JPS639675B2 - - Google Patents
Info
- Publication number
- JPS639675B2 JPS639675B2 JP16479980A JP16479980A JPS639675B2 JP S639675 B2 JPS639675 B2 JP S639675B2 JP 16479980 A JP16479980 A JP 16479980A JP 16479980 A JP16479980 A JP 16479980A JP S639675 B2 JPS639675 B2 JP S639675B2
- Authority
- JP
- Japan
- Prior art keywords
- inductor
- capacitor
- discharge
- laser tube
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 36
- 239000007789 gas Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/097—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
気体レーザは、気密容器に封入したガスをガス
放電によつて励起し、励起状態のガス分子やガス
原子の発光を共振させるもので、単色性が優れ、
コヒーレンスが質的に異なる光が得られる。[Detailed Description of the Invention] A gas laser excites gas sealed in an airtight container by gas discharge, causing the excited gas molecules and gas atoms to resonate, and has excellent monochromaticity.
Light with qualitatively different coherences can be obtained.
強度の大きなレーザを得るために、ガス放電は
共振器内の光路に沿つて同時に均一に発生させな
ければならない。このため所望のガスを封入した
気密容器内に狭い間隙をもつ2つの平行な電極を
設けたレーザ管を用いる。 In order to obtain a high-intensity laser, the gas discharge must be generated simultaneously and uniformly along the optical path within the resonator. For this purpose, a laser tube is used in which two parallel electrodes with a narrow gap are provided in an airtight container filled with a desired gas.
このようなレーザ管は、封入ガスの圧力が比較
的低いときは電極に沿つて均一な放電を生じるが
高いときはストリーマ状のアーク放電、すなわち
電極の一部において局部的な放電を生ずる。 Such a laser tube produces a uniform discharge along the electrode when the pressure of the filler gas is relatively low, but when the pressure is high it produces a streamer-like arc discharge, ie a localized discharge on a portion of the electrode.
このような局部的な放電を防止し、電極に沿つ
て均一な放電を生じるため、前述の狭い間隙をも
つ2つの平行な電極(以下主放電電極という)の
他に、上記主放電電極に沿つて補助放電電極を設
け、上記主放電電極による放電に先立つて、補助
放電電極を放電させ、十分なイオンを発生した後
に主放電電極を放電する方法が用いられていた。 In order to prevent such local discharge and generate a uniform discharge along the electrodes, in addition to the two parallel electrodes with a narrow gap described above (hereinafter referred to as main discharge electrodes), A method has been used in which an auxiliary discharge electrode is provided, and the auxiliary discharge electrode is discharged prior to the discharge by the main discharge electrode, and after sufficient ions are generated, the main discharge electrode is discharged.
以下に第1図、第2図および第3図を用いて、
本発明に係るレーザ管の構造を説明する。 Below, using Figures 1, 2 and 3,
The structure of the laser tube according to the present invention will be explained.
第1図はレーザ管20の縦断面図で有底円筒状
の気密容器25内に直線状の電極26および27
が円筒軸に平行に、かつ円筒軸付近に設けられて
いる。上記電極26と27は主放電電極である。
このレーザ管20には、クリプトン5%、ヘリウ
ム94.8%、フツ素0.2%(圧力比)の混合ガスが
2.5気圧封入されている。28は補助放電電極で、
第1図A―A断面図である第2図に示す主放電電
極26と27との間隙を最大視角で見る気密容器
25の内壁に設けられている。第3図は、補助放
電電極の構造を示す縦断面図で、電気絶縁性の基
板29の第1の面に長手方向に連続した導電層3
0を設け、上記導電層30は上記基板29の一端
で、第2の面の導電層31に接続すると共に第2
の面上に島状の導電層32…39が電気的に弧立
して一列に配列してある。補助放電電極28は、
島状の導電層32…39を主放電電極26と27
の間隙に対向し、導電層30を気密容器25の内
壁に対向して気密容器25に固定し、導電層30
に導入線40を、導電層31から最も遠い位置に
ある島状の電極39に導入線41を接続して、気
密容器25の外から電圧を加えることができるよ
うにしてある。導入線40と導入線41に直流高
電圧を加えたとき、最初に島状の導電層39と3
8の間で放電し、順次放電が発展し、島状の導電
層31から39までの隣接する島状の導電層の間
で放電し、封入気体をイオン化する。 FIG. 1 is a longitudinal cross-sectional view of the laser tube 20, in which linear electrodes 26 and 27 are placed inside a bottomed cylindrical airtight container 25.
