JPS6239555B2 - - Google Patents

Info

Publication number
JPS6239555B2
JPS6239555B2 JP2582780A JP2582780A JPS6239555B2 JP S6239555 B2 JPS6239555 B2 JP S6239555B2 JP 2582780 A JP2582780 A JP 2582780A JP 2582780 A JP2582780 A JP 2582780A JP S6239555 B2 JPS6239555 B2 JP S6239555B2
Authority
JP
Japan
Prior art keywords
discharge
dielectric material
groove
discharge space
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2582780A
Other languages
Japanese (ja)
Other versions
JPS56122179A (en
Inventor
Shuji Ogawa
Shigenori Yagi
Norikazu Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2582780A priority Critical patent/JPS56122179A/en
Publication of JPS56122179A publication Critical patent/JPS56122179A/en
Publication of JPS6239555B2 publication Critical patent/JPS6239555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、無声放電式ガスレーザ装置の電極
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in electrodes for silent discharge type gas laser devices.

まず、従来の無声放電式ガスレーザ装置を直交
型CO2レーザを例にとつて説明する。
First, a conventional silent discharge gas laser device will be explained using an orthogonal CO 2 laser as an example.

第1図は、従来の装置の構成原理図、第2図
は、そのガス系統図、第3図は、その電極構造
図、第4図は、その−線からみた断面図であ
る。
FIG. 1 is a diagram showing the basic structure of a conventional device, FIG. 2 is a gas system diagram thereof, FIG. 3 is a diagram of its electrode structure, and FIG. 4 is a sectional view taken from the - line.

まず、第1図において、1,2は誘電体、3,
4は金属板で各々放電面は誘電体1,2で覆われ
ており、1と3、2と4でそれぞれ一つの無声放
電電極30,40を形成している。5は放電空
間、6は交流電源、7は全反射鏡、8は部分反射
鏡である。
First, in Fig. 1, 1 and 2 are dielectric materials, 3,
4 is a metal plate whose discharge surface is covered with dielectrics 1 and 2, and 1 and 3 and 2 and 4 form one silent discharge electrode 30 and 40, respectively. 5 is a discharge space, 6 is an AC power supply, 7 is a total reflection mirror, and 8 is a partial reflection mirror.

金属板3,4に交流電源6により交流高電圧
(約10KHz、10KV)が印加されると、放電空間5
に無声放電と呼ばれる安定な放電が生じる。レー
ザガス(CO2レーザの場合は、一般にCO2
CO,N2,Heの混合気体)は、放電空間5を通過
するときに、この無声放電によりレーザ励起さ
れ、全反射鏡7と部分反射鏡8により構成される
光共振器によつてレーザ発振を起こし、励起され
た分子エネルギーは、レーザ光として、部分反射
鏡8から取り出される。
When an AC high voltage (approximately 10KHz, 10KV) is applied to the metal plates 3 and 4 by the AC power source 6, the discharge space 5
A stable discharge called silent discharge occurs. Laser gas (for CO 2 lasers, generally CO 2 ,
When the gas mixture (CO, N 2 , He) passes through the discharge space 5 , it is laser excited by this silent discharge, and is oscillated by an optical resonator composed of a total reflection mirror 7 and a partial reflection mirror 8 . The excited molecular energy is extracted from the partially reflecting mirror 8 as laser light.

次に、第2図では、従来装置におけるレーザガ
スの系統が示されており、9は無機質絶縁体で作
られたガスガイド、10はブロア、11は熱交換
器である熱交換器11で温度が下り、ブロア10
によつて加速され高速になつたレーザガスは、ガ
スガイド9に添つて、放電とレーザ光(紙面に垂
直)のいづれにも直交する方向に放電空間5を通
過する。放電空間5におけるガス速度は、30m・
-1程度の高速にし、放電によつて受けた熱エネ
ルギーによるガス温度上昇を50℃程度に低く抑え
る。これは、CO2の光吸収率がガス温度上昇によ
り急激に上昇し、レーザ発振エネルギー効率を低
下させるので、ガス温度を低く抑える必要がある
ためである。
Next, FIG. 2 shows the laser gas system in the conventional device, where 9 is a gas guide made of an inorganic insulator, 10 is a blower, and 11 is a heat exchanger that changes the temperature. Down, blower 10
The laser gas accelerated to high speed passes through the discharge space 5 along the gas guide 9 in a direction perpendicular to both the discharge and the laser beam (perpendicular to the plane of the paper). The gas velocity in the discharge space 5 is 30 m・
The speed is set to about S -1 , and the rise in gas temperature due to the thermal energy received by the discharge is suppressed to about 50℃. This is because the light absorption rate of CO 2 increases rapidly as the gas temperature rises, reducing the laser oscillation energy efficiency, so it is necessary to keep the gas temperature low.

