JPS60178681A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS60178681A
JPS60178681A JP3365684A JP3365684A JPS60178681A JP S60178681 A JPS60178681 A JP S60178681A JP 3365684 A JP3365684 A JP 3365684A JP 3365684 A JP3365684 A JP 3365684A JP S60178681 A JPS60178681 A JP S60178681A
Authority
JP
Japan
Prior art keywords
discharge
gas
laser
discharge tube
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3365684A
Other languages
Japanese (ja)
Inventor
Masaki Kuzumoto
昌樹 葛本
Shigenori Yagi
重典 八木
Shuji Ogawa
小川 周治
Kimiharu Yasui
公治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3365684A priority Critical patent/JPS60178681A/en
Priority to US06/699,126 priority patent/US4785458A/en
Priority to DE8585101372T priority patent/DE3582179D1/en
Priority to EP85101372A priority patent/EP0152084B1/en
Priority to CA000474118A priority patent/CA1267714A/en
Publication of JPS60178681A publication Critical patent/JPS60178681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain the titled device which can obtain stable and homogeneous discharge by the removal of an electrode from inside a high speed flow of gas in a discharge tube by applying a discharge generating by impressing an AC voltage on a plurality of electrodes provided in opposition to each other in the outer periphery of the discharge tube. CONSTITUTION:The discharge tube 110 of a laser oscillator is filled with a laser medium gas with the mixture of CO2, N2, He, etc. under a pressure of about 100Torr. When a high frequency voltage with a frequency of e.g. about 100kHz and a zero peak of about 5kV is impressed on each metallic electrode 111 and 121 from a high frequency power source 150, AC discharge, i.e. noiseless discharge 130 generates via dielectric, and CO2 molecules are excited. The CO2 molecules excited by this noiseless discharge cause laser oscillation in a photo resonator consisting of a total reflection mirror 4 and a partial reflection mirror 5, and the laser beam is partly taken out of the reflection mirror 5. Then, the laser medium gas is cooled by a heat exchanger 3 and then circulates through the discharge tube 110 at a high speed by a route blower 2. With this CO2 laser device, each metallic electrode 111 and 121 does not exist in the high speed flow of gas, and there is no loss of gas pressure due to these electrodes; accordingly, the discharge becomes stable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ガスレーザ装置におけるレーザの励起方式
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a laser excitation method in a gas laser device.

〔従来技術〕[Prior art]

従来この種のガスレーザ装置の典型的なものとして、第
1図に示すものがあった。第1図は従来のDC(直流)
グロー放電励起高速軸流型COIレーザ装置を示す概略
構成図である。図において、lは放を管、iiuアノー
ド(陽極)、12Lカソード(陰極)、13は放電管1
内に発生されるグロー放電、14はノズル、100はD
C(直流)電源、2はルーツブロア(送風機)、3は熱
交換器、4は全反射鏡、5は部分反射鏡、6は真空ポン
プ、7はガスリサイクル装置、8はレーザガスボンベ、
9は送気管、10はガス流の方向である。
Conventionally, a typical gas laser device of this type is shown in FIG. Figure 1 shows conventional DC (direct current)
1 is a schematic configuration diagram showing a glow discharge excited high speed axial flow type COI laser device. In the figure, l is the discharge tube, iiu anode (anode), 12L cathode (cathode), 13 is discharge tube 1
14 is the nozzle, 100 is D
C (DC) power supply, 2 is a roots blower, 3 is a heat exchanger, 4 is a total reflection mirror, 5 is a partial reflection mirror, 6 is a vacuum pump, 7 is a gas recycling device, 8 is a laser gas cylinder,
9 is an air pipe, and 10 is the direction of gas flow.

次に、上記第1図に示す従来のDCグロー放電励起高速
軸流型CO,レーザ装置の動作について説明する。レー
ザ発振器の放電管1内には、CO,。
Next, the operation of the conventional DC glow discharge excited high speed axial flow type CO laser apparatus shown in FIG. 1 will be described. Inside the discharge tube 1 of the laser oscillator, there is CO.