is provided parallel to and near the cylinder axis. The electrodes 26 and 27 are the main discharge electrodes.
This laser tube 20 contains a mixed gas of 5% krypton, 94.8% helium, and 0.2% fluorine (pressure ratio).
It is sealed at 2.5 atm. 28 is an auxiliary discharge electrode,
It is provided on the inner wall of the airtight container 25 when the gap between the main discharge electrodes 26 and 27 shown in FIG. 2, which is a sectional view taken along the line AA in FIG. 1, is viewed from the maximum viewing angle. FIG. 3 is a longitudinal cross-sectional view showing the structure of the auxiliary discharge electrode, in which a conductive layer 3 continuous in the longitudinal direction is provided on the first surface of the electrically insulating substrate 29.
0, the conductive layer 30 is connected to the conductive layer 31 on the second surface at one end of the substrate 29, and the conductive layer 30 is connected to the conductive layer 31 on the second surface.
Island-shaped conductive layers 32 . . . 39 are electrically erected and arranged in a line on the surface. The auxiliary discharge electrode 28 is
The island-shaped conductive layers 32...39 are connected to the main discharge electrodes 26 and 27.
The conductive layer 30 is fixed to the airtight container 25 facing the gap and facing the inner wall of the airtight container 25.
A lead-in wire 40 is connected to the conductive layer 31, and a lead-in wire 41 is connected to the island-shaped electrode 39 located farthest from the conductive layer 31, so that a voltage can be applied from outside the airtight container 25. When a DC high voltage is applied to the lead-in wire 40 and the lead-in wire 41, the island-shaped conductive layers 39 and 3 first
8, the discharge develops sequentially, and discharge occurs between adjacent island-shaped conductive layers 31 to 39, ionizing the enclosed gas.
上述のようなレーザ管において、主放電電極2
6と27の間にレーザ光を発生するために25キロ
ボルト以上の高圧を印加するが、このとき補助放
電電極28は主放電電極26,27に平行して設
けられ、通常主放電電極26あるいは27のいず
れかの電位と同一の電位を与えられているから、
補助放電電極28と1つの主放電電極との間で放
電が起こり易く、そのとき主放電電極26と27
の間で放電が発生しないか、極めて弱い放電が発
生するため、レーザ光を発生することができな
い。 In the laser tube as described above, the main discharge electrode 2
A high voltage of 25 kilovolts or more is applied between 6 and 27 to generate laser light. At this time, the auxiliary discharge electrode 28 is provided parallel to the main discharge electrodes 26 and 27, and usually the main discharge electrode 26 or 27 Since it is given the same potential as either of the
Discharge tends to occur between the auxiliary discharge electrode 28 and one main discharge electrode, and at that time the main discharge electrodes 26 and 27
Since no discharge occurs or an extremely weak discharge occurs between the two, laser light cannot be generated.
本発明は上述のように欠点を除いたレーザ管の
放電電極回路に関するものである。 The present invention relates to a discharge electrode circuit for a laser tube which eliminates the above-mentioned drawbacks.
本発明は、前述のように補助放電電極と主放電
電極との間に不要な放電を生ずる恐れのないレー
ザ管の放電電源回路である。 The present invention is a discharge power supply circuit for a laser tube that does not cause unnecessary discharge between the auxiliary discharge electrode and the main discharge electrode as described above.
第4図に示した従来のレーザ管の放電電源回路
と第6図に示した本発明のレーザ管の放電電源回
路とを対比して本発明を詳細に説明する。第4図
において、20はレーザ管で、26と27はその
主放電電極、31と39はその補助放電電極であ
る。1は5マイクロヘンリの第1のインダクタ、
2は16ナノフアラツドの第1のキヤパシタ、3も
16ナノフアラツドの第2のキヤパシタで、第1の
インダクタ1と第1のキヤパシタ2と第2のキヤ
パシタ3は直列に接続され、閉回路を構成する。
第1のインダクタの両端はレーザ管20の主放電
電極26と27にそれぞれ接続してある。第2の
キヤパシタ3の両端には、例えばトリガードスパ
ークギヤツプのような高電圧に耐える第1のスイ
ツチ4と25キロボルトの電圧を出力する第1の直
流高圧電源5が接続してある。上述の回路は主放
電電源回路を構成し、第1のスイツチ4のトリガ
端子にトリガ信号が入力したとき、第1のキヤパ
シタ2と第2のキヤパシタ3に蓄積された電荷が
第1のインダクタ1を流れてその両端に高電圧が
発生する。8は6ナノフアラツドの第3のキヤパ
シタ、6は10マイクロヘンリの第2のインダク
タ、9はトリガードスパークギヤツプのような高
電圧に耐える第2のスイツチで、第3のキヤパシ
タ8と第2のインダクタ6と第2のスイツチ9
は、上記の順に直列に接続され閉回路を構成す
る。第2のインダクタ6の両端はレーザ管20の
補助放電電極31と39にそれぞれ接続してあ
る。第2のスイツチ9の両端に20キロボルトの電
圧を出力する第2の直流高圧電源10が接続して
ある。上述の回路は補助放電電源回路を構成し、
第2のスイツチ9のトリガ端子にトリガ信号が入
力したとき、第3のキヤパシタ8に蓄積された電
荷が第2のインダクタ6を流れて、第2のインダ
クタ6の両端に高電圧が発生する。 The present invention will be explained in detail by comparing the conventional discharge power supply circuit for a laser tube shown in FIG. 4 with the discharge power supply circuit for a laser tube according to the present invention shown in FIG. In FIG. 4, 20 is a laser tube, 26 and 27 are its main discharge electrodes, and 31 and 39 are its auxiliary discharge electrodes. 1 is the first inductor of 5 microhenries,
2 is the first capacitor of 16 nanometers, 3 is also
In the second capacitor of 16 nanoparticles, the first inductor 1, the first capacitor 2, and the second capacitor 3 are connected in series to form a closed circuit.
Both ends of the first inductor are connected to main discharge electrodes 26 and 27 of the laser tube 20, respectively. Connected to both ends of the second capacitor 3 are a first switch 4 that can withstand high voltages, such as a triggered spark gap, and a first DC high voltage power source 5 that outputs a voltage of 25 kilovolts. The above circuit constitutes a main discharge power supply circuit, and when a trigger signal is input to the trigger terminal of the first switch 4, the charges accumulated in the first capacitor 2 and the second capacitor 3 are transferred to the first inductor 1. high voltage is generated across it. 8 is the third capacitor of 6 nanometers, 6 is the second inductor of 10 microhenries, 9 is the second switch that can withstand high voltage such as a triggered spark gap, and the third capacitor 8 and the second inductor 6 and second switch 9
are connected in series in the above order to form a closed circuit. Both ends of the second inductor 6 are connected to auxiliary discharge electrodes 31 and 39 of the laser tube 20, respectively. A second DC high voltage power supply 10 that outputs a voltage of 20 kilovolts is connected to both ends of the second switch 9. The above circuit constitutes an auxiliary discharge power supply circuit,
When a trigger signal is input to the trigger terminal of the second switch 9, the charge accumulated in the third capacitor 8 flows through the second inductor 6, and a high voltage is generated across the second inductor 6.
次にレーザ発光するときの動作の説明をする。 Next, the operation when emitting laser light will be explained.
