JPH0770770B2 - Silent discharge gas laser device - Google Patents

Silent discharge gas laser device

Info

Publication number
JPH0770770B2
JPH0770770B2 JP61025406A JP2540686A JPH0770770B2 JP H0770770 B2 JPH0770770 B2 JP H0770770B2 JP 61025406 A JP61025406 A JP 61025406A JP 2540686 A JP2540686 A JP 2540686A JP H0770770 B2 JPH0770770 B2 JP H0770770B2
Authority
JP
Japan
Prior art keywords
discharge
laser device
discharge tube
gas laser
silent discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61025406A
Other languages
Japanese (ja)
Other versions
JPS62183580A (en
Inventor
昌樹 葛本
正明 田中
悟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61025406A priority Critical patent/JPH0770770B2/en
Publication of JPS62183580A publication Critical patent/JPS62183580A/en
Publication of JPH0770770B2 publication Critical patent/JPH0770770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無声放電式ガスレーザ装置,とくにそのコン
パクト化に関するものである。
The present invention relates to a silent discharge type gas laser device, and more particularly to a compact size thereof.

〔従来の技術〕 従来この種の装置として第2図に示すものがあつた。[Prior Art] Conventionally, an apparatus of this type is shown in FIG.

第2図(a)(b)は各々従来の無声放電式ガスレーザ
装置を示す正面構成図及び第2図(a)のB−B線に沿
つた断面図である。
2 (a) and 2 (b) are respectively a front view showing a conventional silent discharge type gas laser device and a sectional view taken along line BB in FIG. 2 (a).

図において,(1)は通常パイレツクスガラス等よりな
る管状の放電管で,内径13mm,厚さ1mm,長さ1m程度のも
のである。(2),(3)は放電管(1)の外壁に密着
する一対の電極,(4)は高周波電源で,電極(2),
(3)に接続される。また,前記放電管(1)の軸方向
の両対向端にはそれぞれ全反射鏡(5)及び部分反射鏡
(6)が取り付けられている。そして,この放電管
(1)は内部に送風機(9)及び熱交換器(10)を備え
た送気管(7),(8)に接続されて循環的に連通され
ている。矢印(11)はレーザ光を示す。
In the figure, (1) is a tubular discharge tube usually made of Pyrex glass or the like, having an inner diameter of 13 mm, a thickness of 1 mm, and a length of about 1 m. (2) and (3) are a pair of electrodes in close contact with the outer wall of the discharge tube (1), (4) is a high-frequency power source, and electrodes (2),
It is connected to (3). A total reflection mirror (5) and a partial reflection mirror (6) are attached to both ends of the discharge tube (1) in the axial direction. The discharge tube (1) is connected to the air supply tubes (7) and (8) having the blower (9) and the heat exchanger (10) inside, and is communicated in a circulating manner. The arrow (11) indicates laser light.

次に,CO2レーザ装置を例にとり,動作説明する。放電管
(1)内には,CO2,He,N2の混合ガスが数10〜200Torrの
圧力で充填されている。この放電管(1)において,電
極(2),(3)に高周波電源(4)より例えば100KH
z,8KV程度の電圧が印加されると第2図(b)に示すよ
うに,電極(2),(3)間に無声放電が起り,その結
果,放電によりCO2分子が励起され,全反射鏡(5)と
部分反射鏡(6)で構成される光共振器内でレーザ発振
が起る。レーザ光の一部は矢印(11)で示されるように
部分反射鏡(6)より外部に取り出される。一方,放電
によりガス温度が上昇するとレーザ出力が低下するの
で,送風機(9)によりガスを循環させて熱交換器(1
0)で冷却し,これにより放電管(1)内のガス温度は
所定値以下に保持されている。
Next, the operation will be explained using a CO 2 laser device as an example. The discharge tube (1) is filled with a mixed gas of CO 2 , He and N 2 at a pressure of several tens to 200 Torr. In this discharge tube (1), the electrodes (2) and (3) are connected to the high frequency power source (4), for example, 100 KH.
When a voltage of z, 8KV is applied, as shown in Fig. 2 (b), a silent discharge occurs between the electrodes (2) and (3). As a result, CO 2 molecules are excited by the discharge and all Laser oscillation occurs in the optical resonator composed of the reflecting mirror (5) and the partial reflecting mirror (6). Part of the laser light is taken out from the partial reflecting mirror (6) as shown by the arrow (11). On the other hand, when the gas temperature rises due to the electric discharge, the laser output decreases, so the gas is circulated by the blower (9) and the heat exchanger (1
The gas temperature in the discharge tube (1) is kept below a predetermined value.