N2 、 He等の混合ガスから成るレーザ媒質ガスが
約数10 T orrのガス圧力で満たされている。ア
ノード11とカソード12との間に約数10にVの直流
電圧を印加し、放電管1内にてグロー放電13を発生さ
せることによりCO7分子を励起する。ここで、ノズル
14は、ガス圧力損失の低減及びグロー放電13の安定
化の役を果たしている。上記グロー放電13により励起
されたC Ot分子は、全反射鏡4と部分反射鏡5とで
構成される光共振器内でレーザ発振を起こし、レーザ光
の一部が部分反射鏡5よシ外部に取り出される。この種
のガスレーザ装置では、通常ルーツブロア2にょシレー
ザ媒質ガスを、約50カ以上、 200%程度の高速で
放電管1内を循環させてガス温度上昇を抑えている。ま
た、熱交換器3によってガス温度を低く保つ様にしてい
る。ガス封じ切り動作では、アノード11.カソード1
2等の金属電極からのイオン放出などKよシ、ガスが劣
化してレーザ出力が減少する。そこで、とのレーザ出力
の低下を防ぐため、真空ポンプ6、ガスリサイクル装置
7.レーザガスボンベ8等によシ、レーザ媒質ガスの一
部を流し捨てて一部を再生し、一部を補給する手段によ
って、ガスの純度をほぼ一定値に維持する様にしている
A laser medium gas consisting of a mixed gas of N2, He, etc. is filled at a gas pressure of about several 10 Torr. A DC voltage of approximately several tens of volts is applied between the anode 11 and the cathode 12 to generate a glow discharge 13 within the discharge tube 1 to excite CO7 molecules. Here, the nozzle 14 serves to reduce gas pressure loss and stabilize the glow discharge 13. The COt molecules excited by the glow discharge 13 cause laser oscillation within the optical resonator composed of the total reflection mirror 4 and the partial reflection mirror 5, and a part of the laser beam is emitted from the partial reflection mirror 5 to the outside. It is taken out. In this type of gas laser device, a roots blower 2 normally circulates the laser medium gas within the discharge tube 1 at a high speed of about 200% by about 50 or more to suppress the rise in gas temperature. Moreover, the gas temperature is kept low by the heat exchanger 3. In the gas sealing operation, the anode 11. cathode 1
The gas deteriorates due to ion emission from the metal electrode of the second grade, etc., and the laser output decreases. Therefore, in order to prevent the laser output from decreasing, vacuum pump 6, gas recycling device 7. The purity of the gas is maintained at a substantially constant value by means of a laser gas cylinder 8 or the like, in which a portion of the laser medium gas is flushed away, a portion is regenerated, and a portion is replenished.

従来のDCグロー放電励起高速軸流型CO,レーザ装置
は以上の様に構成されているので、高速ガス流中にアノ
ード11.カソード12等の金属電極が存在しているた
め、下記の様な欠点があった。
The conventional DC glow discharge-excited high-speed axial flow type CO laser device is constructed as described above, so that the anode 11. Due to the presence of metal electrodes such as the cathode 12, there were the following drawbacks.

■ ガス圧力損失が増大し、ガス流速が減少してガス温
度が上昇する。
■ Gas pressure drop increases, gas flow rate decreases and gas temperature increases.

■ ノズル14及び各アノード11.カソード12等の
金属電極の形状による放電状況の依存性が大キく、その
形状のバラツキがレーザ出力及びレーザビームモードに
与える影響が過大である。(例えば、昭和56年発行「
レーザ研究」第9巻第1号の「高効率高速軸流型CO,
レーザの開発」を参照) ■ 各アノード11.カソード12等の金属電極からの
イオン放出と、これに起因する異常放電表どKよシ、ガ
ス劣化が激しくガスリサイクル装置7が必要となる。
■ Nozzle 14 and each anode 11. The discharge condition is highly dependent on the shape of the metal electrode such as the cathode 12, and variations in the shape have an excessive effect on the laser output and laser beam mode. (For example, published in 1981,
“High-efficiency, high-speed axial-flow CO,” in “Laser Research” Volume 9, No. 1
(Refer to "Laser Development") ■ Each anode 11. Due to ion emission from metal electrodes such as the cathode 12 and abnormal discharge caused by this, gas deterioration is severe and a gas recycling device 7 is required.