最初にスイツチ9にトリガ信号を入力すると、
補助放電電極31と39の間に高圧パルスが加え
られトリガ信号から約0.1マイクロ秒遅れて補助
放電電極31と39の間を放電電流が流れる。こ
れによつて補助放電電極の周囲の封入ガスがイオ
ン化され約1マイクロ秒の後に拡散して主放電電
極の間隙に達する。このときスイツチ4にトリガ
信号を入力すると主放電電極26と27に高圧パ
ルスが加えられ、主放電電極に沿つて均一な放電
が発生し、ガス分子や原子のエネルギ状態が反転
分布の状態となり、励起状態のガス分子や原子が
基底状態に戻るとき発生する光が図示してない反
転鏡からなる共振器の中でレーザ発振する。 When you first input the trigger signal to switch 9,
A high voltage pulse is applied between the auxiliary discharge electrodes 31 and 39, and a discharge current flows between the auxiliary discharge electrodes 31 and 39 with a delay of approximately 0.1 microsecond from the trigger signal. As a result, the gas enclosed around the auxiliary discharge electrode is ionized and diffuses after about 1 microsecond to reach the gap between the main discharge electrodes. At this time, when a trigger signal is input to the switch 4, a high voltage pulse is applied to the main discharge electrodes 26 and 27, a uniform discharge is generated along the main discharge electrodes, and the energy state of gas molecules and atoms becomes a state of population inversion. Light generated when gas molecules or atoms in an excited state return to the ground state oscillates as a laser in a resonator consisting of an inverting mirror (not shown).
ところで、第5図は主放電電極27を基準とし
た各電極の電位を示すグラフである。各電極の電
位の曲線を第4図の各電極を示す符号と同一符号
で示してある。同図において0.1マイクロ秒のと
きに示す極値は、補助放電を生ずるための補助放
電電極の電位である。また1マイクロ秒のときに
示す極値は主放電を生ずるための主放電電極の電
位である。すなわち1マイクロ秒のとき補助放電
電極と主放電電極26との間に最大50キロボルト
が加えられ、その間に放電が生じることがある。
このとき主放電電極26と主放電電極27との間
に放電が生じないか、生じても極めて弱く、レー
ザ発光を生ずることができない。 By the way, FIG. 5 is a graph showing the potential of each electrode with the main discharge electrode 27 as a reference. The potential curve of each electrode is indicated by the same reference numeral as the reference numeral indicating each electrode in FIG. In the figure, the extreme value shown at 0.1 microseconds is the potential of the auxiliary discharge electrode for generating auxiliary discharge. Further, the extreme value shown at 1 microsecond is the potential of the main discharge electrode for generating the main discharge. That is, a maximum of 50 kilovolts is applied between the auxiliary discharge electrode and the main discharge electrode 26 for 1 microsecond, and a discharge may occur during that time.
At this time, no discharge occurs between the main discharge electrode 26 and the main discharge electrode 27, or even if it occurs, it is extremely weak and cannot cause laser emission.
第6図は、本発明のレーザ管の放電電源回路の
具体例を示す図で、第4図に示した従来のレーザ
管の放電電源回路において、さらに、主放電電源
回路の第1のインダクタ1と第1のキヤパシタ2
との接続点と補助放電電源回路の第3のキヤパシ
タ8と第2のインダクタ6との接続点とを2マイ
クロヘンリの第4のインダクタ11を介して接続
すると共に第2のインダクタ6の上記接続点と異
なる端子を第3のインダクタ7を介して直流高圧
電源の間に挿入したものである。第6図に示した
回路において、第2のスイツチ4にトリガ信号が
入力して主放電電極26と27の間に最大50キロ
ボルトの電圧が加わる。このとき、主放電電極2
6は第4のインダクタ11と第2のインダクタ6
と第3のインダクタ7を介して接地されているの
で、補助放電電極31と補助放電電極39には最
大50キロボルトを、上記第4のインダクタ11と
第2のインダクタ6と第3のインダクタ7のイン
ピーダンスによつて分割された電位が与えられ
る。すなわち、第7図に第6図における各電極の
電位を同一符号を付した曲線で示すように補助放
電電極31の電位は42キロボルト、補助放電電極
39の電位は4キロボルトとなり、補助放電電極
31と主放電電極26との間の電圧は8キロボル
ト、補助放電電極39と主放電電極27との間の
電圧は4キロボルトに減少する。従つて補助放電
電極と主放電電極の間に放電が生じなくなり、安
定にレーザ発光を得ることができる。 FIG. 6 is a diagram showing a specific example of a discharge power supply circuit for a laser tube according to the present invention. In the conventional discharge power supply circuit for a laser tube shown in FIG. and first capacitor 2
and the connection point between the third capacitor 8 and the second inductor 6 of the auxiliary discharge power supply circuit are connected via the fourth inductor 11 of 2 microhenries, and the above-mentioned connection of the second inductor 6 is made. A terminal different from the point is inserted between the DC high voltage power supply via the third inductor 7. In the circuit shown in FIG. 6, a trigger signal is input to the second switch 4, and a maximum voltage of 50 kilovolts is applied between the main discharge electrodes 26 and 27. At this time, the main discharge electrode 2
6 is the fourth inductor 11 and the second inductor 6
and grounded via the third inductor 7, a maximum of 50 kilovolts is applied to the auxiliary discharge electrode 31 and the auxiliary discharge electrode 39, and a maximum of 50 kilovolts is applied to the fourth inductor 11, the second inductor 6, and the third inductor 7. A potential divided by impedance is applied. That is, as shown in FIG. 7 by a curve in which the potential of each electrode in FIG. and the main discharge electrode 26 is 8 kilovolts, and the voltage between the auxiliary discharge electrode 39 and the main discharge electrode 27 is reduced to 4 kilovolts. Therefore, no discharge occurs between the auxiliary discharge electrode and the main discharge electrode, and stable laser emission can be obtained.
以上、具体的に説明したように本発明は、第1
のインダクタ1と第1のキヤパシタ2と第2のキ
ヤパシタ3を直列に接続して閉回路を形成し、上
記第1のインダクタ1の両端の各々レーザ管20
の主放電電極26と27に接続し、上記第1のキ
ヤパシタ2または第2のキヤパシタ3の両端にス
イツチ4を接続し、上記第1のキヤパシタ2また
は第2のキヤパシタ3の両端に直流高圧電源5を
接続した主放電電源回路と、第3のキヤパシタ8
と第2のインダクタ6と第3のインダクタ7とス
イツチ9を上記順序で直列に接続して閉回路を形
成し、上記第2のインダクタ6の両端を各々レー
ザ管20の補助電極31と39に接続し、上記ス
イツチ9の両端に第2の直流高圧電源10を接続
した補助放電電源回路と上記第1のインダクタ1
と上記第1のキヤパシタ2との接続点と、第3の
キヤパシタ8と第2のインダクタ6との接続点と
を第4のインダクタ11を介して接続したことを
特徴とするレーザ管の放電電源回路で、補助放電
電極と主放電電極との間の放電を防ぎ、安定なレ
ーザ発光を得ることができるものである。 As specifically explained above, the present invention provides the first
The inductor 1, the first capacitor 2, and the second capacitor 3 are connected in series to form a closed circuit.
A switch 4 is connected to both ends of the first capacitor 2 or the second capacitor 3, and a DC high voltage power source is connected to both ends of the first capacitor 2 or the second capacitor 3. 5 is connected to the main discharge power supply circuit, and the third capacitor 8
The second inductor 6, the third inductor 7, and the switch 9 are connected in series in the above order to form a closed circuit, and both ends of the second inductor 6 are connected to the auxiliary electrodes 31 and 39 of the laser tube 20, respectively. and an auxiliary discharge power supply circuit with a second DC high voltage power supply 10 connected to both ends of the switch 9 and the first inductor 1.