ところで,無声放電における投入電力は大略下式で与え
られることが発明者らの研究によつて明らかにされてい
る。
By the way, it has been clarified by the research of the inventors that the input power in the silent discharge is roughly given by the following formula.

(田中他「高周波無声放電の等価回路と放電特性につい
て」電気学会 放電研究会資料ED−82−27((1982年6
月))) ただし, f;電源周波数 =100KHz εS;誘電体の比誘電率 〜6 ε0;真空の誘電率 =0.88×10-11Fm-1 t;誘電体の厚さ 〜1×10-3m XD;電極の幅 〜10×10-3m V;放電電圧 〜1KV V0P;印加電圧のゼロ・ピーク値 〜5KV l;放電管の長さ 〜1m 従つて,上に記載の数値の装置においては放電長さが1m
で400W程度の電力が投入され,レーザ出力は約50W得ら
れる。
(Tanaka et al., "Equivalent Circuit and Discharge Characteristics of High Frequency Silent Discharge", The Institute of Electrical Engineers of Japan, Discharge Workshop Material ED-82-27 ((6 1982
Month))) However, f; Power supply frequency = 100 KHz ε S ; Dielectric constant 〜 6 ε 0 ; Vacuum permittivity = 0.88 × 10 -11 Fm -1 t; Dielectric thickness 〜 1 × 10 -3 m X D ; Width of electrode 〜10 × 10 -3 mV * ; Discharge voltage 〜1KV V 0P ; Zero / peak value of applied voltage 〜5KV l; Length of discharge tube 〜1m Therefore, in the device of the above numerical value, Discharge length is 1m
With about 400W of power input, a laser output of about 50W can be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の無声放電式ガスレーザ装置は以上のように構成さ
れており,装置をコンパクトにかつ大出力を得るには
(1)式より比誘電率の大なる放電管を用いるのが有効
であることがわかる。そこで,パイレツクスガラス(ε
6)の100倍以上の比誘電率をもつ,例えばBaTiO3
(ε=1000)を用いて実験を行なつた。ところが第3
図に示すように放電管(1)外にて破壊(沿面放電
(A))が発生し,放電管内での無声放電が得られない
ことが明らかになつた。
The conventional silent discharge type gas laser device is configured as described above, and it is effective to use a discharge tube having a large relative dielectric constant according to the formula (1) in order to make the device compact and obtain a large output. Recognize. Therefore, Pyrex glass (ε
S6 ) with a relative permittivity more than 100 times, such as BaTiO 3
An experiment was conducted using (ε S = 1000). However, the third
As shown in the figure, it became clear that breakdown (creeping discharge (A)) occurred outside the discharge tube (1), and silent discharge inside the discharge tube could not be obtained.

第4図は実験より得られた沿面放電の発生電圧を示す特
性図であり,図中の4つのポイントは比誘電率εが60
および1000のときの実測値を示す。曲線(B)は電源周
波数fが60Hzの時,曲線(C)は100kHzの時のものであ
り,また斜線領域(D)は沿面放電が発生しない領域を
示している。第4図より沿面放電は比誘電率εが高い
程,又電源周波数fが高い程発生しやすいことがわか
る。
Fig. 4 is a characteristic diagram showing the generated voltage of the creeping discharge obtained from the experiment. The four points in the diagram are the relative permittivity ε S of 60.
And the measured values at 1000 are shown. The curve (B) is for a power source frequency f of 60 Hz, the curve (C) is for 100 kHz, and the shaded area (D) is an area where no creeping discharge occurs. It can be seen from FIG. 4 that creeping discharge is more likely to occur as the relative permittivity ε S is higher and the power supply frequency f is higher.