また、この他にも下記の様な種々の欠点があった。In addition, there were various other drawbacks as described below.

■ 放電管1の壁面での放電の安定化作用(両極性拡散
による)を必要とし、任意の放電管1の径での動作は不
可能である。
(2) A stabilizing effect (by bipolar diffusion) on the wall of the discharge tube 1 is required, and operation with an arbitrary diameter of the discharge tube 1 is impossible.

■ 高速のガス流の方向10に放電を得るため、1)ア
ノード11とカソード12との間の電極間距離dが長く
なり、約mtoKvの高電圧を必要とし、11)放電空
間を高速のガス流の方向10と同一方向に流れる荷電粒
子の帯電領域は極めて長くなシ、この結果、絶縁距離を
長くする必要がある。
■ In order to obtain a discharge in the direction 10 of the high-speed gas flow, 1) the inter-electrode distance d between the anode 11 and the cathode 12 becomes long, requiring a high voltage of approximately mtoKv, and 11) the discharge space is The charged region of charged particles flowing in the same direction as the flow direction 10 is very long, and as a result the insulation distance must be long.

■ レーザ媒質ガスのガス温度上昇を抑えるには、ガス
圧力pfr増加して質量流量を増すことが有効な手段で
あり、また、ガス封じ切り動作でもガス圧力pを増大す
ることは必須条件であり、一方、ガス圧力pと電極間距
離dの積であるpdの値は、放電の安定性を示す一つの
指標であることから、上記pdO値がある臨界値以上に
なると放電が不安定になるため、上記の■で述べた様に
、電極間距離dが大きくなると、ガス圧力pをある程度
以上に増加することは不可能であり、このため、約50
T orr 程度以下の領域でしか使用そきない。
■ In order to suppress the rise in gas temperature of the laser medium gas, increasing the gas pressure pfr to increase the mass flow rate is an effective means, and increasing the gas pressure p is also an essential condition for the gas shut-off operation. On the other hand, the value of pd, which is the product of the gas pressure p and the interelectrode distance d, is an indicator of the stability of the discharge, so if the pdO value above exceeds a certain critical value, the discharge becomes unstable. Therefore, as mentioned in (■) above, when the distance d between the electrodes becomes large, it is impossible to increase the gas pressure p beyond a certain level.
It can only be used in areas below Torr.

■ 残留電荷の影響でグロー放電13からアーク放電に
移行することがあるため、パルス放電において、そのパ
ルス周期をガス放電部通過時間よりも短かくすることが
できない。
(2) Since glow discharge 13 may shift to arc discharge due to the influence of residual charge, in pulse discharge, the pulse period cannot be made shorter than the gas discharge section passage time.

〔発明の概要〕[Summary of the invention]

この発明は、上記の様な従来のものの欠点全改善する目
的でなされたもので、レーザを励起する放電として、放
電管の外周に複数の対向して設けた電極に交流電圧を印
加して発生させる放電(無声放電)を適用することによ
り、放電管内の高速のガス流中から電極を除去でき、か
つ安定で均質な放電が得られるガスレーザ装置を提供す
るものである。
This invention was made with the aim of alleviating all the drawbacks of the conventional ones as described above.The discharge to excite the laser is generated by applying an alternating current voltage to a plurality of opposing electrodes around the outer periphery of the discharge tube. The present invention provides a gas laser device in which an electrode can be removed from a high-speed gas flow in a discharge tube and a stable and homogeneous discharge can be obtained by applying a discharge (silent discharge).

