うことができる
ガスレーザ装置を得ることを目的とする。
The present invention was made to solve these problems, and it is an object of the present invention to obtain a gas laser device that can suppress the power loss flowing through the wall of the pipe (1) and perform highly efficient discharge with respect to the input power. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るガスレーザ装置に設けられた誘電体のパ
イプを、このパイプに対向配置した電極部(冷却ブロッ
ク)に密着した部分およびその近傍を高誘電率の誘電体
で形成し、これらの部分以外を上記誘電体と線膨脹係数
が近似した低誘電率の誘電体で形成したものである。
In the dielectric pipe provided in the gas laser device according to the present invention, the portion in close contact with the electrode section (cooling block) disposed opposite to the pipe and the vicinity thereof are formed of a dielectric material with a high dielectric constant, and the portions other than these portions are formed of a dielectric material with a high dielectric constant. is made of a dielectric material with a low dielectric constant having a coefficient of linear expansion similar to that of the dielectric material described above.

〔作用〕[Effect]

この発明における誘電体パイプは、対向した電−極部よ
り離れているために放電に寄与しない部分を低誘電率の
誘電体で形成したので、管壁に沿って流れる損失電力の
発生を抑制する。
In the dielectric pipe according to the present invention, the portion that does not contribute to discharge because it is away from the opposing electrode portion is formed of a dielectric material with a low dielectric constant, thereby suppressing the generation of power loss flowing along the pipe wall. .

〔発明の実施例〕[Embodiments of the invention]

第1図(a)はこの発明の一実施例による軸流形ガスレ
ーザ装置の構成を示す正面断面図、(b)はそのB−B
断面図であり、(1) 〜(12a) 、 (12b)
は従来例を示した第3図における同符号と同一または相
当部分である。
FIG. 1(a) is a front cross-sectional view showing the configuration of an axial gas laser device according to an embodiment of the present invention, and FIG.
It is a cross-sectional view, (1) to (12a), (12b).
are the same or equivalent parts as the same reference numerals in FIG. 3 showing the conventional example.

(13a) 、 (L3b)はパイプ(1)が冷却ブO
−/り(lla) 、 (llb)にそれぞれ接する部
分およびその近傍の高誘電体で、誘電率の高い結晶化ガ
ラスや酸化チタン等によって形成されている。
(13a) and (L3b), the pipe (1) is connected to the cooling valve O.
-/RI(lla) and (llb), and the portions in contact with and in the vicinity thereof are high dielectric, and are made of high dielectric constant crystallized glass, titanium oxide, or the like.

(14a) 、 (14b)は高誘電体(13a) 、
 (13b)と線膨脹係数が近似し、誘電率が低いアル
ミナ系セラミックスによって形成された低誘電体で、高
誘電体(13a) 、 (L3b)と低融点ガラスによ
り封着させて接合しである。
(14a), (14b) are high dielectric materials (13a),
It is a low dielectric material made of alumina ceramics with a linear expansion coefficient similar to that of (13b) and has a low dielectric constant, and is bonded by sealing with high dielectric materials (13a) and (L3b) using low melting point glass. .

上記のような構成のこの発明によるガスレーザ発振器に
おいて、放電電極を兼ねる一対の冷却70ツク(lla
) 、 (Ilb)に電源(8)からの電圧が印加され
、放電空間(4)に無声放電が発生してガス分子が励起
され、部分反射鏡(5)よりレーザ光(7)を出力する
に至る動作は従来例とほぼ同様であるが、第2図のパイ
プ(1)と冷却ブロック(lla) 、 (llb)の
断面図で示すように、放電電極を兼ねる冷却ブロック(
lla) 、 (llb)に印加される電圧によって、
放電空間(4)における放電は破線で示すようにほとん
どが対向する冷却ブロック(lla) 、 (11b)
 、すなわち電極部の対向範囲で生じ、この対向範囲外
では管壁(15)、  (1B)に沿って放電に寄与し
ない損失電流が流れる。
In the gas laser oscillator according to the present invention configured as described above, a pair of cooling 70 tubes (lla
), (Ilb) is applied with voltage from the power source (8), a silent discharge is generated in the discharge space (4), gas molecules are excited, and the partially reflecting mirror (5) outputs laser light (7). The operation leading to this is almost the same as the conventional example, but as shown in the cross-sectional view of the pipe (1) and the cooling blocks (lla) and (llb) in Figure 2, the cooling block (which also serves as the discharge electrode)
By the voltage applied to lla) and (llb),
Most of the discharge in the discharge space (4) is caused by the opposing cooling blocks (lla) and (11b), as shown by broken lines.
That is, a loss current that does not contribute to discharge flows along the tube walls (15) and (1B) outside this opposing range.