従つて従来の無声放電式ガスレーザ装置では沿面放電の
発生のため比誘電率の大なる放電管の使用が不可能であ
り,装置のコンパクト化に大きな障害となつていた。
Therefore, in the conventional silent discharge type gas laser device, it was impossible to use a discharge tube having a large relative permittivity due to the occurrence of creeping discharge, which was a major obstacle to downsizing of the device.

この発明は上記のような問題点を解決するためになされ
たもので,沿面放電の発生を阻止し,コンパクトでかつ
大出力の得られる装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a device which prevents generation of creeping discharge and is compact and capable of obtaining a large output.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無声放電式ガスレーザ装置は放電管を構
成する誘電体の比誘電率を60ないし1000とするととも
に,各電極間に柔軟性を有する絶縁物層を設けたもので
ある。
The silent discharge type gas laser device according to the present invention is such that the dielectric constant of the dielectric material constituting the discharge tube is 60 to 1000 and a flexible insulator layer is provided between the electrodes.

〔作用〕[Action]

この発明における絶縁物層は沿面放電を防止する。また
この無声放電式ガスレーザ装置は,放電管を高誘電率で
構成したので,コンパクトで大出力が得られ,かつ絶縁
物層により柔軟性を有するので熱応力が発生しにくく,
放電管等の破壊をおこさない。
The insulator layer in the present invention prevents creeping discharge. Further, in this silent discharge type gas laser device, the discharge tube is constructed with a high dielectric constant, so a compact and large output can be obtained, and since the insulating layer has flexibility, thermal stress is less likely to occur,
Does not damage the discharge tube.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例に係る放電管部分を示す断
面図である。この発明における無声放電式ガスレーザ装
置は上記放電管部分以外は第2図と同様であるため,こ
こでは省略する。
FIG. 1 is a sectional view showing a discharge tube portion according to an embodiment of the present invention. The silent discharge type gas laser device according to the present invention is the same as that shown in FIG. 2 except for the above-mentioned discharge tube portion, and therefore it is omitted here.

第1図において,(1)は放電管(BaTiO3=100
0),(2)(3)は電極,(12)は柔軟性を有するシ
リコンゴム系絶縁物層である。
In Fig. 1, (1) is the discharge tube (BaTiO 3 ; ε S = 100
0), (2) and (3) are electrodes, and (12) is a flexible silicone rubber-based insulator layer.

ただしこのシリコンゴム系絶縁物層(12)は真空におい
て脱泡されたものを使用している。
However, the silicone rubber insulating layer (12) is defoamed in vacuum.

このシリコンゴム系絶縁物層(12)により沿面放電は完
全に抑えられ,実験では電力密度80W/cm3と従来の10倍
以上の電力密度でかつ安定な無声放電が得られた。
This silicon rubber-based insulator layer (12) completely suppressed creeping discharge, and in the experiment, we obtained a stable silent discharge with a power density of 80 W / cm 3 which is more than 10 times that of the conventional one.

ただし,粘度の高い材料やあるいは脱泡せずに使用した
場合には放電管の破壊を招いた。
However, if the material was highly viscous or if it was used without defoaming, the discharge tube was destroyed.

ここで各種絶縁物材質にて沿面放電の抑制を行つた結果
を示す。
Here, the results of suppressing creeping discharge with various insulating materials are shown.

(1) エポキシ系接着剤 絶縁物層(12)に一般的なエポキシ系接着剤を使用し
た。
(1) Epoxy adhesive An ordinary epoxy adhesive was used for the insulating layer (12).

この場合沿面放電の発生は見られなかつたがエポキシ中
のポイド放電により絶縁物層(12)の温度が上昇し,エ
ポキシの熱破壊(黒化→破壊)を招いた。そこで耐熱性
の高い高温エポキシ(300℃まで使用可)材料を用いて
同様の実験を行なつた。ところが放電管(1)の破壊を
招いた。この原因はエポキシ内での微少なボイド放電に
より放電管温度が局所的に上昇し,かつエポキシの接着
強度が強すぎるため熱応力が発生し,放電管の破壊につ
ながつたものと考えられる。
In this case, no creeping discharge was observed, but the temperature of the insulator layer (12) rose due to the void discharge in the epoxy, causing thermal destruction (blackening → destruction) of the epoxy. Therefore, the same experiment was performed using a high temperature epoxy material (up to 300 ° C) that has high heat resistance. However, the discharge tube (1) was destroyed. It is considered that this is because the discharge tube temperature locally rises due to the minute void discharge in the epoxy, and the adhesive strength of the epoxy is too strong, which causes thermal stress and leads to the destruction of the discharge tube.