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図(JL)及び(b)は、この発明の一実施例であ
る無声放電式高速軸流型CO,レーザ装置を示す概略構
成図及びそのA−A線の矢視断面図で、第1図と同一部
分は同一符号を用いて表示してあシ、その詳細な説明は
省略する。上記各図において、110はガラス2セラミ
ツク、酸化チタン等の誘電体より成る放電管、111 
、121は放電管110の外周に複数の対向して設けた
金属電極、150は各金属電極111 、121に接続
された高周波電源、130は放電管110内に発生する
無声放電、140はディフューザノズルである。
Figures 2 (JL) and (b) are a schematic configuration diagram showing a silent discharge type high-speed axial flow type CO and laser device, which is an embodiment of the present invention, and a cross-sectional view taken along the line A-A. The same parts as in FIG. 1 are indicated using the same reference numerals, and detailed explanation thereof will be omitted. In each of the above figures, 110 is a discharge tube made of a dielectric material such as glass 2 ceramic or titanium oxide;
, 121 is a plurality of metal electrodes provided around the outer circumference of the discharge tube 110, 150 is a high frequency power source connected to each metal electrode 111, 121, 130 is a silent discharge generated inside the discharge tube 110, 140 is a diffuser nozzle It is.

次に、上記第2図に示すこの発明の一実施例である無声
数a式高速軸流型CO2レーザ装置の動作について説明
する。レーザ発振器の放電管110内にけ、COl、N
2.■Ie等の混合ガスから成るレーザ媒質ガスが約I
QOTorrのガス圧力で満たされている。高周波電源
150より、例えば周波数が約100KHzで、ゼロビ
ークが約5にV程度の高周波電圧が各金11t’I極1
11 、121に印加されると、放電管110内では、
誘電体を介して交流放電、いわゆる無声放電130が発
生し、CO,分子が励起される。上記無声放電130に
よシ励起されたCOt分子は、全反射鏡4と部分反射鏡
5とで構成される光共振器内でレーザ発振を起こし、レ
ーザ光の一部が部分反射鏡5より外部に取り出される。
Next, the operation of the silent a-type high-speed axial flow type CO2 laser device, which is an embodiment of the present invention shown in FIG. 2, will be described. Inside the discharge tube 110 of the laser oscillator, COI, N
2. ■The laser medium gas consisting of a mixed gas such as Ie is approximately I
It is filled with a gas pressure of QOTorr. From the high frequency power supply 150, a high frequency voltage with a frequency of about 100 KHz and a zero peak of about 5 V is applied to each gold 11t'I pole 1.
11 and 121, inside the discharge tube 110,
An alternating current discharge, a so-called silent discharge 130, is generated through the dielectric, and CO molecules are excited. The COt molecules excited by the silent discharge 130 cause laser oscillation within the optical resonator composed of the total reflection mirror 4 and the partial reflection mirror 5, and a part of the laser light is transmitted from the partial reflection mirror 5 to the outside. It is taken out.

レーザ媒質ガスは、熱交換器3で冷却されると共に、ル
ーツブロア2により高速で放電管110内を循環される
。ここで、放電管110内の拡大流路St−成すディフ
ューザノズル140でのレーザ媒質ガスのガス圧力損失
を低減するため、ディフューザノズル140は拡り角を
約20°程度に構成されている。
The laser medium gas is cooled by the heat exchanger 3 and circulated within the discharge tube 110 at high speed by the Roots blower 2. Here, in order to reduce the gas pressure loss of the laser medium gas at the diffuser nozzle 140 forming the expanded flow path St in the discharge tube 110, the diffuser nozzle 140 is configured to have a divergence angle of about 20 degrees.

上述した様に、この発明の一実施例である無声数′亀式
高速軸流型CO,レーザ装置によれば、高速のガス流中
には各金属電極111 、121は存在することなく、
下記の通りの各種の特長を有する。
As described above, according to the silent number turtle type high-speed axial flow type CO laser device which is an embodiment of the present invention, the metal electrodes 111 and 121 do not exist in the high-speed gas flow.
It has various features as shown below.

■ 各金属電極111 、121 Kよるガス圧力損失
はなく、ガス流速の増大が容易である。
(2) There is no gas pressure loss due to the metal electrodes 111 and 121 K, and the gas flow rate can be easily increased.

■ ディフェーサノズル14o、各金属電極111゜1
21の形状による放電の変化はなく安定である。
■ Defacer nozzle 14o, each metal electrode 111°1
There is no change in discharge due to the shape of 21, and the discharge is stable.

■ 各金属電極111 、121からのイオン放出によ
るガス劣化は#1とんど力く、第1図に示す様な真空ポ
ンプ61ガスリサイクル装置7等のガス再生装置は必要
としない。
(2) Gas deterioration due to ion release from each of the metal electrodes 111 and 121 is almost the same as #1, and a gas regeneration device such as a vacuum pump 61 or gas recycling device 7 as shown in FIG. 1 is not required.

■ 放電の安定性は、上記の■で述べた高速のガス流速
の増大による効果に加えて、さらに、放電管110を構
成する誘電体のCapacitive ballast
 effectKよってよシ一層安定化され、任意の放
電管110の径での動作が可能となる。すなわち、放電
管】10内の放電空間の一部に局所的に放電集中が生じ
ても、直ちに誘電体表面の蓄積電荷の逆電界圧よって放
電集中は自律的に阻止され、その結果、放電空間は均質
となり、グロー放電13からアーク放電への転移はほと
んど生じなく々る。
■ The stability of the discharge is not only due to the effect of increasing the high-speed gas flow rate described in (■) above, but also due to the capacitive ballast of the dielectric material constituting the discharge tube 110.
effectK further stabilizes the discharge tube 110 and allows operation with any diameter of the discharge tube 110. In other words, even if discharge concentration occurs locally in a part of the discharge space within the discharge tube 10, the discharge concentration is immediately automatically prevented by the reverse electric field pressure of the accumulated charge on the dielectric surface, and as a result, the discharge space becomes homogeneous, and the transition from glow discharge 13 to arc discharge hardly occurs.

■ ガス流に直交した方向の放電であるため、1)各金
属電極111 、121の電極間距離dが短縮され、印
加電圧は約5にV程度の比較的に低い交流電圧で十分で
あ、D、II)また、交流放電で、その放電方向とガス
流の方向は直交するため、ガス下流側の帯電距離は小さ
くなシ、上記のl) 、 ii)の結果として、絶縁距
離を短かく設計できる。
■ Since the discharge is in the direction perpendicular to the gas flow, 1) the distance d between the metal electrodes 111 and 121 is shortened, and a relatively low AC voltage of about 5 V is sufficient for the applied voltage; D, II) Also, in AC discharge, the discharge direction and the gas flow direction are perpendicular to each other, so the charging distance on the downstream side of the gas is small. As a result of the above l) and ii), the insulation distance can be shortened. Can be designed.

■ 上記の■で述べたごとく、電極間距離dが小さいた
め、ガス圧力pとの積であるpdO値の観点からガス圧
力pt増加することが可能であり、また、質量流量を増
すことができ、かつガス封じ切り動作も容易に行うこと
ができる。
■ As mentioned in (■) above, since the distance d between the electrodes is small, it is possible to increase the gas pressure pt from the viewpoint of the pdO value, which is the product of the gas pressure p, and it is also possible to increase the mass flow rate. , and the gas sealing operation can be easily performed.

■ 上記の■で述べたCapacitive ball
ast effecl;により、残留電荷の影響を受け
ず、パルス放電におけるパルス周波数を、レーザ媒質ガ
スの物性的限界、すなわちレーザ上位準位の緩和時間ま
で速くすることができる。
■ Capacitive ball mentioned in ■ above
Ast effecl; allows the pulse frequency in pulse discharge to be increased to the physical limit of the laser medium gas, that is, the relaxation time of the upper level of the laser, without being affected by residual charges.