しかし、この損失電流の流れる部分を低い誘電率の低誘
電体(14a) 、 (14b)で構成しであるために
電流が流れにくいので、この電流によって生じるパイプ
(1)の温度上昇を抑制するとともに、電極部に投入し
た電力に対する放電の効率が優れたガスレーザ発振器が
得られる。
However, since the portion through which this loss current flows is composed of low dielectric materials (14a) and (14b) with a low dielectric constant, it is difficult for the current to flow, so the temperature rise in the pipe (1) caused by this current is suppressed. At the same time, a gas laser oscillator with excellent discharge efficiency with respect to the electric power input to the electrode portion can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、誘電体からな。 As explained above, this invention is based on a dielectric material.

るパイプを電極部(冷却ブロック)に接する部分および
その周辺部は高誘電体で、残余の部分を低誘電体によっ
て形成するように構成したので、放電に寄与しない管壁
を流れる電流を抑制するために、効率の優れたレーザ発
振装置が得られる効果がある。
The part of the pipe in contact with the electrode part (cooling block) and its surrounding area is made of a high dielectric material, and the remaining part is made of a low dielectric material, thereby suppressing the current flowing through the tube wall that does not contribute to discharge. Therefore, there is an effect that a laser oscillation device with excellent efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例によるガスレ−ザ装
置の構成を示す正面断面図、(b)はそのB−B断面図
、第2図はこの発明の詳細な説明するための上記B−”
B断面の詳細図、第3図(a)は従来のガスレーザ装置
の一例を示す正面断面図、(b)はそのA−A断面図で
ある。 図において、(1)は誘電体パイプ(放電管)、(3)
は電源、(7)はレーザ光、(lla) 、 (llb
)は冷却ブロック(電極部) 、(13a) 、 (1
3b)は高誘電体、(14a) 、 (14b)は低誘
電体。なお、図中同一符号は同一または相当部分を示す
FIG. 1(a) is a front sectional view showing the configuration of a gas laser device according to an embodiment of the present invention, FIG. 1(b) is a BB sectional view thereof, and FIG. Above B-”
3(a) is a front sectional view showing an example of a conventional gas laser device, and FIG. 3(b) is a sectional view taken along line A-A thereof. In the figure, (1) is a dielectric pipe (discharge tube), (3)
is the power supply, (7) is the laser beam, (lla), (llb
) is the cooling block (electrode part), (13a), (1
3b) is a high dielectric material, (14a) and (14b) are a low dielectric material. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 誘電体で形成されたパイプの外周に密着して対向配置し
た一対の電極部に交流電圧を印加して放電を生じさせ、
レーザ光を発振させるガスレーザ装置において、上記パ
イプの上記電極部に接する部分およびその近傍を高誘電
体で形成し、残余の部分を上記高誘電体と線膨脹係数が
近似した低誘電体で形成したことを特徴とするガスレー
ザ装置。
An alternating current voltage is applied to a pair of electrodes placed opposite each other in close contact with the outer periphery of a pipe made of dielectric material to generate an electric discharge.
In a gas laser device that oscillates laser light, a portion of the pipe in contact with the electrode portion and its vicinity are formed of a high dielectric material, and the remaining portion is formed of a low dielectric material whose linear expansion coefficient is similar to the high dielectric material. A gas laser device characterized by:
JP24315586A 1986-10-15 1986-10-15 Gas laser Pending JPS6398162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24315586A JPS6398162A (en) 1986-10-15 1986-10-15 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24315586A JPS6398162A (en) 1986-10-15 1986-10-15 Gas laser

Publications (1)

Publication Number Publication Date
JPS6398162A true JPS6398162A (en) 1988-04-28

Family

ID=17099621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24315586A Pending JPS6398162A (en) 1986-10-15 1986-10-15 Gas laser

Country Status (1)

Country Link
JP (1) JPS6398162A (en)

Similar Documents

Publication Publication Date Title
JPS603170A (en) Silent discharge type gas laser device
JPS6310597B2 (en)
JPS6398162A (en) Gas laser
JPS639393B2 (en)
JPS63110780A (en) Gas laser oscillator
JPS60178681A (en) Gas laser device
JPH06326379A (en) Gas laser oscillator
JP2640345B2 (en) Gas laser oscillation device
JPS62183580A (en) Silent discharge gas laser device
JPS59217382A (en) Gas laser oscillator
JPH02281671A (en) Gas laser oscillation device
JPH01283980A (en) Laser oscillator
JPH04211184A (en) Discharge excitation excimer laser device
JPS6052070A (en) Coaxial type laser oscillator
JPH047110B2 (en)
JPH02281675A (en) Gas laser oscillation device
KR930020781A (en) Gas laser device
JPH0593064U (en) Laser device dielectric plate
JPS61159780A (en) Silent discharge type gas laser device
JPS58182889A (en) Laser device
JPS59213187A (en) Silent discharge type gas laser device
JPS6235278B2 (en)
JPS62242376A (en) Gas laser device
JPS6263482A (en) Gas laser device
JPS5932185A (en) Silent discharge type gas laser device