(2) 電界緩和剤 SiCによる電界緩和は一般的に知られている。そこで我
々はSiCにより電界を緩和し,沿面放電の抑制を試み
た。ところが,SiCは赤熱し,かつ沿面放電の発生は防げ
なかつた。
(2) Electric field relaxation agent Electric field relaxation by SiC is generally known. Therefore, we tried to suppress the creeping discharge by relaxing the electric field with SiC. However, SiC glowed red and the occurrence of creeping discharge could not be prevented.

以上により無声放電式ガスレーザに使用する場合の材料
の具備すべき点が明らかになつた。
From the above, it was clarified that the material should be provided for use in the silent discharge gas laser.

(1) 放電管(1)と絶縁物層(12)の熱膨張の差に
より熱的応力が発生しないように柔軟性のある絶縁物を
使用する必要がある。
(1) It is necessary to use a flexible insulator so that thermal stress does not occur due to the difference in thermal expansion between the discharge tube (1) and the insulator layer (12).

(2) 絶縁物層内でのボイド放電を防止するために粘
度が50P以下の低粘性材料であり,脱泡が容易にできる
こと。
(2) A low-viscosity material with a viscosity of 50P or less to prevent void discharge in the insulating layer, and easy defoaming.

上記実施例ではシリコンゴム系絶縁物の場合のみ示した
が上記(1)あるいは(1)(2)の項目を満たしてお
れば,他の材料でも使用は可能である。また,放電管
(1)が比誘電率60の誘電体からなっている場合は,第
4図から分かるように比誘電率1000の場合と比べて絶縁
耐力が大きいので,上記と同様の絶縁物層(12)を設け
ることにより絶縁破壊を防止できることは明らかであ
る。そして(1)式から分かるように,比誘電率60の場
合でも従来の比誘電率6程度のものに比べて大幅に出力
増加できることが明白である。
In the above embodiment, only the case of the silicon rubber type insulator is shown, but other materials can be used as long as the items (1) or (1) and (2) are satisfied. When the discharge tube (1) is made of a dielectric material with a relative permittivity of 60, the dielectric strength is higher than that with a relative permittivity of 1000, as shown in FIG. It is obvious that the dielectric breakdown can be prevented by providing the layer (12). Then, as can be seen from the equation (1), it is clear that even in the case of the relative permittivity of 60, the output can be significantly increased as compared with the conventional one having the relative permittivity of about 6.