なお、上記実施例では、Go2. N、 、 He等の
混合ガスから成るレーザ媒質ガスケ使用したCO,レー
ザ装置の場合について説明したが、これ以外に、他のガ
スレーザ装置の場合であっても良く、上記実施例と同様
の効果を奏する。
Note that in the above embodiment, Go2. Although the case of a CO laser device using a laser medium gasket consisting of a mixed gas such as N, , He, etc. has been described, other gas laser devices may be used, and the same effects as in the above embodiments can be obtained. play.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に、ガスレーザ装置のレーf
を励起する放電として、放電管の外周に複数の対向して
設けた電極に交流電圧を印加して発生させる放電(無声
放電)を適用して、放電管内の高速のガス流中から電極
を排除し、電極間距離を短かくなる様に構成したので、
1)ガス流速を容易に増大でき、かつガス温度上昇を抑
えられる11)ガス封じ切シ動作が可能になり、ガスリ
サイクル装置などのガス再生装置が不要になる111)
絶縁距離が短縮でき、装置全体をコンパクトに作れる+
V)放1Cの安定性が良く、極めて信頼性の高いガスレ
ーザ装置が得られるなどの優れfc効果を奏するもので
ある。
As explained above, this invention provides a laser f of a gas laser device.
The electrodes are removed from the high-speed gas flow inside the discharge tube by applying a discharge (silent discharge) that is generated by applying an alternating current voltage to multiple electrodes placed facing each other around the outer periphery of the discharge tube. However, since it was configured to shorten the distance between the electrodes,
1) Gas flow rate can be easily increased and gas temperature rise can be suppressed 11) Gas sealing operation becomes possible, eliminating the need for gas regeneration equipment such as gas recycling equipment 111)
The insulation distance can be shortened and the entire device can be made more compact.
V) Excellent fc effects such as good stability of emission 1C and an extremely reliable gas laser device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のDCグロー放電励起高速軸流型C02レ
ーザ装置it示す概略構成図、第2図Ta)及び(bl
は、この発明の一実施例である無声放電式高速軸流型C
O,レーザ装置を示す概略構成図及びそのA−A線の矢
視断面図である。 図において、1 、11.0 放電管、2・・・ルーツ
プロア(送風機)、3・・・熱交換器、4−・全反射鏡
、5・・部分反射m、6−*空ポンプ、7・・・ガスリ
サ・rクル装置L8 ・レーザガスボンベ、9・・送気
管、10− ガス流の方向、11・ アノード(陽極)
、12・ カソード(陰極)、13・グロー放電、14
ノズル、100 、、、D C(直流)雷、源、111
 、121金属電極、130・・無声放電、】40 デ
ィ7ユーサノスル、150 高周波電源である。 なお、各図中、同一符号は同一、又は相当部分を示す。 代理人 大岩増雄 第1図
Fig. 1 is a schematic configuration diagram showing a conventional DC glow discharge excited high speed axial flow type C02 laser device.
is a silent discharge type high speed axial flow type C which is an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing a laser device and a cross-sectional view taken along line A-A thereof. In the figure, 1, 11.0 discharge tube, 2... roots blower (blower), 3... heat exchanger, 4-- total reflection mirror, 5-- partial reflection m, 6- * empty pump, 7-・・Gas recycle device L8・Laser gas cylinder, 9・Air pipe, 10- Direction of gas flow, 11・Anode (anode)
, 12. Cathode, 13. Glow discharge, 14
Nozzle, 100, DC (direct current) lightning, source, 111
, 121 metal electrode, 130... silent discharge, ] 40 di7 usa nosuru, 150 high frequency power source. In each figure, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1

Claims (1)

【特許請求の範囲】[Claims] 誘電体よ構成る放電管内に、この放電管の軸方向に高速
でレーザ媒質ガスを流し、前記放電管の外周に複数の対
向して設けた電極に交流電圧を印加して放電(無声放電
)を発生させ、この放電によシレーザ光を発振させる様
にしたことを特徴とするガスレーザ装置。
A laser medium gas is flowed at high speed in the axial direction of the discharge tube into a discharge tube made of a dielectric material, and an alternating current voltage is applied to a plurality of opposing electrodes around the outer periphery of the discharge tube to generate a discharge (silent discharge). What is claimed is: 1. A gas laser device characterized in that the gas laser device is configured to generate a laser beam and oscillate a laser beam by the discharge.
JP3365684A 1984-02-13 1984-02-24 Gas laser device Pending JPS60178681A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3365684A JPS60178681A (en) 1984-02-24 1984-02-24 Gas laser device
US06/699,126 US4785458A (en) 1984-02-13 1985-02-07 Gas laser device
DE8585101372T DE3582179D1 (en) 1984-02-13 1985-02-08 GAS LASER DEVICE.
EP85101372A EP0152084B1 (en) 1984-02-13 1985-02-08 Gas laser device
CA000474118A CA1267714A (en) 1984-02-13 1985-02-12 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3365684A JPS60178681A (en) 1984-02-24 1984-02-24 Gas laser device

Publications (1)

Publication Number Publication Date
JPS60178681A true JPS60178681A (en) 1985-09-12

Family

ID=12392486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3365684A Pending JPS60178681A (en) 1984-02-13 1984-02-24 Gas laser device

Country Status (1)

Country Link
JP (1) JPS60178681A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200780A (en) * 1986-02-28 1987-09-04 Mitsubishi Electric Corp High-speed axial-flow-type gas laser device
JPS62252184A (en) * 1986-04-18 1987-11-02 ロフイン−ジナ−ル・レ−ザ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Gas laser device
JPS63306300A (en) * 1987-06-04 1988-12-14 フォ−チュナ・ヴェルケ・マシネンファブリ−ク・ゲ−エムベ−ハ− Blower for circulating large quantity of gas
WO1990007062A1 (en) * 1988-12-21 1990-06-28 Fanuc Ltd Turbo-blower for laser and laser oscillator using the same
JPH04325316A (en) * 1991-04-25 1992-11-13 Mitsubishi Electric Corp Fuel tank

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673484A (en) * 1979-11-21 1981-06-18 Mitsubishi Electric Corp Voiceless discharge gas laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673484A (en) * 1979-11-21 1981-06-18 Mitsubishi Electric Corp Voiceless discharge gas laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200780A (en) * 1986-02-28 1987-09-04 Mitsubishi Electric Corp High-speed axial-flow-type gas laser device
JPH0335837B2 (en) * 1986-02-28 1991-05-29 Mitsubishi Electric Corp
JPS62252184A (en) * 1986-04-18 1987-11-02 ロフイン−ジナ−ル・レ−ザ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Gas laser device
JPS63306300A (en) * 1987-06-04 1988-12-14 フォ−チュナ・ヴェルケ・マシネンファブリ−ク・ゲ−エムベ−ハ− Blower for circulating large quantity of gas
WO1990007062A1 (en) * 1988-12-21 1990-06-28 Fanuc Ltd Turbo-blower for laser and laser oscillator using the same
JPH04325316A (en) * 1991-04-25 1992-11-13 Mitsubishi Electric Corp Fuel tank

Similar Documents

Publication Publication Date Title
EP0152084B1 (en) Gas laser device
US5719896A (en) Low cost corona pre-ionizer for a laser
JPS60178681A (en) Gas laser device
CA1088618A (en) Stabilized repetitively pulsed flashlamps
GB2107512A (en) Apparatus for producing a laser-active state in a fast subsonic flow
JPH04326584A (en) Discharge excitation gas laser device
Goto et al. 5 kHz high repetition rate and high power XeCl excimer laser
JPS6339113B2 (en)
JP3171899B2 (en) Gas laser equipment
JP3154584B2 (en) Discharge excitation gas laser device
JPS61228690A (en) Supersonic excimer laser device
JPS6235278B2 (en)
JPS6052070A (en) Coaxial type laser oscillator
JPS5848487A (en) Gas laser oscillator
JPS63148695A (en) Co2 gas laser device
JPS5850787A (en) Lateral mode excitation type gas laser device
CA2117812A1 (en) Pulsed laser discharge stabilization
JP2002151768A (en) Fluorine laser device for exposure
JPH0243780A (en) High frequency vapor laser oscillator
Feenstra et al. A long pulse discharge excited ArF laser
JPS639177A (en) Gas laser oscillator
JPS6218781A (en) Laser oscillator
JPS6034278B2 (en) Laterally pumped gas laser device
JPS61269387A (en) Electrode structure for laser oscillator
JPS6114779A (en) Gas laser generator