第3図には、上記従来装置の電極構造図、第4
図は、第3図−線よりみた断面でガス流方
向、放電方向、光軸(レーザ光)の方向が示され
ている。5a,5b,5cは放電空間5のガス流
上流側、中央部、下流側である。3b,4bは金
属板3,4の誘電体で覆われていない部分であ
る。
Figure 3 shows the electrode structure diagram of the conventional device, and Figure 4 shows the structure of the electrode of the conventional device.
The figure is a cross section taken along the line in FIG. 3, showing the direction of gas flow, the direction of discharge, and the direction of the optical axis (laser light). 5a, 5b, and 5c are the gas flow upstream side, central portion, and downstream side of the discharge space 5. 3b and 4b are portions of the metal plates 3 and 4 that are not covered with the dielectric material.

ここで無声放電の特性について簡単に説明す
る。無声放電は、誘電体1,2を介して生じる交
流放電であり、電源電圧上昇にしたがつて放電空
間5の電圧が上昇し、放電空間電位差が放電開始
電圧に達するとパルス的放電が生じ、放電が生じ
ると誘電体1,2の表面に電荷が堆積され、その
結果、放電空間5の電圧が低下して放電が消滅す
る。電源電圧の上昇により再び放電空間5の電圧
が放電開始電圧に達すると放電が起る。交流電源
の半サイクル中にこのような放電が数回ないし数
十回繰返し、又、次の半サイクルでは、逆極性の
放電が同様に繰返される。
Here, the characteristics of silent discharge will be briefly explained. The silent discharge is an alternating current discharge that occurs via the dielectrics 1 and 2, and as the power supply voltage increases, the voltage in the discharge space 5 increases, and when the discharge space potential difference reaches the discharge starting voltage, a pulsed discharge occurs. When a discharge occurs, charges are deposited on the surfaces of the dielectrics 1 and 2, and as a result, the voltage in the discharge space 5 decreases and the discharge disappears. When the voltage in the discharge space 5 reaches the discharge starting voltage again due to an increase in the power supply voltage, a discharge occurs. Such discharges are repeated several to several dozen times during a half cycle of the AC power supply, and in the next half cycle, discharges of opposite polarity are similarly repeated.

ところで、無声放電は、電極の誘電体沿面に拡
がり易い放電であるため、放電空間の放電エネル
ギーの分布は、ガス流方向に均一でなく、放電空
間端部5a,5cが中央部の5bにくらべてエネ
ルギー密度の高い放電になる。その為に誘電体
1,2の放電空間5a,5cに近い部分に熱的破
壊が生じ、あるいは、放電空間5を通過するレー
ザ媒質ガスの温度が部分的に高温となりCO2の光
吸収量が増大し、レーザ発振効率を低下させる欠
点がある。
By the way, silent discharge is a discharge that easily spreads along the dielectric surface of the electrode, so the distribution of discharge energy in the discharge space is not uniform in the gas flow direction, and the discharge space ends 5a and 5c are more uneven than the central part 5b. This results in a discharge with high energy density. As a result, thermal breakdown occurs in the portions of the dielectrics 1 and 2 near the discharge spaces 5a and 5c, or the temperature of the laser medium gas passing through the discharge space 5 becomes partially high, and the amount of light absorbed by CO2 decreases. This has the disadvantage of increasing the laser oscillation efficiency and reducing the laser oscillation efficiency.

