JPS60157280A - Gas laser oscillation device - Google Patents

Gas laser oscillation device

Info

Publication number
JPS60157280A
JPS60157280A JP1104584A JP1104584A JPS60157280A JP S60157280 A JPS60157280 A JP S60157280A JP 1104584 A JP1104584 A JP 1104584A JP 1104584 A JP1104584 A JP 1104584A JP S60157280 A JPS60157280 A JP S60157280A
Authority
JP
Japan
Prior art keywords
cathode
trigger
anode
electrode
laser oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1104584A
Other languages
Japanese (ja)
Inventor
Saburo Sato
三郎 佐藤
Tatsumi Goto
後藤 達美
Yasukazu Matsuoka
松岡 靖和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1104584A priority Critical patent/JPS60157280A/en
Publication of JPS60157280A publication Critical patent/JPS60157280A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation

Abstract

PURPOSE:To reinforce pre-ionization and thus to stabilize discharges by a method wherein a capacitor is connected in parallel between a cathode, one of main electrodes performing discharge, and trigger electrodes; on the other hand, an inductance is connected in parallel between an anode and the trigger electrode. CONSTITUTION:The mesh cathode 10 and the anode 3 opposed thereto are arranged in a laser tube 1. Many trigger electrodes 11 having insulation layers are arranged in the back of the cathode 10, and the cathode 10 and the anode 3 are connected to a pulse power source 4. Further, the capacitor 12 is connected in parallel between the trigger electrodes 11 and the cathode 10, and a stabilizing coil 13 is connected in parallel between the trigger electrodes 11 and the anode 3. The trigger electrodes 11 are successively coated with organic substance 15 and inorganic substance 16 which serve as the insulation layer around a conductor 14. Thereby, the equivalent capacitance between the cathode 10 and the trigger electrodes 11 increases, and the pre-ionization generating therebetween becomes strong, resulting in the promotion of the stabilization of main discharges.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はT EA C02レーザ、エキシマレーザ等の
ような気体レーザ発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to gas laser oscillation devices such as T EA C02 lasers, excimer lasers, and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は気体レーザ発振装置の一つであるTEAレーザ
発振装置の従来例である。すなわち、レーザ管(1)の
中に陰極(2)と陽極(3)とが対向配置され。
FIG. 1 shows a conventional example of a TEA laser oscillation device, which is one type of gas laser oscillation device. That is, a cathode (2) and an anode (3) are arranged facing each other in a laser tube (1).

それらにはパルス電源(4)が接続されている。陰極(
2)の表面には放電安定化のために多数の溝(5)が設
けられ、これら溝(5)に絶縁被覆されたトリガ電極(
6)が配置されている。トリガ電極(6)と陽極(3)
との間にはコンデンサ(力が接続されている。
A pulse power source (4) is connected to them. cathode(
A large number of grooves (5) are provided on the surface of the trigger electrode (2) for stabilizing the discharge, and the trigger electrode (5) is insulated in these grooves (5).
6) is located. Trigger electrode (6) and anode (3)
A capacitor (power is connected between the

上記の装置では陰極(2)と陽極(3)との間で発生す
る主放電に先立ち、陰極(2)とトリガ電極(6)との
間ではコ四す放電が発生し、広い電極間に電子あるいは
イオンを多量に供給する。続いて多少時間を隔ててこれ
らの電子を初期電子として陰極(2)、陽極(3)間で
主放電が発生し、レーザ励起分子の励起が行われる。
In the above device, before the main discharge occurs between the cathode (2) and anode (3), a four-way discharge occurs between the cathode (2) and the trigger electrode (6), and a wide gap between the electrodes occurs. Supply a large amount of electrons or ions. Subsequently, a main discharge is generated between the cathode (2) and the anode (3) using these electrons as initial electrons after some time interval, and the laser-excited molecules are excited.

コロナ放電を予、備放電として用い、主放電を安定化さ
せる゛上記の従来技術では、トリガ電極をおおう絶縁物
の絶縁耐電圧の大きさと比誘電率の大きさが最大のポイ
ントとなる。すなわち、主放電を安定化盲せるためには
、かなシ多量の初期電子あるいはイオンを供給する必要
があるが、とれKは陰極−トリガ電極間の等価容量がで
きる限シ大きいことが望ましい。しかるに従来技術では
トリガ電極をおおう絶縁物の必要絶縁耐電圧を確保する
ため、絶縁物の厚さを増すと等価容量が低下し必要量の
初期電子およびイオンが十分得られないのが実状でちる
。これを解決するため絶縁耐電圧が高く、比誘電率の大
きな絶縁物を採用する必要があるが、これに適切な材料
がない。
In the above-mentioned conventional technique, which uses corona discharge as a pre-discharge to stabilize the main discharge, the most important points are the dielectric strength voltage and dielectric constant of the insulator covering the trigger electrode. That is, in order to stabilize the main discharge, it is necessary to supply a large amount of initial electrons or ions, but it is desirable that the capacitance K be as large as the equivalent capacitance between the cathode and the trigger electrode can be. However, in the conventional technology, in order to ensure the required dielectric strength voltage of the insulator covering the trigger electrode, increasing the thickness of the insulator lowers the equivalent capacitance, making it difficult to obtain the required amount of initial electrons and ions. . To solve this problem, it is necessary to use an insulator with a high dielectric strength and a large dielectric constant, but there are no suitable materials for this.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、予備電離を必要とする高気圧気体レー
ザ発振装置において予備軍シを強化し放電を安定化した
レーザ発振装置を提供するにある。
An object of the present invention is to provide a high-pressure gas laser oscillation device that requires preliminary ionization, which strengthens the reserve force and stabilizes discharge.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、放電を行う主電極の一方
である陰極とトリガ電極との間にはコンデンサを並列に
接続し、一方、陽極とトリガ電極との間にはインダクタ
ンスを並列に接続する構成にしたものである。
To achieve the above purpose, a capacitor is connected in parallel between the cathode, which is one of the main electrodes for discharging, and the trigger electrode, and an inductance is connected in parallel between the anode and the trigger electrode. It is configured to do this.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例を示す図面に基いて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on drawings showing embodiments.

第2図は本発明の一実施例で、第1図で説明したものと
同一のものには同一符号を付しである。
FIG. 2 shows an embodiment of the present invention, in which the same components as those explained in FIG. 1 are given the same reference numerals.

、すなわち、レーザ管(1)の内部にはメツシー(開孔
率50%)状の陰極a@とこれに対向して陽極(3)と
が配置されている。陰極α@の背後には絶縁層を有する
多数のトリガ電極aDが配置され、これら陰極(10)
および陽極(3)はパルス電源(4)に接続されている
That is, inside the laser tube (1), a cathode a@ in the form of a mesh (porosity: 50%) and an anode (3) are arranged opposite to the cathode a@. A large number of trigger electrodes aD having an insulating layer are arranged behind the cathode α@, and these cathodes (10)
and the anode (3) are connected to a pulsed power source (4).

さらに、トリガを極(Llと陰極aωとの間にはコンデ
ンサ(l■が並列に接続され、また、トリガ電極(11
)と陽極(3)との間には安定化コイル(1階が並列に
接続されている。ところで、上記トリガ電極(11)は
第3図に示すように電極となる導体α荀を中心にして絶
縁層となる有機物aωおよび無機物(1eとが同心円状
に順次被覆されている構成になっている。上記有機物α
51ハポリ゛エチレ“/樹脂、四沸化エチレン樹脂。
Furthermore, a capacitor (l) is connected in parallel between the trigger pole (Ll and the cathode aω), and a trigger electrode (11
) and the anode (3) are connected in parallel with the stabilizing coil (1st floor).By the way, as shown in Figure 3, the trigger electrode (11) is centered around the conductor α The structure is such that an organic substance aω and an inorganic substance (1e), which become an insulating layer, are sequentially coated concentrically.
51 Hapolyethylene/resin, tetrafluoroethylene resin.

エポキシ樹脂等の比較的高耐電圧性をもつ樹脂が好まし
く、また、無機物α6)は耐スパツタリングを考慮して
ガラス、アルミナ、シリカ、マイカ等力ら選ばれる。ま
た、余分な放電を抑制し電極としての高寿命を確保する
ために、導体(14)と有機物(1つとの間は空隙部を
作らないよう密着して製作することが重要である。
A resin having a relatively high voltage resistance such as an epoxy resin is preferable, and the inorganic material α6) is selected from glass, alumina, silica, mica, etc. in consideration of sputtering resistance. In addition, in order to suppress excessive discharge and ensure a long life as an electrode, it is important to manufacture the conductor (14) and the organic substance (14) in close contact with each other without creating any voids.

上記の構成によシ、陰極a@とトリガ電極α9間の等価
容量が増加し、これらの間で発生する予備電離が強力と
なシ、主放電の安定化が大幅に促進された。また、陰極
αDをメツシー状とすることで。
With the above configuration, the equivalent capacitance between the cathode a@ and the trigger electrode α9 increased, the pre-ionization generated between them became strong, and the stabilization of the main discharge was greatly promoted. Also, by making the cathode αD into a mesh shape.

トリガ電極αυの外径を大にすることが可能となる。It becomes possible to increase the outer diameter of the trigger electrode αυ.

すなわち、上記絶縁層の厚みを増しょシ高い耐電圧にす
ること本可鮨)一方スーー′# 鉛湯−の百1が増すこ
とによる等価容量の低下はコンデンサozによ)補われ
る。
That is, by increasing the thickness of the insulating layer, it is possible to increase the withstand voltage.On the other hand, the decrease in the equivalent capacitance due to the increase in lead water is compensated for by the capacitor oz.

〔発明の効果〕〔Effect of the invention〕

本発明の効果をよ)明解にするために第2図を変形した
第4図にて説明する。すなわち、陰極([0)−トリガ
電極(Ll)間の等価容量を仮にコンデンサシυとし、
その値をC1,コンデンサUの並列容量の値をCpと゛
する。一方、陰極H−陽極(3)間における主放電開始
電圧をvbとすると、主放電開始前にトリガ電極を通過
した電荷量Q1はQ1= ctVbで与えられる。vb
はレーザ管内部のレーザ用混合ガスの組成によシ決まっ
ている。ここでほぼQlに比例する量の電子あるいはイ
オンが陰極表面近傍に供給され、主放電のトリガーとし
ての役割を果す。一方、本発明では主放電は〜1μs程
度持続するが、放電開始後数百ns後には各所で熱的不
安定性、負イオン不安定性など局部的な不安定性が発生
し、アーキングが生じ易くなる。アーキングが発生する
と放電部へ注入されたエネルギーの大半がごく小体積部
で消費されて、1−すうかめ、レーザ出力汁奢婚する結
果となる。アーキングの発生を防止し、広い面積での主
放電を安定に維持するためには、主放電開始後ひき続き
トリガ電極圓よυ電子あるいはイオンを供給する必要が
ある。コンデンサ(12はこの目的で設けられたもので
、蓄えられた電荷Qt = epVbii 、安定化コ
イルα3)のインダクタンスの値がトリガ電極リッド線
(251のインダクタンスの値に比べ十分太きいものと
すればコンデンサαツ、(2])を充放電するリンギン
グ電流(26)によシ消費し、トリガ電極圓からひきつ
づき電子ちるいはイオン(27)が主電極空間に供給さ
れ、主放電は安定に維持される。この方法を用いること
によシ、陰極00)−陽極(3)間にはほぼ従来の倍近
いエネルギーを注入しても十分安定々放電が得られ、レ
ーザ出力も倍以上に増加した結果を得ている。また従来
と同程度の注入エネルギーの範囲ではアーキングの発生
が抑制され、レーザ出力の安定化に役立っている。
In order to make the effects of the present invention clearer, the effects of the present invention will be explained with reference to FIG. 4, which is a modified version of FIG. In other words, assuming that the equivalent capacitance between the cathode ([0) and the trigger electrode (Ll) is the capacitor υ,
Let this value be C1, and the value of the parallel capacitance of capacitor U be Cp. On the other hand, if the main discharge starting voltage between the cathode H and the anode (3) is vb, the amount of charge Q1 that passed through the trigger electrode before starting the main discharge is given by Q1=ctVb. vb
is determined by the composition of the laser mixed gas inside the laser tube. Here, electrons or ions in an amount approximately proportional to Ql are supplied near the cathode surface and serve as a trigger for the main discharge. On the other hand, in the present invention, the main discharge lasts about 1 μs, but local instability such as thermal instability and negative ion instability occurs at various locations several hundred nanoseconds after the start of the discharge, making arcing more likely to occur. When arcing occurs, most of the energy injected into the discharge section is consumed in a very small volume, resulting in a decrease in laser output. In order to prevent the occurrence of arcing and to stably maintain the main discharge over a wide area, it is necessary to continuously supply υ electrons or ions to the trigger electrode circle after the start of the main discharge. If the inductance value of the capacitor (12 is provided for this purpose, stored charge Qt = epVbii, stabilizing coil α3) is sufficiently thick compared to the inductance value of the trigger electrode lid wire (251), then It is consumed by the ringing current (26) that charges and discharges the capacitor α (2), and electronic particles or ions (27) are continuously supplied from the trigger electrode circle to the main electrode space, and the main discharge is maintained stably. By using this method, a sufficiently stable discharge could be obtained even if nearly twice the energy was injected between the cathode 00) and the anode (3) as in the conventional method, and the laser output was more than doubled. We are getting results. In addition, arcing is suppressed within the same injection energy range as in the past, helping to stabilize laser output.

なお、上記実施例では陰極をメツシー状の電極にしたが
、これに限らず、溝つき電極あるいは平板電極を用いて
もほぼ同様な効果が得られる。また、 TEACO2レ
ーザ以外にパルス放電励起のCO2レーザ%あるいはエ
キシマレーザ等に適応できるものである。さらにトリガ
電極は複数でなく単一の構成のものでも効果的には同様
である。
In the above embodiment, the cathode is a mesh-like electrode, but the present invention is not limited to this, and substantially the same effect can be obtained by using a grooved electrode or a flat plate electrode. In addition to the TEACO2 laser, it can also be applied to pulse discharge excited CO2 lasers, excimer lasers, etc. Furthermore, the effect is the same even if the trigger electrode is of a single configuration instead of a plurality of trigger electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

、第1図は従来例を示す模式図、第2図は本発明の一実
施例を示す模式図、第3図はトリガ電極の断面図、第4
図は本発明の詳細な説明するだめの模式図である。 (1)・・・シーf W (4)・・・パルス電源(3
)・・・陰極 (11)・・・陰 極(1ツ・・・コン
デンサ (13)・・・安定化コイル代理人 弁理士 
則 近 憲 佑 (ほか1名)
, FIG. 1 is a schematic diagram showing a conventional example, FIG. 2 is a schematic diagram showing an embodiment of the present invention, FIG. 3 is a cross-sectional view of a trigger electrode, and FIG.
The figure is a schematic diagram for explaining the invention in detail. (1)... Sea f W (4)... Pulse power supply (3
)...Cathode (11)...Cathode (1 piece...Capacitor (13)...Stabilizing coil agent Patent attorney
Kensuke Noriyuki (and 1 other person)

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ励起せしめる気体媒体と対向配置され上記
気体画体のも゛とで放電する主電極と上記主電極の一方
の近傍に配置されるトリガ電極と上記放電を発生させる
ための電源と上記放電によシ励起されたレーザ光を集め
るために対向配置された一対以上の共振器ミラーとを備
える気体レーザ発振装置において、上記トリガ電極と陰
極との間にはコンデンサを並列に接続し上記トリガ電極
と陽極との間には安定化コイルを接続したことを特徴と
する気体レーザ発振装置。
(1) A main electrode disposed facing the gas medium to be excited by the laser and discharging at the source of the gas medium, a trigger electrode disposed near one of the main electrodes, a power supply for generating the discharge, and the above. In a gas laser oscillation device comprising one or more pairs of resonator mirrors arranged opposite to each other in order to collect laser light excited by discharge, a capacitor is connected in parallel between the trigger electrode and the cathode, and the trigger A gas laser oscillation device characterized in that a stabilizing coil is connected between an electrode and an anode.
(2) ) ’)ガミ極は陰極の背後に配置されている
ことを特徴とする特許請求の範囲第1項記載の気体レー
ザ発振装置。
(2) ') The gas laser oscillation device according to claim 1, wherein the gami electrode is arranged behind the cathode.
(3)陰極はメツシー状の電極になることを特徴とする
特許請求の範囲第1項または第2項記載の気体レーザ発
振装置。
(3) The gas laser oscillation device according to claim 1 or 2, wherein the cathode is a mesh-like electrode.
(4) ) ’)ガミ極は導体を有機物で同心状に被覆
しさらにこの有機物を無機物で同心状に被覆した多層構
造になることを特徴とする特許請求の範囲第1項記載の
気体レーザ発振装置。
(4) ') Gas laser oscillation according to claim 1, wherein the Gami pole has a multilayer structure in which a conductor is concentrically coated with an organic substance, and the organic substance is further concentrically coated with an inorganic substance. Device.
JP1104584A 1984-01-26 1984-01-26 Gas laser oscillation device Pending JPS60157280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104584A JPS60157280A (en) 1984-01-26 1984-01-26 Gas laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104584A JPS60157280A (en) 1984-01-26 1984-01-26 Gas laser oscillation device

Publications (1)

Publication Number Publication Date
JPS60157280A true JPS60157280A (en) 1985-08-17

Family

ID=11767065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104584A Pending JPS60157280A (en) 1984-01-26 1984-01-26 Gas laser oscillation device

Country Status (1)

Country Link
JP (1) JPS60157280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115884A (en) * 1985-09-12 1987-05-27 アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド Gas discharge device
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits
DE4108474A1 (en) * 1991-03-15 1992-09-17 Lambda Physik Forschung DEVICE FOR PREIONING A PULSED GAS LASER

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115884A (en) * 1985-09-12 1987-05-27 アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド Gas discharge device
US4937133A (en) * 1988-03-28 1990-06-26 Nippon Steel Chemical Co., Ltd. Flexible base materials for printed circuits
DE4108474A1 (en) * 1991-03-15 1992-09-17 Lambda Physik Forschung DEVICE FOR PREIONING A PULSED GAS LASER
US5247531A (en) * 1991-03-15 1993-09-21 Lambda Physik Forschungsgesellschaft Mbh Apparatus for preionizing apulsed gas laser

Similar Documents

Publication Publication Date Title
CN100517556C (en) Discharge lamp tube
JPS58155643A (en) Glow-like discharge generator
JPH0216556B2 (en)
JPS60157280A (en) Gas laser oscillation device
US4547883A (en) Long pulse laser with sequential excitation
Losev et al. Xenon laser action in discharge and electron-beam excited Ar—Xe mixture
Taylor et al. Pre‐preionization of a long optical pulse magnetic‐spiker sustainer XeCl laser
JPS62249493A (en) Eximer laser device provideo with automatic preliminary ionization
US4240043A (en) Transverse-longitudinal sequential discharge excitation of high-pressure laser
Apollonov et al. 10F. A.
JP2001177173A (en) Gas laser oscillator
Mei et al. Optimisation of the pulse duration of a discharge-pumped XeF (B→ X) excimer laser
Krokhmal et al. Electron beam generation in a diode with a gaseous plasma electron source II: Plasma source based on a hollow anode ignited by a hollow-cathode source
JPS639675B2 (en)
Apollonov et al. Electric discharge CO2 laser with a large radiating aperture
Hasson et al. Ultraminiature high‐power gas discharge lasers excited through high dielectric constant ceramic materials
Borovkov et al. Highly efficient gas lasers with a three-electrode double discharge
JPS5915516Y2 (en) gas laser equipment
Kim et al. Transverse-discharge copper vapor laser at 5 kHz
JPH11204863A (en) Corona preliminary ionization electrode
JP2001168433A (en) Pulse discharge pumped gas laser
RU2219626C2 (en) Electric-discharge kinetic-reaction hf (df) laser
JPH0337318B2 (en)
RU1840807C (en) Cuvette for pulsed high pressure gas lasers with cross dimension
JPS63133583A (en) Pulsed gas laser device pre-ionized by ultraviolet radiation