A discharge power source for a laser tube, characterized in that a connection point between the capacitor 8 and the first capacitor 2, and a connection point between the third capacitor 8 and the second inductor 6 are connected via a fourth inductor 11. The circuit prevents discharge between the auxiliary discharge electrode and the main discharge electrode, and enables stable laser emission.
なお上述の回路において、第3のインダクタ7
を第4のインダクタ11より大きくした場合は、
補助放電のための電流が、補助放電電極31と補
助放電電極39との間を流れなくなり、補助放電
を極めて弱くするので、適当でない。 Note that in the above circuit, the third inductor 7
When is made larger than the fourth inductor 11,
This is not appropriate because the current for the auxiliary discharge no longer flows between the auxiliary discharge electrode 31 and the auxiliary discharge electrode 39, making the auxiliary discharge extremely weak.
また第6図において第1のキヤパシタ2と第2
のキヤパシタ3に対して第1のインダクタ1は第
4のインダクタ11と第2のインダクタ6と第3
のインダクタ7からなる直列インダクタンス回路
と並列に接続され、第1のインダクタ1のインダ
クタンスは、第4のインダクタ11と第2のイン
ダクタ6と第3のインダクタ7のインダクタンス
とほぼ等しいからこれを省略することができる。 In addition, in FIG. 6, the first capacitor 2 and the second capacitor
For the capacitor 3, the first inductor 1 is connected to the fourth inductor 11, the second inductor 6, and the third inductor 1.
The inductance of the first inductor 1 is approximately equal to the inductance of the fourth inductor 11, the second inductor 6, and the third inductor 7, so this is omitted. be able to.
第1図はレーザ管の縦断面構造図、第2図は第
1図のレーザ管のA―A断面構造図、第3図は第
1図のレーザ管の補助放電電極28の縦断面構造
図、第4図は従来のレーザ管の放電電源の回路
図、第5図は第4図に示す従来のレーザ管の放電
電源によつてレーザ管によつてレーザ管に電圧を
加えたときの各電極の電位を示す図、第6図は本
発明のレーザ管の放電電源の回路図、第7図は第
6図に示す本発明のレーザ管の放電電源によつて
レーザ管に電圧を加えたときの各電極の電位を示
す図である。
FIG. 1 is a longitudinal cross-sectional structural diagram of the laser tube, FIG. 2 is a longitudinal cross-sectional structural diagram of the laser tube shown in FIG. 1, and FIG. 3 is a longitudinal cross-sectional structural diagram of the auxiliary discharge electrode 28 of the laser tube shown in FIG. , Fig. 4 is a circuit diagram of a conventional laser tube discharge power supply, and Fig. 5 shows each voltage applied to the laser tube by the conventional laser tube discharge power supply shown in Fig. 4. Figure 6 is a diagram showing the potential of the electrodes, Figure 6 is a circuit diagram of the discharge power source for the laser tube of the present invention, and Figure 7 is a diagram showing voltage applied to the laser tube by the discharge power source for the laser tube of the present invention shown in Figure 6. FIG. 3 is a diagram showing the potential of each electrode at the time.