また、印加電圧を大きくすると放電は、さらに
電極30,40の背後部分で誘電体がライニング
(溶射)されていない部分3b,4bまで拡が
り、そこから対電極へ誘電体沿面を伝つた放電が
発生し、その為に誘電体1,2及び電源6が破壊
されるトラブルが生じる。
Furthermore, when the applied voltage is increased, the discharge further spreads to the parts 3b and 4b where the dielectric material is not lined (sprayed) behind the electrodes 30 and 40, and from there, a discharge is generated that travels along the surface of the dielectric material to the counter electrode. However, this causes trouble in that the dielectrics 1 and 2 and the power source 6 are destroyed.

また、従来の無声放電式ガスレーザ装置の電極
構造は、第3,4図に示したように金属板3,4
に誘電体1,2をライニング(溶射)して作られ
ている為、誘電体1,2の厚さを均一に作る事が
難しい。この為、無声放電の特性により誘電体厚
さの薄い場所は、単位面積あたりの静電容量が増
加し、放電の電力が集中し、その部分の誘電体が
破損されやすく、誘電体を均一にライニングする
必要があつた。均一なライニングは複雑な形状の
電極では技術的に難しいため、従来の電極は単純
な構造に限定されていた。そのため発振器の効率
を最大にすべく望ましい形状の電極を作ることは
困難であつた。
In addition, the electrode structure of the conventional silent discharge type gas laser device is as shown in FIGS.
Since the dielectrics 1 and 2 are lined with (sprayed) the dielectrics 1 and 2, it is difficult to make the thicknesses of the dielectrics 1 and 2 uniform. For this reason, due to the characteristics of silent discharge, the capacitance per unit area increases in areas where the dielectric is thin, the discharge power concentrates, and the dielectric in that area is likely to be damaged, making it difficult to spread the dielectric uniformly. It needed lining. Conventional electrodes have been limited to simple structures because uniform lining is technically difficult for electrodes with complex shapes. Therefore, it has been difficult to create electrodes with a desired shape to maximize the efficiency of the oscillator.

さらに、レーザガスは、第2図に示すように放
電空間5を高速で流す必要があるため、ガスガイ
ド9を設けなければならなかつた。このガスガイ
ド9は、一部が放電にさらされているのでアウト
ガス発生のない絶縁物で構成する必要があつた。
Furthermore, since the laser gas needs to flow through the discharge space 5 at high speed as shown in FIG. 2, a gas guide 9 must be provided. Since a part of the gas guide 9 is exposed to electric discharge, it was necessary to be made of an insulating material that does not generate outgas.

この発明は、上記従来のものの欠点を除去する
ためになされたもので、電極構造を改良すること
により構造が簡単で信頼性の高い無声放電式ガス
レーザ装置を提供することを目的とするものであ
る。
This invention was made in order to eliminate the drawbacks of the above-mentioned conventional ones, and aims to provide a silent discharge type gas laser device that has a simple structure and high reliability by improving the electrode structure. .

以下この発明の一実施例を図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第5図は、この発明の一実施例を示す電極構造
図、第6図はその−線からみた断面図、第7
図は、そのガス系統図で、1−1,2−1は、放
電面の反対面に凹状の溝が堀られている。電極3
0,40の主要構成物たる無機物誘電体板、1−
1b,2−1bは、それらの放電場所(凹状の部
分の厚さの薄い所)、3−1,4−1は、無機物
誘電体板1−1,2−1の凹部に設けられた金属
板であり、第6図にガス流方向、放電方向、光軸
方向が示されている。このように電極30,40
を構成すると、放電は無声放電の特性により単位
あたりの静電容量の大きい無機物誘電体板1−
1,2−1の厚さの薄い部分1−1b,2−1b
の面だけに放電が限定され、その結果、放電空間
5には、エネルギー集中のない放電が生じ、放電
空間5を通過するレーザ媒質ガス温度が部分的に
高温になることがなく、また印加電圧を大きくし
ても誘電体沿面距離が長い為、金属板3−1,4
−1から対電極に対しての放電も発生しないの
で、誘電体及び電源の破壊の虞れがほとんどなく
なる。
FIG. 5 is an electrode structure diagram showing an embodiment of the present invention, FIG. 6 is a sectional view taken from the - line, and FIG.
The figure shows the gas system diagram, and 1-1 and 2-1 have concave grooves dug on the opposite surface of the discharge surface. Electrode 3
Inorganic dielectric plate which is the main constituent of 0.40, 1-
1b and 2-1b are the discharge locations (where the thickness of the concave portion is thin), and 3-1 and 4-1 are the metals provided in the concave portions of the inorganic dielectric plates 1-1 and 2-1. The gas flow direction, discharge direction, and optical axis direction are shown in FIG. In this way, the electrodes 30, 40
, the discharge is caused by the inorganic dielectric plate 1- which has a large capacitance per unit due to the characteristics of silent discharge.
1, 2-1 thinner parts 1-1b, 2-1b
As a result, a discharge without energy concentration occurs in the discharge space 5, and the temperature of the laser medium gas passing through the discharge space 5 does not become high locally, and Since the dielectric creepage distance is long even if the metal plate 3-1 and 4 are increased,
Since no discharge occurs from -1 to the counter electrode, there is almost no risk of damage to the dielectric and the power source.

