JPS58115876A - Silent discharge type gas laser device - Google Patents

Silent discharge type gas laser device

Info

Publication number
JPS58115876A
JPS58115876A JP21044481A JP21044481A JPS58115876A JP S58115876 A JPS58115876 A JP S58115876A JP 21044481 A JP21044481 A JP 21044481A JP 21044481 A JP21044481 A JP 21044481A JP S58115876 A JPS58115876 A JP S58115876A
Authority
JP
Japan
Prior art keywords
discharge
laser device
acid compound
gas laser
silent discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21044481A
Other languages
Japanese (ja)
Inventor
Satoru Hayashi
悟 林
Takeshi Kitsukawa
橘川 彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21044481A priority Critical patent/JPS58115876A/en
Publication of JPS58115876A publication Critical patent/JPS58115876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09705Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser with particular means for stabilising the discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To contrive improvement in output of the gas laser device by a method wherein a crystal glass is used as the molding material for a dielectric and the crystal of high dielectric constant is precipitated, thereby enabling to improve a relative permittivity as well as to increase the discharge power density. CONSTITUTION:A high-voltage side metal electrode 2 having the discharge surface is covered by the dielectric 3 consisting of the material such as lead-containing glass, mica or the like. When an AC high voltage is applied to the electrode 2 from a high frequency power source 6 and a transformer 5, a stabilized discharge which is called silent discharge is generated, a laser oscillation is generated in the resonator which is composed of a total reflection mirror 7 and an output-side reflection mirror 8, and a laser beam is outputted from the output reflection mirror. The dielectric constant is improved by precipitating barium titanate to crystal ingredient. The discharge power density can be markedly increase with the electrode 2 using crystal glass. A laser oscillation can be performed at low voltage or a low source frequency, if the power density is the same.

Description

【発明の詳細な説明】 この発明は、無声放電式ガスレーザ装置の改良に関する
ものである、 捷ず、従来のガスレーザ装置を横励起形(302レーザ
ーを説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a silent discharge type gas laser device. Instead of changing the conventional gas laser device to a horizontally pumped type (a 302 laser will be described).

第1図はその構成原理図であり、(1)は接地側金属電
極、(2)は高電圧側金属電極で、放電面は鉛含有ガラ
スまた(iマイカ等の材料から成る誘電体(3で被わt
1τいる2(4)は放電空間、(5)は変圧器、(6゛
は高周波電源、(7)は全反射鏡、(3)は出力側反射
鏡(一部透過)、(9)は冷却水循環fンブ、αQは冷
却器、allはイオン交換純水器である、上記の構成に
おいて、高電圧側電極(2)に、高周波電源(6)と変
圧器(5)よれ交流高電圧が印加さねると、放電空間(
4)に無声放電と呼ばわる安定な放電が起ろ。無声放電
は両電極間に誘電体(3) e介した交流放電であるた
め、アーク放電に移行することなく、電子温度のみが高
く、分子温度の上昇(、な□ い非平衡放電が安定に実現できる、放電空間(4)内で
励起された分子による光誘導輻射過程の説明は省略する
が、放電空間(4)内で無声放電が起ると、全反射鏡(
7)と出力側反射鏡(8)によn*成される共振器内で
レーザ発振が起り、出力側反射鏡よりレーザ光が出力さ
れる、接地側電極(1)と高電圧側電極(2)はとも6
ζ電気伝導度の小さい冷却水で冷却さねでおり、冷却水
は冷却水循環ポンプ(9)で、冷却器Q(1,イオン交
換純水器(2)を通して循環される、イオン交換純水器
回は冷却水の電気伝導度を小さく【、τ高電圧側電極(
2)からの電流漏洩を防ぐためビ必要である、なお、図
には示してないが放電空間のガスは電極間をレーザ光と
直角の方向に高速で流れている。
Figure 1 shows the principle of its construction. (1) is the metal electrode on the ground side, (2) is the metal electrode on the high voltage side, and the discharge surface is a dielectric (3) made of lead-containing glass or (i) mica. covered with
1τ, 2 (4) is the discharge space, (5) is the transformer, (6゛ is the high frequency power supply, (7) is the total reflection mirror, (3) is the output side reflection mirror (partially transparent), (9) is In the above configuration, where cooling water circulation unit f, αQ is a cooler, and all is an ion exchange water purifier, an AC high voltage is applied to the high voltage side electrode (2) by the high frequency power source (6) and the transformer (5). When the voltage is applied, the discharge space (
4) A stable discharge called silent discharge occurs. Since silent discharge is an alternating current discharge with a dielectric (3) e between the two electrodes, it does not shift to arc discharge, and only the electron temperature is high, resulting in a stable non-equilibrium discharge with no increase in molecular temperature. We will omit the explanation of the photoinduced radiation process by excited molecules in the discharge space (4) that can be realized, but when a silent discharge occurs in the discharge space (4), a total reflection mirror (
Laser oscillation occurs in a resonator formed by the output-side reflector (8) and the ground-side electrode (1) and the high-voltage side electrode ( 2) Hatomo 6
ζ Cooling water is cooled with low electrical conductivity, and the cooling water is circulated by a cooling water circulation pump (9) through a cooler Q (1) and an ion exchange water purifier (2). The times reduce the electrical conductivity of the cooling water [, τ high voltage side electrode (
2) In order to prevent current leakage from the laser beam, the gas in the discharge space is flowing at high speed between the electrodes in a direction perpendicular to the laser beam, although it is not shown in the figure.

第2図は上記放電電極部の拡大図で、接地電極(1)、
高電圧極(2)ともに放電面は平行平板であり、放電は
図中に示すように両電極間で一様Eζ起る。
Figure 2 is an enlarged view of the discharge electrode section, including the ground electrode (1),
The discharge surfaces of both high-voltage electrodes (2) are parallel flat plates, and discharge occurs uniformly between both electrodes, as shown in the figure.

第2図に示す実施例では、誘電体を高電圧電極側に設け
たが、接地側電極に設けるとか、高電圧電極及び接地側
電極の両方に設けろこさでも同一の効果があることは明
らかである。Ii8図は高電圧及び接地側電極の両方に
誘電体を設けた例であるわ レーザー発振が起こるため1ζは、反射鏡(7)、(8
)のロス1ζ打ち勝つだけのレーザー利得が放電空間で
必要であり、レーザー利得は放電空間の光軸方向の長さ
と放電電力密度(単位体積当りに投入される放電電力)
で決まるので、光軸方向の長さを決めると放電電力密度
を開銀以上にあげないと発振が起らない、放電電力密度
を高めるためCγは電源の周波数を高(するか、印加電
圧を高(するか、誘電体の静電容量を大きくするかであ
るが、電源周波数はせいぜい109 KHz程度が実用
的であり、才た印加電圧を高(するのは端部絶縁の関係
で制限値がある、さらに誘電体の比誘電率もせいぜい7
以下であり放電電力密度の向上には限界があ−た、 この発明は上記のような従来のものの欠点を除去するた
めになされたもので、誘電体の成形材料6ζ結晶化ガラ
スを用い、高誘電率の結晶を析出させることEζより誘
電体の比誘電率を向上させ、放電電力密度を高(【1、
カスレーザー装置の出々を同上させることを目的と[・
でいる、 以下、この発明の一実施例17ついて説明する、この発
明では第2図に示す電極を被覆する誘電体の成形材料に
結晶化ガラスを用いた、結晶化ガうスはガラス製造時に
結晶性成分を導入E7成形後、あるいは塗布焼成後に結
晶化するためにアニールを行ない結晶を析出させる7導
入する結晶成分によ−て低膨張化、機械特性向上、耐熱
性向上などの効果が異な−でくる、この発明では結晶成
分Cζチタン酸バリウムを析出させ跣電率を向上させて
し)る、 この発明の結晶化ガラスを用いて従来と同じ放電電圧密
度を得るlζは次表のように印加電圧を同じCζすれば
電源周波数が約l/24となり電源周波数を同じにすれ
ば印加電圧が1/4.9となる。
In the example shown in Figure 2, the dielectric was provided on the high voltage electrode side, but it is clear that the same effect can be obtained by providing it on the ground side electrode or on both the high voltage electrode and the ground side electrode. be. Figure Ii8 is an example in which a dielectric material is provided on both the high voltage and ground side electrodes.Since laser oscillation occurs, 1ζ has reflectors (7) and (8).
) laser gain is required in the discharge space to overcome the loss 1ζ, and the laser gain is determined by the length of the discharge space in the optical axis direction and the discharge power density (discharge power input per unit volume)
Therefore, once the length in the optical axis direction is determined, oscillation will not occur unless the discharge power density is increased above the open silver.To increase the discharge power density, Cγ must be set by increasing the frequency of the power supply (or increasing the applied voltage). (Or increase the capacitance of the dielectric material, but it is practical for the power supply frequency to be about 109 kHz at most, and the limit value is high due to the end insulation.) Yes, and the dielectric constant of the dielectric is at most 7.
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional devices, and uses a dielectric molding material of 6ζ crystallized glass to improve the discharge power density. Precipitating crystals with a dielectric constant Eζ improves the relative permittivity of the dielectric and increases the discharge power density ([1,
The aim is to make the output of the cass laser device the same as above.
Embodiment 17 of the present invention will be described below. In this invention, crystallized glass is used as the molding material for the dielectric covering the electrode shown in FIG. Introducing a crystalline component E7 After molding or after coating and baking, annealing is performed to precipitate crystals. 7 Depending on the crystal component introduced, effects such as lower expansion, improved mechanical properties, and improved heat resistance will vary. - In this invention, the crystal component Cζ is precipitated with barium titanate to improve the conductivity. The lζ to obtain the same discharge voltage density as the conventional one using the crystallized glass of this invention is as shown in the following table. If the applied voltage is the same Cζ, the power supply frequency will be about 1/24, and if the power supply frequency is the same, the applied voltage will be 1/4.9.

結線化ガラスは析出結晶の種類と量によってその比誘電
率は異なってくる、比誘電率120の結晶化ガラスを用
いた電極では従来使用されているき電体の比誘電率5と
比べて24倍の値となる。従って格段に放電電力密度を
上げることができる、同じ電力密度であれば低い電圧、
あるいは低い電源周波数でレーザ発振が可能となる、例
えば無声放電式〇〇2ガスレーザ装置においては周波数
が数lO馳至数IQQ KElzの場合、放電電力Wは
電源周波数f、レーザ電極の誘電体の静電容量q値に比
例関係Cとあることが知られている。従って、電flA
周波数f又は誘電体の静電容態qを増大することにより
放電電力の増大が計れる、一方、放電電力の増大の手段
として放電電圧の増大も有効であるが、電極に使用され
る絶縁材料の耐電圧からの制約等で電極構造が複雑とな
り、放電電圧はせいぜい常用15〜2oKvである、又
、電源周波数fを数100″I      IGhに設
計することは技術的に可能であるが、高周波数のため、
電力伝送時のケーブル、接続導体での損失が大きい(高
周波の表皮効果による)、高周波変圧器等電気機器内部
での損失が大きくなる、この結果高周波W源発振器の出
力が放電電極部に至るまでに低減【・、効率が低下する
欠点がある、又、漏洩電波に対する対策等も必要となる
、なお、上記実施例では結晶成分にチタン酸ノ(リウム
を析出させているが、こねは他のチタン酸化合物でもよ
(、ニオブ酸化合物、ジルコン酸化合物、タリウム酸化
合物ハフニウム酸化合物であってもよ(、六らに上記化
合物が複数含まねるもO)であ−τもよいものである、 また、結晶成分の重量%は2以上95以下の範囲であわ
ば実験的Eζその効果かでると考えらねる、エフ上のよ
慣ここの発明1ζよねば、誘電体で被わねた無声族tV
W極Cζ高胱電率の結晶化ガラス材料を用いているから
、静電容tを大きく、所定のレーザ利得を得るための放
IFIF力密度7ip′18rl能として、電源周波数
を小さく、あるいは低璽圧化できる、
The relative permittivity of wire-bonded glass varies depending on the type and amount of precipitated crystals.An electrode using crystallized glass with a relative permittivity of 120 has a relative permittivity of 24 compared to the conventionally used feeder material, which has a relative permittivity of 5. The value will be doubled. Therefore, it is possible to significantly increase the discharge power density.If the power density is the same, the voltage is lower.
Alternatively, laser oscillation is possible at a low power supply frequency, for example, in a silent discharge type 〇〇2 gas laser device, when the frequency is several 10 to several IQQ KELz, the discharge power W is the power supply frequency f, and the static electricity of the dielectric of the laser electrode. It is known that there is a proportional relationship C to the capacitance q value. Therefore, electric flA
The discharge power can be increased by increasing the frequency f or the capacitance q of the dielectric.On the other hand, increasing the discharge voltage is also an effective means of increasing the discharge power, but the durability of the insulating material used for the electrodes The electrode structure becomes complicated due to voltage constraints, and the discharge voltage is normally 15 to 2 oKv at most.Also, although it is technically possible to design the power supply frequency f to several 100"I IGh, it is not possible to For,
During power transmission, the loss in cables and connecting conductors is large (due to high frequency skin effect), and the loss inside electrical equipment such as high frequency transformers is large.As a result, the output of the high frequency W source oscillator reaches the discharge electrode. [・, There is a drawback that efficiency decreases, and measures against leakage radio waves are also required.In addition, in the above example, titanate is precipitated in the crystal component, but kneading is performed using other methods. It may be a titanic acid compound (or it may be a niobic acid compound, a zirconic acid compound, a thallium acid compound, or a hafnic acid compound (or O), and -τ is also suitable. Moreover, if the weight percent of the crystal component is in the range of 2 or more and 95 or less, it is believed that the experimental Eζ effect will be obtained.
Since the W-pole Cζ uses a crystallized glass material with high electroconductivity, the capacitance t can be increased, and the power supply frequency can be reduced or lowered to achieve the desired laser gain. Can be compressed,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザ装置の原理的な構造を示す構成図、第2
図と第3図はその電極部を示すそれぞれ−異なった例の
拡大図である、 図中、(1)は接地側電極、(2)6諜高圧側電極、(
3)番ま誘電体、(4)if放電空間、(6)番ま電源
、(7)(8) Gま反射鏡である。 代理人 葛野信− 昭和  年 信コ 日 特許庁長官殿 1、°ドf゛1゛の表示    特願昭8瞥−2104
44号2、黛明の名称 無声放電式ガスレーザ装置 、゛3.補正をする者 代表者片山仁へ部 り代理人 1 補正の対象 明細書の特許請求の範囲の欄 1 補正の内容 特許請求の範囲を別紙のとお9補正する。 以上 特許請求の範囲 0)接地側電極と高電圧側電極、この両電極間に高電圧
を印加して両電極間の放電空間に放電を起す電源、上記
放電空間の両端に位置し、放電が起きたときレーザ発振
を起させる全反射鐘とレーザ出力側反射鐘とから成る共
振器を備え、上記両電極の少なくとも一方に比誘電率6
以上の結晶化ガラス材料から成る誘1体を被覆して、上
記放電空間に放電電力密度の高い無声放電を生じさせる
ようにしたことを特徴とする無声放電式ガスレーザ装置
。 (2)上記結晶化ガラス材料の結晶成分の重量%が2以
上95以下である特許請求の範囲第1項記載の無声放電
式ガスレーザ装置。 (3)上記結晶化ガラス材料の析出結晶が酸化チタンあ
るいはチタン酸化合物であることを特徴とする特許請求
の範囲第1項記載の無声放電式ガスレーザ装置。 (4)上記結晶化ガラス材料の析出結晶がニオブ酸化合
物であることを特徴とする特許請求の範囲第1項記載の
無声放電式ガスレーザ装置。 (5)上記結晶化ガラス材料の析出結晶がジルコン酸化
合物であることを特徴とする特許請求の範囲第1項記載
の無声放電式ガスレーザ装置。 (6)上記結晶化ガラス材料の析出結晶がタリウム酸化
合物であることを特徴とする特許請求の範囲第1項記載
の無声放電式ガスレーザ装置。 (7)  上記結晶化ガラス材料の析出結晶がハフニウ
ム酸化合物であることを特徴とする特許請求の範囲第1
項記載の無声放電式ガスレーザ装置。 (8)上記結晶化ガラス材料の析出結晶が、酸化チタン
あるいはチタン酸化合物、ニオブ酸化合物。 ジルコン酸化合物、タリウム酸化合物、ハフニウム酸化
合物の二以上を含むものであることを特徴とする特許請
求の範囲第1項記載の無声放電式ガスレーザ装置。
Figure 1 is a configuration diagram showing the principle structure of the laser device, Figure 2
Figures 3 and 3 are enlarged views of different examples of the electrode parts. In the figures, (1) is the ground side electrode, (2) is the high voltage side electrode, (
3) dielectric material, (4) if discharge space, (6) power source, (7) and (8) reflecting mirror. Agent Makoto Kuzuno - Showa year Shinko Director-General of the Japan Patent Office 1, indication of °do f゛1゛ Patent application 1988-2104
44 No. 2, Daymei's name Silent discharge gas laser device, ゛3. Representative of the person making the amendment: Hitoshi Katayama Representative 1: Claims column 1 of the specification to be amended Contents of the amendment: The scope of claims will be amended nine times as shown in the attached sheet. Claims 0) A ground side electrode and a high voltage side electrode; a power source that applies a high voltage between these two electrodes to cause a discharge in the discharge space between the two electrodes; It is equipped with a resonator consisting of a total reflection bell that causes laser oscillation when the laser oscillates and a reflection bell on the laser output side, and at least one of the electrodes has a relative dielectric constant of 6.
A silent discharge type gas laser device characterized in that it is coated with a dielectric material made of the above-mentioned crystallized glass material to generate a silent discharge with high discharge power density in the discharge space. (2) The silent discharge gas laser device according to claim 1, wherein the weight percent of the crystal component of the crystallized glass material is 2 or more and 95 or less. (3) The silent discharge gas laser device according to claim 1, wherein the precipitated crystals of the crystallized glass material are titanium oxide or a titanic acid compound. (4) The silent discharge gas laser device according to claim 1, wherein the precipitated crystals of the crystallized glass material are niobic acid compounds. (5) The silent discharge gas laser device according to claim 1, wherein the precipitated crystals of the crystallized glass material are zirconate compounds. (6) The silent discharge gas laser device according to claim 1, wherein the precipitated crystals of the crystallized glass material are thallium acid compounds. (7) Claim 1, characterized in that the precipitated crystals of the crystallized glass material are hafnic acid compounds.
The silent discharge type gas laser device described in . (8) The precipitated crystals of the crystallized glass material are titanium oxide, a titanic acid compound, or a niobic acid compound. The silent discharge gas laser device according to claim 1, characterized in that it contains two or more of a zirconate compound, a thallium acid compound, and a hafnate compound.

Claims (1)

【特許請求の範囲】 (1)  接地側電極と高電圧側電極、この両電極間に
篩!圧与印加して両電極間の放電空間に放電を起す電源
、上記放電空間の一端に位置監・、放電が起きたときレ
ーザ発振を起させる全反射鏡とレーザ出力側反射鏡とか
A成る共振器を備え、上記内電極の少なくとも一万に比
誘電率6以上の結晶化ガラス材料から成る誘導体を被覆
【・で、上記放電空間に放電電力密度の高い無声放電を
生じさせるようCζt5たことを特徴とする無声放電式
ガスレーザ装置、 (2)上記結晶化ガ→ス材料の結晶成分の重ili%が
2以上95以下である特許請求の範囲111項記載の無
声放電式ガスレーザ装置。 (3)  上記結晶化ガうス材料の析出結晶が酸化チタ
ンあるいはチタン酸化合物であることを特徴とする特許
請求の範囲第1項記載の無声放電式ガスレーザ装置、 (4)上記結晶化力→ス材料の析出結晶かニオブ酸化合
物であることを特徴とする特許請求の範囲111項記載
の無声放電式ガスレーザ装置、(5)  上記結晶化力
→ス材料の析出結晶がジルコン酸化合物であることを特
徴とする特許請求の範囲第1項記載の無声放電式ガスレ
ーザ装置。 (6)  上記結晶化ガラス材料の析出結晶がタリウム
酸化合物であることを特徴とする特許請求の範囲第1項
記載の無声放電式ガスレーザ装置、(7)  上記結晶
化ガラス材料の析出結晶がハフニウム酸化合物であるこ
とを特徴とする特許請求の範囲第1項記載の無声放電式
ガスレーザ装置。 (8)  上記結晶化ガラス材料の析出結晶が、酸化チ
タンあるいはチタン酸化合物、ニオブ酸化合物、ジルコ
ン酸化合物、タリウム酸化合物、ハフニウム酸化合物の
二以上を含むものであることを特徴とする特許請求の範
囲111項記載の無声放電式ガスレーザ装置、
[Claims] (1) A ground side electrode and a high voltage side electrode, and a sieve between these two electrodes! A power source that applies pressure to cause a discharge in the discharge space between the two electrodes, a position monitor at one end of the discharge space, a total reflection mirror that causes laser oscillation when a discharge occurs, and a resonator that consists of a laser output side reflection mirror A. at least 10,000 of the inner electrode is coated with a dielectric made of a crystallized glass material having a dielectric constant of 6 or more so as to produce a silent discharge with a high discharge power density in the discharge space. (2) The silent discharge gas laser device according to claim 111, wherein the crystallized gas material has a crystal component weight ili% of 2 or more and 95 or less. (3) The silent discharge gas laser device according to claim 1, wherein the precipitated crystals of the crystallized gas material are titanium oxide or a titanic acid compound, (4) The crystallizing power→ A silent discharge gas laser device according to claim 111, characterized in that the precipitated crystals of the sulfur material are a niobic acid compound, (5) the crystallization power→the precipitated crystals of the sulfur material are a zirconate compound; A silent discharge gas laser device according to claim 1, characterized in that: (6) A silent discharge gas laser device according to claim 1, wherein the precipitated crystals of the crystallized glass material are a thallium acid compound, (7) the precipitated crystals of the crystallized glass material are hafnium The silent discharge gas laser device according to claim 1, wherein the laser is an acid compound. (8) Claims characterized in that the precipitated crystals of the crystallized glass material contain two or more of titanium oxide or a titanic acid compound, a niobic acid compound, a zirconic acid compound, a thallium acid compound, and a hafnic acid compound. Silent discharge gas laser device according to item 111,
JP21044481A 1981-12-29 1981-12-29 Silent discharge type gas laser device Pending JPS58115876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21044481A JPS58115876A (en) 1981-12-29 1981-12-29 Silent discharge type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21044481A JPS58115876A (en) 1981-12-29 1981-12-29 Silent discharge type gas laser device

Publications (1)

Publication Number Publication Date
JPS58115876A true JPS58115876A (en) 1983-07-09

Family

ID=16589426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21044481A Pending JPS58115876A (en) 1981-12-29 1981-12-29 Silent discharge type gas laser device

Country Status (1)

Country Link
JP (1) JPS58115876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169178A (en) * 1984-02-13 1985-09-02 Mitsubishi Electric Corp Gas laser device
JPS61168276A (en) * 1985-01-21 1986-07-29 Mitsubishi Electric Corp Voiceless discharge type gas laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169178A (en) * 1984-02-13 1985-09-02 Mitsubishi Electric Corp Gas laser device
JPS61168276A (en) * 1985-01-21 1986-07-29 Mitsubishi Electric Corp Voiceless discharge type gas laser

Similar Documents

Publication Publication Date Title
JPS58115876A (en) Silent discharge type gas laser device
JPS6026310B2 (en) gas laser equipment
JPS58115004A (en) Ozonizer of silent discharge type
JPS6398171A (en) High frequency discharge excited laser
JP2628313B2 (en) Gas laser device
JPS61159782A (en) Silent discharge type gas laser device
JPS63313881A (en) Silent discharge type gas laser device
JPS61170087A (en) Silent discharge type gas laser device
JPH06188671A (en) Piezoelectric resonator
JPS6239555B2 (en)
JP2001177173A (en) Gas laser oscillator
JPS55162408A (en) Ozonizer
JPS62183580A (en) Silent discharge gas laser device
JPH02281671A (en) Gas laser oscillation device
JP2003264328A (en) Waveguide gas laser oscillator
JPS58157186A (en) Gas laser device
JPS56122516A (en) Quartz oscillator
JPH0216781A (en) Gas laser oscillator
SU718948A1 (en) Piezoelectric transformer
JPS6162221A (en) Surface acoustic wave resonator
JPS5821891A (en) Noiseless discharge type carbon dioxide gas laser
SU555386A1 (en) Thermostat for quartz resonators
JPH0445588A (en) Waveguide path type gas laser
JPS6364378A (en) Laser tube
JPH0228978A (en) Gas laser oscillator