Claims (1)
2のキヤパシタ3を直列に接続し、第1のキヤパ
シタ2と第2のキヤパシタ3の両端を各々レーザ
管20の主放電電極26と27に接続し、上記第
1のキヤパシタ2または第2のキヤパシタ3の両
端にスイツチ4を接続し、上記第1のキヤパシタ
2または第2のキヤパシタ3の両端に直流高圧電
源5を接続した主放電電源回路と、第3のキヤパ
シタ8と第2のインダクタ6と第3のインダクタ
7とスイツチ9を上記順序で直列に接続して閉回
路を形成し、上記第2のインダクタ6の両端を
各々レーザ管20の補助電極31と39に接続
し、上記スイツチ9の両端に第2の直流高圧電源
10を接続した補助放電電源回路と、上記放電管
20の主放電電極26と上記第1のキヤパシタ2
との接続点と第3のキヤパシタ8と第2のインダ
クタ6との接続点とを第4のインダクタ11を介
して接続したことを特徴とするレーザ管の放電電
源回路。 2 特許請求の範囲1のレーザ管の放電電源回路
において第4のインダクタ11のインダクタンス
は、第3のインダクタ7のインダクタンスより大
きいことを特徴とするレーザ管の放電電源回路。[Claims] 1. A first inductor, a first capacitor 2, and a second capacitor 3 are connected in series, and both ends of the first capacitor 2 and second capacitor 3 are connected to the main discharge of the laser tube 20, respectively. A switch 4 is connected to the electrodes 26 and 27, a switch 4 is connected to both ends of the first capacitor 2 or the second capacitor 3, and a DC high voltage power source 5 is connected to both ends of the first capacitor 2 or the second capacitor 3. The main discharge power supply circuit, the third capacitor 8, the second inductor 6, the third inductor 7, and the switch 9 are connected in series in the above order to form a closed circuit, and both ends of the second inductor 6 are connected in series. are connected to the auxiliary electrodes 31 and 39 of the laser tube 20, respectively, and a second DC high voltage power source 10 is connected to both ends of the switch 9, and the main discharge electrode 26 of the discharge tube 20 and the first capacitor 2
A discharge power supply circuit for a laser tube, characterized in that a connection point between the third capacitor 8 and the second inductor 6 is connected via a fourth inductor 11. 2. The discharge power supply circuit for a laser tube according to claim 1, wherein the inductance of the fourth inductor 11 is larger than the inductance of the third inductor 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16479980A JPS5788788A (en) | 1980-11-22 | 1980-11-22 | Electric power source circuit for discharge of laser tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16479980A JPS5788788A (en) | 1980-11-22 | 1980-11-22 | Electric power source circuit for discharge of laser tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5788788A JPS5788788A (en) | 1982-06-02 |
JPS639675B2 true JPS639675B2 (en) | 1988-03-01 |
Family
ID=15800148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16479980A Granted JPS5788788A (en) | 1980-11-22 | 1980-11-22 | Electric power source circuit for discharge of laser tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5788788A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62282476A (en) * | 1986-05-30 | 1987-12-08 | Mitsubishi Electric Corp | Laser device |
-
1980
- 1980-11-22 JP JP16479980A patent/JPS5788788A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5788788A (en) | 1982-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4393505A (en) | Gas discharge laser having a buffer gas of neon | |
Bollanti et al. | Performance of a ten-liter electron avalanche-discharge XeCl laser device | |
US4555787A (en) | Gas laser preionization device | |
JPH0460356B2 (en) | ||
US3757248A (en) | Pulsed gas laser | |
JPS639675B2 (en) | ||
JP3808511B2 (en) | Pulse gas laser generator | |
US4178563A (en) | System for generating a high-energy electrical signal through a brief time, and a laser comprising such a system | |
JP2996706B2 (en) | Pulse laser oscillation device | |
US20080019411A1 (en) | Compact sealed-off excimer laser | |
Baranov et al. | Use of a discharge over a dielectric surface for preionization in excimer lasers | |
JPS60157280A (en) | Gas laser oscillation device | |
JP3281032B2 (en) | Discharge excitation type gas laser device | |
JPH08316550A (en) | Exciting method of pulse gas laser and pulse gas laser device | |
JP3034367B2 (en) | Gas laser device | |
JPH0337318B2 (en) | ||
JP3842814B2 (en) | Pulse gas laser generator | |
JPH01289285A (en) | Pulse laser oscillation apparatus | |
JPH04209580A (en) | Pulse laser oscillator | |
JPH04237173A (en) | Gas laser tube | |
JPH0754865B2 (en) | Discharge excited short pulse laser device | |
JPS60187076A (en) | Gas laser device | |
JPH0484474A (en) | Laser apparatus | |
JPS62243379A (en) | Gas pulse laser | |
JPS63299287A (en) | Gas laser oscillation device |