また、無機物誘電体板1−1,2−1の凹状の
溝部は、機械研削加工などによつて作り得るので
放電部1−1b,2−1bの誘電体厚さを均一に
作る事ができる(例えば、無機物誘電体板を易削
性ガラスセラミツクスにした場合、精度:±0.05
mm位は容易に達成できる)。その為電極放電部分
にあたる1−1b,2−1bの単位面積あたりの
静電容量が一様となり、放電の電力密度がさらに
均一化されるので、誘電体の破損がなくなる。さ
らに、無機物誘電体板1−1,2−1の凹状の溝
の位置及びそれに伴い金属板3−1,4−1の位
置は自由に設定可能で発振に最適な形状の電極を
作る事ができる。
Further, since the concave grooves of the inorganic dielectric plates 1-1 and 2-1 can be made by mechanical grinding, etc., the dielectric thickness of the discharge parts 1-1b and 2-1b can be made uniform. (For example, if the inorganic dielectric plate is made of easy-to-cut glass ceramics, accuracy: ±0.05
mm can be easily achieved). Therefore, the capacitance per unit area of electrode discharge portions 1-1b and 2-1b becomes uniform, and the power density of the discharge becomes even more uniform, thereby eliminating damage to the dielectric. Furthermore, the positions of the concave grooves on the inorganic dielectric plates 1-1 and 2-1 and the positions of the metal plates 3-1 and 4-1 can be freely set, making it possible to create electrodes with the optimal shape for oscillation. can.

また、第7図に示すようにこの電極構造は無機
物誘電体板1−1,2−1がガスガイドを兼てお
り、従来例の第2図に示したガスガイド9と各電
極30,40との継目がなくなるので、従来その
継目で生じていたガス流の乱れをなくす事がで
き、またガス流に対する抵抗が最小の構造を得る
ことができるので、ブロア10に特殊で高価なも
のを必要としなくなる。
In addition, as shown in FIG. 7, in this electrode structure, the inorganic dielectric plates 1-1 and 2-1 also serve as gas guides, and the gas guide 9 and each electrode 30, 40 shown in FIG. Since there is no joint between the blower 10 and the gas flow, the turbulence in the gas flow that conventionally occurs at the joint can be eliminated, and a structure with minimal resistance to the gas flow can be obtained, so the blower 10 does not require a special and expensive item. I won't.

このように、この発明によつてレーザ発振効率
の観点からも、実用的信頼性の面からも優れた電
極が実現できる。
As described above, according to the present invention, an electrode excellent in terms of both laser oscillation efficiency and practical reliability can be realized.

以下他の実施例を数例示す。 Several other examples will be shown below.

第8図は、第6図の実施例の金属板3−1,4
−1を導電性薄膜3−2,4−2に置き換え、無
機物誘電体板1−1,2−1の凹部分にコーテイ
ング、又はメタライズした実施例の電極構成図、
第9図は、その−線よりみた断面図であり前
記実施例と同一の効果を得る事ができると共に導
電性薄膜3−2,4−2と無機物誘電体板1−
1,2−1の接触が完壁になる利点がある。
FIG. 8 shows the metal plates 3-1 and 4 of the embodiment shown in FIG.
Electrode configuration diagram of an embodiment in which -1 is replaced with conductive thin films 3-2 and 4-2, and the concave portions of inorganic dielectric plates 1-1 and 2-1 are coated or metallized,
FIG. 9 is a cross-sectional view taken from the - line, and it is possible to obtain the same effect as the above embodiment, and also to connect the conductive thin films 3-2, 4-2 and the inorganic dielectric plate 1-.
There is an advantage that the 1, 2-1 contact is perfect.