〔発明の効果〕〔The invention's effect〕

以上のように,この発明によれば放電管外壁の各電極間
に柔軟性を有する絶縁物層を設けたので沿面放電の抑制
が可能になり,放電管に比誘電率の高い材料が使用で
き,その結果コンパクトで大出力のガスレーザ装置が得
られる効果がある。
As described above, according to the present invention, since the flexible insulator layer is provided between the electrodes on the outer wall of the discharge tube, creeping discharge can be suppressed, and the discharge tube can be made of a material having a high relative dielectric constant. As a result, a compact and high-power gas laser device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例に係る放電管部分を示す断
面図,第2図(a)(b)は各々従来の無声放電式ガス
レーザ装置を示す正面構成図及び第2図(a)のB−B
線に沿つた断面図,第3図は従来の無声放電式ガスレー
ザ装置の放電管部分を示す断面図,並びに第4図は従来
の無声放電式ガスレーザ装置における沿面放電の発生電
圧を示す特性図である。 (1)は放電管,(2)(3)は電極,(4)は電源,
(11)はレーザ光,(12)は絶縁物層 なお図中,同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional view showing a discharge tube portion according to an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are front structural views showing a conventional silent discharge type gas laser device, and FIG. 2 (a). BB
Fig. 3 is a cross-sectional view along the line, Fig. 3 is a cross-sectional view showing the discharge tube portion of a conventional silent discharge type gas laser device, and Fig. 4 is a characteristic diagram showing the voltage generated by creeping discharge in the conventional silent discharge type gas laser device. is there. (1) is a discharge tube, (2) and (3) are electrodes, (4) is a power supply,
(11) is a laser beam, (12) is an insulating layer In the drawings, the same reference numerals indicate the same or corresponding portions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 悟 愛知県名古屋市東区矢田南5丁目1番14号 三菱電機株式会社名古屋製作所内 (56)参考文献 特開 昭59−32187(JP,A) 特開 昭59−32185(JP,A) 特開 昭60−169178(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Hayashi 5-1-14 Yataminami, Higashi-ku, Nagoya-shi, Aichi Mitsubishi Electric Corporation Nagoya Works (56) References JP-A-59-32187 (JP, A) JP-A-59-32185 (JP, A) JP-A-60-169178 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】誘電体よりなる管状の放電管の外壁に設け
た一対の電極に交流電圧を印加して上記放電管内に放電
を起こし、レーザ光を発振させるものにおいて、上記誘
電体の比誘電率を60ないし1000とするとともに、上記放
電管外壁の、上記各電極間に柔軟性を有する絶縁物層を
設けたことを特徴とする無声放電式ガスレーザ装置。
Claim: What is claimed is: 1. A dielectric constant of a dielectric material, comprising: A silent discharge gas laser device, characterized in that a rate of 60 to 1000 is provided and a flexible insulating layer is provided between the electrodes on the outer wall of the discharge tube.
【請求項2】絶縁物層として50P以下の低粘性材料を脱
泡したものを使用した特許請求の範囲第1項記載の無声
放電式ガスレーザ装置。
2. The silent discharge type gas laser device according to claim 1, wherein a low-viscosity material of 50 P or less is degassed as the insulating layer.
JP61025406A 1986-02-07 1986-02-07 Silent discharge gas laser device Expired - Fee Related JPH0770770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025406A JPH0770770B2 (en) 1986-02-07 1986-02-07 Silent discharge gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025406A JPH0770770B2 (en) 1986-02-07 1986-02-07 Silent discharge gas laser device

Publications (2)

Publication Number Publication Date
JPS62183580A JPS62183580A (en) 1987-08-11
JPH0770770B2 true JPH0770770B2 (en) 1995-07-31

Family

ID=12165029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025406A Expired - Fee Related JPH0770770B2 (en) 1986-02-07 1986-02-07 Silent discharge gas laser device

Country Status (1)

Country Link
JP (1) JPH0770770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207578A (en) * 1989-02-07 1990-08-17 Matsushita Electric Ind Co Ltd Gas laser oscillator
US10593776B2 (en) 2016-05-05 2020-03-17 Auroma Technologies, Co., Llc. Dielectric electrode assembly and method of manufacture thereof
US10333268B2 (en) 2016-05-05 2019-06-25 Access Laser Dielectric electrode assembly and method of manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932187A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Silent discharge type gas laser device
JPS5932185A (en) * 1982-08-17 1984-02-21 Mitsubishi Electric Corp Silent discharge type gas laser device

Also Published As

Publication number Publication date
JPS62183580A (en) 1987-08-11

Similar Documents

Publication Publication Date Title
JP2000196168A (en) Laser device
EP0152084B1 (en) Gas laser device
JPH0770770B2 (en) Silent discharge gas laser device
JPS6310597B2 (en)
JPS6245717B2 (en)
JP2659730B2 (en) Metal vapor laser device
JP3088579B2 (en) Laser device
JPS647512B2 (en)
JP4450980B2 (en) AC discharge gas laser oscillator
JP2001177173A (en) Gas laser oscillator
JPH04211184A (en) Discharge excitation excimer laser device
JPS639395B2 (en)
JPH024148B2 (en)
JPH02281671A (en) Gas laser oscillation device
JPH08293637A (en) Laser
JP2578014Y2 (en) Dielectric plate of laser device
JP3159528B2 (en) Discharge pumped excimer laser device
JPS61269387A (en) Electrode structure for laser oscillator
JPH10223957A (en) Excimer laser device
JP2002111100A (en) Gas laser oscillator
JPS63110682A (en) Metal vapor laser device
JPS6398162A (en) Gas laser
JPH0593063U (en) Laser oscillator
JP2004178882A (en) Discharge lamp
JPS58115876A (en) Silent discharge type gas laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees