JPH10223957A - Excimer laser device - Google Patents

Excimer laser device

Info

Publication number
JPH10223957A
JPH10223957A JP5976197A JP5976197A JPH10223957A JP H10223957 A JPH10223957 A JP H10223957A JP 5976197 A JP5976197 A JP 5976197A JP 5976197 A JP5976197 A JP 5976197A JP H10223957 A JPH10223957 A JP H10223957A
Authority
JP
Japan
Prior art keywords
electrode
pipe
dielectric
auxiliary electrode
corona
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5976197A
Other languages
Japanese (ja)
Inventor
Tamotsu Kawakita
有 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP5976197A priority Critical patent/JPH10223957A/en
Publication of JPH10223957A publication Critical patent/JPH10223957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the compactness, reliability, and oscillating efficiency of an excimer laser device which utilizes corona discharge for the preliminary ionization of a laser gas. SOLUTION: In an excimer laser device provided with a corona discharge generating electrode, the corona discharge generating electrode has an auxiliary electrode 16 inserted into a dielectric pipe 15, and a corona electrode 8 which is formed on the external surface of the pipe 15, in such a way that the electrode 8 is faced oppositely to the electrode 16 and the pipe 15 is extended from each electrode and airtightly fixed to the wall 1 of a laser tube through a shield ring 17. Then, the dielectric strength of a voltage introducing section is improved by covering a conductor 18 which is connected to the auxiliary electrode 16 through the pipe 15 with an insulating coating film 19 having a high dielectric strength against feed-through voltage and not forming a creeping section in the laser tube having a low dielectric strength, but in an air section having a high dielectric strength. Therefore, a high voltage can be impressed upon the auxiliary electrode 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コロナ放電により
予備電離を行うエキシマレーザ装置に関する。
The present invention relates to an excimer laser device for performing preionization by corona discharge.

【0002】[0002]

【従来の技術】エキシマレーザ装置は、図4の概略断面
図に示すようにレーザ管1内のレーザガス雰囲気中に、
発振光軸方向(図の紙面に対して垂直方向)に平行に対
向して一対の主放電電極2、3が配置され、この一対の
主放電電極2、3にパルス電圧源4から高電圧のパルス
電圧を印加して、主放電電極2、3間の放電領域dに主
放電を発生させてレーザ励起を行うようにされている。
2. Description of the Related Art As shown in a schematic sectional view of FIG.
A pair of main discharge electrodes 2 and 3 are arranged in parallel with each other in the oscillation optical axis direction (perpendicular to the plane of the drawing). A pulse voltage is applied to generate a main discharge in a discharge region d between the main discharge electrodes 2 and 3, thereby performing laser excitation.

【0003】そして、主放電に先立ち放電領域dにある
レーザガスを予備電離するために、一対の主放電電極
2、3の一方の主放電電極3(図示では接地電位側の電
極)に沿って予備電離放電発生手段が配置されている。
予備電離放電発生手段は、図示例では、誘電体で形成さ
れた中空パイプ(以下、「誘電体パイプ」という。)5
の中空部に導体からなる第1の電極(以下、「補助電
極」という。)6を挿入した棒状体7とこの棒状体7の
外表面に接して軸方向に延びて配置された導体からなる
第2の電極(以下、「コロナ電極」という。)8とでコ
ロナ放電発生電極に構成され、主放電電極3に沿って配
置されている。
In order to pre-ionize the laser gas in the discharge region d prior to the main discharge, a pre-ionization is performed along one main discharge electrode 3 (electrode on the ground potential side in the figure) of the pair of main discharge electrodes 2 and 3. An ionizing discharge generating means is provided.
In the illustrated example, the preliminary ionization discharge generating means is a hollow pipe (hereinafter, referred to as a “dielectric pipe”) 5 formed of a dielectric.
A rod-shaped body 7 in which a first electrode (hereinafter, referred to as “auxiliary electrode”) 6 made of a conductor is inserted into a hollow portion of the rod-shaped body, and a conductor arranged in contact with the outer surface of the rod-shaped body 7 and extending in the axial direction. A second electrode (hereinafter, referred to as “corona electrode”) 8 constitutes a corona discharge generating electrode, and is arranged along the main discharge electrode 3.

【0004】補助電極6は、図5に示すように、端部を
誘電体パイプ5よりも突出させ、その突出端部に導線1
2を接続し、その導線12をレーザ管1の端面等に通常
の、絶縁体10の内部を貫通する導体11からなるブッ
シング構造を有する電圧供給端子9の導体11に接続さ
れていて、電圧供給端子9を介してパルス電圧源4の例
えば高電圧側に接続されている。一方、誘電体パイプ5
の外表面のコロナ電極8は、主放電電極3と同電位のパ
ルス電圧源4の低電圧側(接地電位側)に接続されてい
る。
[0005] As shown in FIG. 5, the auxiliary electrode 6 has an end protruding beyond the dielectric pipe 5, and the protruding end is connected to the conductor 1.
2 is connected to a conductor 11 of a voltage supply terminal 9 having a bushing structure composed of a normal conductor 11 penetrating the inside of an insulator 10 on the end face of the laser tube 1 or the like. It is connected to, for example, the high voltage side of the pulse voltage source 4 via the terminal 9. On the other hand, the dielectric pipe 5
Is connected to the low voltage side (ground potential side) of the pulse voltage source 4 having the same potential as the main discharge electrode 3.

【0005】補助電極6とコロナ電極8間に高電圧のパ
ルス電圧が印加されると、コロナ電極8と誘電体パイプ
5の外表面との接触点部にコロナ放電が発生し、このコ
ロナ放電により発生した紫外光を矢印Aで示すように放
電領域dに照射し、放電領域dにあるレーザガスを予備
電離する。
When a high-voltage pulse voltage is applied between the auxiliary electrode 6 and the corona electrode 8, a corona discharge is generated at a contact point between the corona electrode 8 and the outer surface of the dielectric pipe 5, and the corona discharge is generated. The generated ultraviolet light is applied to the discharge region d as shown by an arrow A, and the laser gas in the discharge region d is pre-ionized.

【0006】[0006]

【発明が解決しようとする課題】ところで、レーザガス
は、電気絶縁耐力は空気に比べると非常に低く(1/4
程度以下)、誘電体パイプ5の外表面に形成されたコロ
ナ電極8の端部と中空パイプ5から突出する補助電極6
間で誘電体パイプ5の外表面に沿う沿面放電が発生しや
すく、また、電圧供給端子9のレーザ管1の内側で絶縁
体10から突出する導体11とレーザ管1の端面との間
で絶縁体10の外表面に沿う沿面放電が発生しやすい。
そのため高い電圧が印加できなくなり充分な予備電離が
できない。
By the way, the laser gas has a very low electric insulation strength (1/4) as compared with air.
Degree), an end of a corona electrode 8 formed on the outer surface of the dielectric pipe 5 and an auxiliary electrode 6 protruding from the hollow pipe 5.
Creepage discharge along the outer surface of the dielectric pipe 5 easily occurs between the dielectric pipe 5 and the insulation between the conductor 11 protruding from the insulator 10 inside the laser tube 1 of the voltage supply terminal 9 and the end face of the laser tube 1. Creepage discharge along the outer surface of the body 10 is likely to occur.
Therefore, a high voltage cannot be applied, and sufficient preliminary ionization cannot be performed.

【0007】その沿面放電を回避するためには、誘電体
パイプ5を長くしコロナ電極8の端部と誘電体パイプ5
から突出する補助電極6間の距離を長くし、また、電圧
供給端子9の絶縁体10のレーザ管1内部側を長くし
て、沿面長を非常に長くすればある程度は回避される
が、沿面長を長くすると装置寸法が大きくなるだけでな
く、レーザ光の共振器長が長くなり発振効率の大幅な低
下を招く(一般的に同一の利得長を持つレーザ発振器に
おいて、共振器長が長くなると発振効率が低下すること
が知られている。)という問題がある。
In order to avoid the creeping discharge, the length of the dielectric pipe 5 is increased, and the end of the corona electrode 8 is connected to the dielectric pipe 5.
If the distance between the auxiliary electrodes 6 protruding from the electrode is increased and the length of the insulator 10 of the voltage supply terminal 9 inside the laser tube 1 is increased to make the creepage length very long, this can be avoided to some extent. Increasing the length not only increases the size of the device, but also increases the length of the resonator of the laser light, resulting in a significant decrease in oscillation efficiency. (Generally, in a laser oscillator having the same gain length, the length of the resonator increases. It is known that the oscillation efficiency is reduced.)

【0008】本発明は、上記の問題に鑑みなされたもの
で、レーザガスの予備電離にコロナ放電を利用するエキ
シマレーザ装置において、コンパクトで信頼性が高く発
振効率の高いエキシマレーザ装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a compact, highly reliable excimer laser device having high oscillation efficiency, which utilizes corona discharge for preliminary ionization of a laser gas. Aim.

【0009】[0009]

【課題を解決するための手段】本発明の上記目的は、レ
ーザ管内に一対の主放電電極と前記主放電電極に沿って
配置されたコロナ放電発生電極とを備えてなるエキシマ
レーザ装置において、前記コロナ放電発生電極は、誘電
体パイプの内部に挿入された補助電極と前記補助電極に
対向し前記誘電体パイプの外表面に形成されたコロナ電
極とを有し、前記誘電体パイプを前記各電極から延長し
て前記レーザ管壁に気密固定するとともに、前記誘電体
パイプ内を通り前記補助電極に接続される導線に高貫通
絶縁耐力を有する絶縁被服を施してなり、前記補助電極
とレーザ管壁間沿面距離を印加電圧に対して絶縁耐力を
充分高めてなることを特徴とするエキシマレーザ装置と
することにより達成される。
The object of the present invention is to provide an excimer laser device comprising a pair of main discharge electrodes in a laser tube and a corona discharge generating electrode arranged along the main discharge electrodes. The corona discharge generating electrode has an auxiliary electrode inserted inside the dielectric pipe and a corona electrode formed on the outer surface of the dielectric pipe facing the auxiliary electrode, and the dielectric pipe is connected to each of the electrodes. Extending from the laser tube wall and hermetically fixed to the laser tube wall, and a conductive wire passing through the dielectric pipe and connected to the auxiliary electrode is coated with an insulating coating having a high penetration dielectric strength. The excimer laser device is characterized in that the creepage distance is sufficiently increased in the dielectric strength with respect to the applied voltage.

【0010】本発明の上記特徴によれば、補助電極は、
誘電体パイプによって全体が囲繞され、誘電体パイプは
コロナ電極及び補助電極から離れてレーザ管壁に気密固
定されるので、電気絶縁耐力の低いレーザ管内で沿面絶
縁部を形成せず絶縁耐力の高い大気部で形成する。した
がって短い沿面部で沿面放電が防止される。そして補助
電極に高電圧パルスを印加する導線は誘電体パイプ内に
挿入されるとともに、その周囲に高貫通絶縁耐力を有す
る絶縁被服が施されているので、補助電極により高圧の
電圧の印加が可能になる。
According to the above aspect of the present invention, the auxiliary electrode includes:
The whole is surrounded by the dielectric pipe, and the dielectric pipe is airtightly fixed to the laser tube wall apart from the corona electrode and the auxiliary electrode, so that the creepage insulating portion is not formed in the laser tube with low electric insulation strength and the dielectric strength is high. Formed in the atmosphere. Therefore, creeping discharge is prevented at the short creeping portion. The conductor that applies the high-voltage pulse to the auxiliary electrode is inserted into the dielectric pipe, and the surroundings are coated with insulation that has a high dielectric strength, so a high voltage can be applied by the auxiliary electrode. become.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照して説明する。図1は本発明に係る実施形態
の構成を示す断面図である。なお、図4および図5と同
一の部分には同一符号を付し、重複する説明は省略す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the configuration of the embodiment according to the present invention. The same parts as those in FIGS. 4 and 5 are denoted by the same reference numerals, and redundant description will be omitted.

【0012】図1に示す本発明に係るガスレーザ装置の
コロナ放電発生電極は、アルミナセラミックスの誘電体
で形成された誘電体パイプ15の中空部に導体からなる
補助電極16を挿入し、補助電極16に対向する誘電体
パイプ15の外表面に接して軸方向に延びて配置された
導体からなるコロナ電極8とで構成され、主放電電極3
に沿って配置される。
The corona discharge generating electrode of the gas laser device according to the present invention shown in FIG. 1 has an auxiliary electrode 16 made of a conductor inserted into a hollow portion of a dielectric pipe 15 made of a dielectric material of alumina ceramics. And a corona electrode 8 made of a conductor arranged in the axial direction in contact with the outer surface of the dielectric pipe 15 facing the main discharge electrode 3.
It is arranged along.

【0013】誘電体パイプ15は、補助電極16よりも
長く延長して形成され、その端面はレーザ管1の側壁に
Oリングやゴムパッキンなどのシールドリング17を介
して気密に固定されている。誘電体パイプ15の中空部
に挿入された補助電極16は、誘電体パイプ15によっ
て全面が囲繞されており、誘電体パイプ15の中空内部
に挿通された導線18により、図4に示すようなパルス
電圧源4から高電圧が印加される。導線18は印加電圧
に対して充分に高い貫通絶縁耐力を有する絶縁被服19
が施されている。
The dielectric pipe 15 is formed to extend longer than the auxiliary electrode 16, and its end face is air-tightly fixed to the side wall of the laser tube 1 via a shield ring 17 such as an O-ring or rubber packing. The auxiliary electrode 16 inserted in the hollow portion of the dielectric pipe 15 is entirely surrounded by the dielectric pipe 15, and a pulse 18 as shown in FIG. A high voltage is applied from the voltage source 4. The conductive wire 18 has an insulating coating 19 having a sufficiently high penetration dielectric strength against an applied voltage.
Is given.

【0014】また、高電圧が印加される補助電極16は
必要な長さに止められおり、これより延びる誘電体パイ
プ15部と端面間に形成される沿面部は印加電圧に対し
て充分に高い沿面絶縁耐圧を有している。そのため補助
電極16により高電圧を印加し、予備電離効果を高める
ことができる。
The auxiliary electrode 16 to which a high voltage is applied is stopped at a required length, and the creepage formed between the dielectric pipe 15 extending therefrom and the end face is sufficiently high with respect to the applied voltage. It has a creepage withstand voltage. Therefore, a high voltage can be applied by the auxiliary electrode 16 to enhance the preliminary ionization effect.

【0015】図1に示した実施の形態の誘電体パイプ1
5は、直線状に形成してその端面をレーザ管1の側壁に
固定されているが、レーザ出射窓等が障害になって直線
的に形成できない場合には、図2に示すように、アルミ
ナセラミックスの誘電体で形成された誘電体パイプ25
を障害物を避けて曲げて構成する。
A dielectric pipe 1 according to the embodiment shown in FIG.
5 is formed in a straight line and the end face thereof is fixed to the side wall of the laser tube 1. However, when the laser emission window or the like cannot be formed linearly due to an obstacle, as shown in FIG. Dielectric pipe 25 made of ceramic dielectric
Is bent to avoid obstacles.

【0016】すなわち、図2に示す実施の形態のコロナ
放電発生電極では、アルミナセラミックスの誘電体で形
成された誘電体パイプ25の中空部に導体からなる補助
電極26を挿入し、補助電極26に対向する誘電体パイ
プ25の外表面に接して軸方向に延びて配置された導体
からなるコロナ電極8とで構成され、主放電電極3に沿
って配置される。
That is, in the corona discharge generating electrode of the embodiment shown in FIG. 2, an auxiliary electrode 26 made of a conductor is inserted into a hollow portion of a dielectric pipe 25 formed of a dielectric material of alumina ceramics. A corona electrode 8 made of a conductor is provided extending in the axial direction in contact with the outer surface of the opposed dielectric pipe 25, and is arranged along the main discharge electrode 3.

【0017】誘電体パイプ25は、補助電極16よりも
長く延長して形成され、その延長部を曲げて形成し、そ
の端面はレーザ管1の側壁にOリングやゴムパッキンな
どのシールドリング17を介して気密に固定されてい
る。
The dielectric pipe 25 is formed so as to extend longer than the auxiliary electrode 16 and is formed by bending the extension. The end face is provided with a shield ring 17 such as an O-ring or rubber packing on the side wall of the laser tube 1. The airtight is fixed through.

【0018】この実施の形態においても誘電体パイプ2
5の中空部に挿入された補助電極16は、誘電体パイプ
25によって全面が囲繞されており、誘電体パイプ25
の中空内部に挿通された導線18により、図4に示すよ
うなパルス電圧源4から高電圧が印加される。導線18
は印加電圧に対して充分に高い貫通絶縁耐力を有する絶
縁被服19が施されている。このように構成されたコロ
ナ放電発生電極も、図1に示したコロナ放電発生電極と
同様の作用効果を享受できる。
Also in this embodiment, the dielectric pipe 2
The entire surface of the auxiliary electrode 16 inserted into the hollow portion of the dielectric pipe 25 is surrounded by a dielectric pipe 25.
A high voltage is applied from a pulse voltage source 4 as shown in FIG. Conductor 18
Is provided with an insulating garment 19 having sufficiently high penetration dielectric strength with respect to the applied voltage. The corona discharge generating electrode configured as described above can enjoy the same function and effect as the corona discharge generating electrode shown in FIG.

【0019】図3に示す実施の形態では、誘電体パイプ
15(又は25)と絶縁被服19が施された導線18と
の間の空隙部にシリコンゴムなどの絶縁体20を充填
し、誘電体パイプ15(又は25)と絶縁被服19が施
された導線18との間の空隙部で部分放電が発生するの
を防止している。このように構成すると、電圧導入部の
信頼性、寿命が向上する。
In the embodiment shown in FIG. 3, a gap between the dielectric pipe 15 (or 25) and the conductive wire 18 provided with the insulating coating 19 is filled with an insulator 20 such as silicon rubber. A partial discharge is prevented from occurring in a gap between the pipe 15 (or 25) and the conductor 18 provided with the insulating coating 19. With this configuration, the reliability and the life of the voltage introducing unit are improved.

【0020】なお、コロナ放電発生電極は、一対の主放
電電極のいずれ側に沿って配置するかは任意であり、高
電圧の極性も任意である。また、本発明はコロナ放電発
生用電圧供給部の構造であるが、無声放電の電圧供給部
でも同様の構造を採用すれば同様の効果が得られる。上
記の実施の形態では誘電体としてアルミナセラミックス
を用いているが、腐食性レーザガス及び放電に対する耐
圧を有する材質であれば良い。更に、誘電体パイプを気
密固定する壁面は、通常金属であるが絶縁体に変換して
も良い。
It should be noted that the corona discharge generating electrode may be arranged along any side of the pair of main discharge electrodes, and the polarity of the high voltage is also arbitrary. Although the present invention has a structure of a voltage supply unit for generating corona discharge, a similar effect can be obtained in a voltage supply unit of silent discharge by adopting a similar structure. In the above embodiment, alumina ceramics is used as the dielectric, but any material having a withstand voltage against corrosive laser gas and discharge may be used. Further, the wall surface for hermetically fixing the dielectric pipe is usually made of metal, but may be converted to an insulator.

【0021】[0021]

【発明の効果】以上詳述したように、本発明によれば、
電気絶縁耐力の低いレーザ管内で沿面絶縁部が形成され
ず、絶縁耐力が高い大気部で形成されるので、短い沿面
距離で沿面放電が防止でき、補助電極により高圧の電圧
の印加が可能になり、予備電離効果が高められるととも
にコンパクトで信頼性の高いエキシマレーザ装置を得る
ことができる。
As described in detail above, according to the present invention,
Creepage insulation is not formed in the laser tube with low electrical insulation strength, and it is formed in the atmosphere part with high dielectric strength, so creeping discharge can be prevented with a short creepage distance, and high voltage can be applied by the auxiliary electrode. In addition, it is possible to obtain a compact and highly reliable excimer laser device with enhanced preliminary ionization effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のコロナ放電発生電極の構
成を示す横断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a corona discharge generating electrode according to an embodiment of the present invention.

【図2】本発明の実施の形態のコロナ放電発生電極の他
の構成を示す横断面図である。
FIG. 2 is a cross-sectional view showing another configuration of the corona discharge generating electrode according to the embodiment of the present invention.

【図3】本発明の実施の形態のコロナ放電発生電極の更
に他の構成を示す横断面図である。
FIG. 3 is a cross-sectional view showing still another configuration of the corona discharge generating electrode according to the embodiment of the present invention.

【図4】コロナ放電発生電極を有するエキシマレーザ装
置の要部の構成を示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing a configuration of a main part of an excimer laser device having a corona discharge generating electrode.

【図5】従来のコロナ放電発生電極の構成を示す横断面
図である。
FIG. 5 is a cross-sectional view showing a configuration of a conventional corona discharge generating electrode.

【符号の説明】[Explanation of symbols]

1 レーザ管 2、3 主放電電極 4 パルス電源 8 コロナ電極 15、25 誘電体パイプ 16 補助電極 17 シールドリング 18 導線 19 絶縁被服 20 絶縁体 DESCRIPTION OF SYMBOLS 1 Laser tube 2, 3 Main discharge electrode 4 Pulse power supply 8 Corona electrode 15, 25 Dielectric pipe 16 Auxiliary electrode 17 Shield ring 18 Conductive wire 19 Insulation clothing 20 Insulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ管内に一対の主放電電極と前記主
放電電極に沿って配置されたコロナ放電発生電極とを備
えてなるエキシマレーザ装置において、前記コロナ放電
発生電極は、誘電体パイプの内部に挿入された補助電極
と前記補助電極に対向し前記誘電体パイプの外表面に形
成されたコロナ電極とを有し、前記誘電体パイプを前記
各電極から延長して前記レーザ管壁に気密固定するとと
もに、前記誘電体パイプ内を通り前記補助電極に接続さ
れる導線に高貫通絶縁耐力を有する絶縁被服を施してな
り、前記補助電極とレーザ管壁間沿面距離を印加電圧に
対して絶縁耐力を充分高めてなることを特徴とするエキ
シマレーザ装置。
1. An excimer laser device comprising: a pair of main discharge electrodes in a laser tube; and a corona discharge generation electrode disposed along the main discharge electrodes, wherein the corona discharge generation electrode is provided inside a dielectric pipe. And a corona electrode formed on the outer surface of the dielectric pipe facing the auxiliary electrode, extending the dielectric pipe from each of the electrodes and hermetically fixing the laser pipe wall. In addition, a conductor passing through the dielectric pipe and connected to the auxiliary electrode is coated with an insulating coating having a high penetration dielectric strength, and the creepage distance between the auxiliary electrode and the laser tube wall is set to a dielectric strength with respect to an applied voltage. An excimer laser device characterized by sufficiently increasing the value.
JP5976197A 1997-02-05 1997-02-05 Excimer laser device Pending JPH10223957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5976197A JPH10223957A (en) 1997-02-05 1997-02-05 Excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5976197A JPH10223957A (en) 1997-02-05 1997-02-05 Excimer laser device

Publications (1)

Publication Number Publication Date
JPH10223957A true JPH10223957A (en) 1998-08-21

Family

ID=13122584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5976197A Pending JPH10223957A (en) 1997-02-05 1997-02-05 Excimer laser device

Country Status (1)

Country Link
JP (1) JPH10223957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010553A (en) * 2008-06-30 2010-01-14 Gigaphoton Inc High repetition and high power excimer laser apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010553A (en) * 2008-06-30 2010-01-14 Gigaphoton Inc High repetition and high power excimer laser apparatus

Similar Documents

Publication Publication Date Title
KR100545484B1 (en) Compact excimer laser insulator with integral pre-ionizer
US4953174A (en) Preionization electrode for pulsed gas laser
EP0096899A2 (en) Pulsed gas laser in a sealed structure
JP3359838B2 (en) Corona generator
JPH05198873A (en) Device for pre-ionizing gas in pulse-gas-laser
JPH0460356B2 (en)
US4677637A (en) TE laser amplifier
JPH10223957A (en) Excimer laser device
JPS5968985A (en) Voiceless discharge system gas laser device
JPH10107343A (en) Excimer laser system
US4817107A (en) Laser plasma chamber
JP2001177173A (en) Gas laser oscillator
RU2155421C1 (en) Electrode device with preliminary ionization by ultraviolet light produced by corona discharge
US4692664A (en) Gaseous discharge device
JPH11168254A (en) Corona bar, pre-ionization electrode, and excimer laser device
JP2971802B2 (en) Rare gas discharge lamp device
JP4049347B2 (en) Discharge excitation laser equipment
JPS63227069A (en) Highly repetitive pulse laser electrode
JP2670285B2 (en) Gas laser oscillation device
JPH10284786A (en) Gas laser device
JP2829119B2 (en) Metal vapor laser device
JPH0144026B2 (en)
JPH09167867A (en) Pulse laser
JPH0329316B2 (en)
JPS639675B2 (en)