第10図は、第8図の一実施例の導電性薄膜3
−2,4−2及び、無機物誘電体板1−1,2−
1の凹部分に絶縁性冷媒を流して冷却する構成と
した実施例の電極構成図、第11図はそのXI−XI
線よりみた断面図であり、12,13は絶縁性冷
媒を流す為の無機絶縁物で作られた冷媒ジヤケツ
ト板で、無機物誘電体板1−1,2−1の凹部分
と冷媒ジヤケツト板12,13とのすきまに絶縁
性冷媒(脱イオン水、又は絶縁油)を流して電極
の冷却を行なつており、第6図に示した実施例と
同様の効果が得られると共に、さらに無機物誘電
体板1−1,2−1の熱的破損を防ぐ事ができ
る。それゆえ、この電極構造を使用して放電電力
を増大し、高出力レーザを実現することができ
る。
FIG. 10 shows the conductive thin film 3 of one embodiment of FIG.
-2, 4-2 and inorganic dielectric plate 1-1, 2-
Figure 11 is an electrode configuration diagram of an example in which an insulating refrigerant is cooled by flowing into the concave portion of No. 1.
This is a sectional view taken along a line, and 12 and 13 are refrigerant jacket plates made of inorganic insulators for flowing an insulating refrigerant, and the recessed portions of inorganic dielectric plates 1-1 and 2-1 and the refrigerant jacket plate 12 are shown. , 13 to cool the electrode by flowing an insulating refrigerant (deionized water or insulating oil) into the gap between the electrodes and the inorganic dielectric. Thermal damage to the body plates 1-1 and 2-1 can be prevented. Therefore, this electrode structure can be used to increase the discharge power and realize a high power laser.

第12図は、第6図の実施例の無機物誘電体板
1−1,2−1の凹部分及び金属板3−1,4−
1を共振器光路に添つて設け、「折り返し型レー
ザ」へ適用した実施例の電極構成図、第13図
は、その−から見た断面図で、7−1〜
7−6は全反射鏡、1−2,2−2は無機物誘電
体板で共振器光路に添つて、放電面の逆の面に凹
状の溝が複数本形成され3−3,4−3は、金属
板で共振器光路に添つて誘電体板1−2,2−2
に形成された凹状の溝部に設けられていて、実施
例の第6図と同様の効果が得られると共に、さら
に複雑な形状の放電励起空間をレーザ発振効率向
上の要請に従つて自由に形成することができるよ
うになつた。
FIG. 12 shows the concave portions of the inorganic dielectric plates 1-1 and 2-1 and the metal plates 3-1 and 4- of the embodiment shown in FIG.
1 is installed along the resonator optical path and is applied to a "folded laser".
7-6 is a total reflection mirror, 1-2, 2-2 are inorganic dielectric plates, and along the resonator optical path, a plurality of concave grooves are formed on the surface opposite to the discharge surface. 3-3, 4-3 is a metal plate with dielectric plates 1-2 and 2-2 along the resonator optical path.
It is provided in a concave groove formed in the groove, so that the same effect as shown in FIG. 6 of the embodiment can be obtained, and a discharge excitation space with a more complicated shape can be freely formed in accordance with the request for improving laser oscillation efficiency. Now I can do it.

第14図は、第6図の3−1,4−1の金属板
の代りにプラズマ状態のガスとした実施例の電極
構成図で第15図はその−線よりみた断
面図である。3−4,4−4は、低圧力の不活性
ガスが充填されているプラズマ放電空間、14,
15は、導電性の給電板で、給電板14,15に
交流高電圧を印加することにより低圧の不活性ガ
スはプラズマ化し導電性を有するようになり、放
電空間5に発生する無声放電は、第6図の実施例
とかわらない。この実施例では、無機物誘電体板
1−1,2−1の凹部分の溝の深さは、5mm、不
活性ガスとしてArガスを圧力を数トールで封じ
た。プラズマ放電空間3−4,4−4における電
位降下は200Vで、電極間にかかる電圧10KVに比
べて非常に小さく、実質的に不活性ガスが「プラ
ズマ電極」として働く。この実施例では、電極の
形状の自由度が第6図の実施例に比べさらに大き
くなる。
FIG. 14 is a diagram of an electrode configuration of an embodiment in which gas in a plasma state is used instead of the metal plates 3-1 and 4-1 in FIG. 6, and FIG. 15 is a sectional view taken along the - line. 3-4, 4-4 is a plasma discharge space filled with low pressure inert gas; 14;
15 is a conductive power supply plate, and by applying an AC high voltage to the power supply plates 14 and 15, the low-pressure inert gas becomes plasma and becomes conductive, and the silent discharge generated in the discharge space 5 is This is the same as the embodiment shown in FIG. In this example, the depth of the grooves in the concave portions of the inorganic dielectric plates 1-1 and 2-1 was 5 mm, and Ar gas was sealed as an inert gas at a pressure of several torr. The potential drop in the plasma discharge spaces 3-4, 4-4 is 200V, which is much smaller than the voltage of 10KV applied between the electrodes, and the inert gas essentially acts as a "plasma electrode." In this embodiment, the degree of freedom in the shape of the electrode is greater than in the embodiment shown in FIG.

以上の実施例はすべて高電圧側、低電圧側が同
一構造のものを示したが、片側の電極が金属板又
は、金属棒である場合にもこの発明の効果が得ら
れることは言うまでもない。
Although all of the above embodiments have the same structure on the high voltage side and the low voltage side, it goes without saying that the effects of the present invention can also be obtained when the electrode on one side is a metal plate or a metal rod.

この発明は、以上説明したように、レーザ励起
部となる無声放電空間5を形成する1対の電極3
0,40のうち少なくとも一方の電極構造が、主
要構成物たる平板に近い無機物誘電体とその裏面
の一部に設けた導電性物質とによつて形成され、
かつ、導電性物質の設けられている位置の誘電体
板の厚さが、設けられていない他の部分よりも薄
く作られていることを特徴とするもので、放電空
間の電力分布を均一にし、電極の端絶縁を向上さ
せ、電極の信頼性を高め、ガス流に対する抵抗を
低める効果の一挙に発揮できる電極構造を提供す
るものである。
As explained above, the present invention provides a pair of electrodes 3 forming a silent discharge space 5 serving as a laser excitation section.
At least one of the electrode structures of 0 and 40 is formed of an inorganic dielectric material close to a flat plate as a main component and a conductive material provided on a part of the back surface thereof,
In addition, the thickness of the dielectric plate at the position where the conductive material is provided is thinner than at other parts where the conductive material is not provided, which makes the power distribution in the discharge space uniform. The present invention provides an electrode structure that can improve the end insulation of the electrode, increase the reliability of the electrode, and lower the resistance to gas flow all at once.

さらに、無機物誘電体の背面を絶縁性冷媒で冷
却することにより、電極の熱的破損を防ぎ、レー
ザの大出力化が可能になる。
Furthermore, by cooling the back surface of the inorganic dielectric material with an insulating coolant, thermal damage to the electrodes can be prevented, and it is possible to increase the output power of the laser.

さらに、板状の無機物誘電体背面に設けられて
いる凹状の溝は自由な位置に設け得るため、折り
返し共振器に最適なように、複雑な形の放電励起
空間も自由に形成することができる効果がある。
Furthermore, since the concave grooves provided on the back surface of the plate-shaped inorganic dielectric material can be placed in any position, complex-shaped discharge excitation spaces can be freely formed, making them ideal for folded resonators. effective.

以上のようにこの発明によつて電極構造が簡単
で信頼性の高い高効率大出力の無声放電式ガスレ
ーザ装置を実現することができた。
As described above, the present invention has made it possible to realize a highly reliable, highly efficient, high-output silent discharge gas laser device with a simple electrode structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直交形ガスレーザ装置の要部の
構成を示す原理図、第2図はそのガス系統図、第
3図はその電極構成を示す正面図、第4図は第3
図−線よりみた断面図、第5図はこの発明の
実施例における電極の構成を示す正面図、第6図
は第5図−線よりみた断面図、第7図はその
ガス系統図、第8図、第10図、第12図、およ
び第14図はそれぞれこの発明の一実施例の電極
構成を示す正面図、第9図、第11図、第13図
および第15図はそれぞれ第8図−線、第1
0図XI−XI線、第12図−線および第1
4図−線よりみた断面図である。 図において、1,2は誘電体、1−1,1−
2,2−1,2−2は無機物誘電体板、1−1
b,2−1bは誘電体板の薄い部分、3,4,3
−1,3−3,4−1,4−3は金属板、3b,
4bは電極背後部、3−2,4−2は導電性薄
膜、3−4,4−4はプラズマ放電空間、5,5
a,5b,5cは放電空間、6は交流電源、7,
7−1〜7−6は全反射鏡、8は部分反射鏡、9
はガスガイド、10はブロア、11は熱交換器、
12,13は冷媒ジヤケツト板、14,15は給
電板である。なお、図中一符号はそれぞれ同一又
は相当分を示す。
Figure 1 is a principle diagram showing the configuration of the main parts of a conventional orthogonal gas laser device, Figure 2 is its gas system diagram, Figure 3 is a front view showing its electrode configuration, and Figure 4 is the
5 is a front view showing the configuration of the electrode in the embodiment of the present invention, FIG. 6 is a sectional view taken from the line in FIG. 5, and FIG. 7 is a gas system diagram thereof. 8, 10, 12, and 14 are front views showing the electrode structure of one embodiment of the present invention, and FIGS. 9, 11, 13, and 15 are respectively 8 Figure-Line, 1st
Figure 0 XI-XI line, Figure 12- line and 1st
FIG. 4 is a sectional view taken along the line. In the figure, 1 and 2 are dielectric materials, 1-1, 1-
2, 2-1, 2-2 are inorganic dielectric plates, 1-1
b, 2-1b is the thin part of the dielectric plate, 3, 4, 3
-1, 3-3, 4-1, 4-3 are metal plates, 3b,
4b is the back of the electrode, 3-2, 4-2 are conductive thin films, 3-4, 4-4 are plasma discharge spaces, 5, 5
a, 5b, 5c are discharge spaces, 6 is an AC power source, 7,
7-1 to 7-6 are total reflection mirrors, 8 is a partial reflection mirror, 9
is a gas guide, 10 is a blower, 11 is a heat exchanger,
12 and 13 are refrigerant jacket plates, and 14 and 15 are power supply plates. In addition, one code|symbol in a figure each shows the same or equivalent part.

Claims (1)

【特許請求の範囲】 1 導体の表面が誘電体で覆われている電極を対
向させて放電空間を形成し、この放電空間内にレ
ーザ媒質を流しながら上記両電極間に高周波電圧
を印加してその放電空間内で無声放電を発生さ
せ、その放電空間内のレーザ媒質を励起してレー
ザを発生させるように構成されたものにおいて、
上記両電極のうち少なくとも一方の電極を、放電
空間を構成する面が平面に形成されている導体
と、この平面を覆う部分は他の面域を覆う部分よ
りは薄く、かつ均一な厚さに形成されている誘電
体とで構成されていることを特徴とするガスレー
ザ装置。 2 放電空間に臨む平面部分とその平面との間に
均一な薄い層を残すように形成された溝とを有す
る誘電体と、この誘電体の溝の上記平面と相対す
る面に接するように形成された導体とで構成され
ている電極を備えた特許請求の範囲第1項記載の
ガスレーザ装置。 3 放電空間に臨む平面部分とその平面との間に
均一な薄い層を残すように形成された溝とを有す
る誘電体と、この誘電体の溝の開口面を覆う導体
で形成された給電板と、上記溝内に充填されたプ
ラズマ放電媒質ガスとで構成されている電極を備
えた特許請求の範囲第1項記載のガスレーザ装
置。 4 誘電体に複数回折返す形の溝を形成し、この
溝内に導体を配置するとともに上記溝の折返し部
分の近くにそれぞれ光共振器を構成する全反射鏡
を配設せる構成としたことを特徴とする特許請求
の範囲第2項または第3項に記載のガスレーザ装
置。 5 誘電体に形成せる溝内に絶縁性冷媒を通す構
成を備えたことを特徴とする特許請求の範囲第2
項ないし第4項のいずれかに記載のガスレーザ装
置。
[Claims] 1. A discharge space is formed by facing electrodes whose conductor surfaces are covered with a dielectric material, and a high-frequency voltage is applied between the two electrodes while a laser medium is flowing in the discharge space. In a device configured to generate a silent discharge within the discharge space and excite a laser medium within the discharge space to generate a laser,
At least one of the above electrodes is made of a conductor whose surface constituting the discharge space is flat, and the part that covers this flat surface is thinner than the part that covers the other area and has a uniform thickness. 1. A gas laser device comprising: a dielectric material; 2. A dielectric material having a flat portion facing the discharge space and a groove formed to leave a uniform thin layer between the flat surface, and a dielectric material formed so as to be in contact with the surface of the groove of this dielectric material that faces the flat surface. 2. The gas laser device according to claim 1, further comprising an electrode made up of a conductor and a conductor. 3. A power supply plate made of a dielectric material having a flat portion facing the discharge space and a groove formed to leave a uniform thin layer between the flat surface and a conductor covering the opening surface of the groove of this dielectric material. 2. The gas laser device according to claim 1, further comprising an electrode comprising: a plasma discharge medium gas filled in the groove; and a plasma discharge medium gas filled in the groove. 4. A structure in which a groove that is folded multiple times is formed in a dielectric material, a conductor is disposed within this groove, and a total reflection mirror that constitutes an optical resonator is disposed near each folded portion of the groove. A gas laser device according to claim 2 or 3. 5. Claim 2, characterized by having a configuration for passing an insulating coolant through a groove formed in a dielectric material.
The gas laser device according to any one of items 1 to 4.
JP2582780A 1980-02-29 1980-02-29 Gas laser device Granted JPS56122179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2582780A JPS56122179A (en) 1980-02-29 1980-02-29 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2582780A JPS56122179A (en) 1980-02-29 1980-02-29 Gas laser device

Publications (2)

Publication Number Publication Date
JPS56122179A JPS56122179A (en) 1981-09-25
JPS6239555B2 true JPS6239555B2 (en) 1987-08-24

Family

ID=12176685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2582780A Granted JPS56122179A (en) 1980-02-29 1980-02-29 Gas laser device

Country Status (1)

Country Link
JP (1) JPS56122179A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240836A1 (en) * 1982-11-05 1984-05-10 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn FLOW CHANNEL FOR A CROSS-FLOWED GAS LASER
US4737964A (en) * 1985-11-12 1988-04-12 Hughes Aircraft Company RF discharge suppression in low pressure gas devices
JPH0770771B2 (en) * 1986-11-05 1995-07-31 三菱電機株式会社 Gas laser equipment
WO1992014285A1 (en) * 1991-02-08 1992-08-20 Mitsubishi Denki Kabushiki Kaisha Transverse discharge pumping type pulse laser oscillating device

Also Published As

Publication number Publication date
JPS56122179A (en) 1981-09-25

Similar Documents

Publication Publication Date Title
US5373528A (en) Laser apparatus having a rectangular section
EP0275023B1 (en) Carbon dioxide slab laser
JPH01105586A (en) Solid laser apparatus
JPS5812755B2 (en) Electrically excited laser device
JPS6239555B2 (en)
EP0504652B1 (en) Gas laser oscillating device
JPS6026310B2 (en) gas laser equipment
US7215695B2 (en) Discharge excitation type pulse laser apparatus
JPS5890791A (en) Device for forming laser active state in high speed subsonic flow
JP3088579B2 (en) Laser device
JP2003264328A (en) Waveguide gas laser oscillator
JPS6310916B2 (en)
JPS639395B2 (en)
JPH0234196B2 (en) GASUREEZASOCHI
JPS61137381A (en) Silent discharge gas laser
JPS6310915B2 (en)
JPS5849644Y2 (en) Waveguide gas laser tube
JPH08139390A (en) Gas laser apparatus
JPH047111B2 (en)
JPS61170087A (en) Silent discharge type gas laser device
JPH01214184A (en) Pulse laser oscillation device
RU2065242C1 (en) Electric-ionization gas laser having external excitation and longitudinal direction of gas flow
JPH05327071A (en) Cooler of laser device
JP2013187444A (en) Laser oscillator
JPH0770771B2 (en) Gas laser equipment