JPS63313881A - Silent discharge type gas laser device - Google Patents

Silent discharge type gas laser device

Info

Publication number
JPS63313881A
JPS63313881A JP15051687A JP15051687A JPS63313881A JP S63313881 A JPS63313881 A JP S63313881A JP 15051687 A JP15051687 A JP 15051687A JP 15051687 A JP15051687 A JP 15051687A JP S63313881 A JPS63313881 A JP S63313881A
Authority
JP
Japan
Prior art keywords
dielectric
discharge
electrode
silicate glass
titanium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15051687A
Other languages
Japanese (ja)
Inventor
Satoru Hayashi
悟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15051687A priority Critical patent/JPS63313881A/en
Publication of JPS63313881A publication Critical patent/JPS63313881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To eliminate the need of facilities for cooling electrodes by coating one of the oppositely disposed electrodes with the dielectric of titanium silicate glass. CONSTITUTION:A discharge surface in a high voltage side metallic electrode 2 oppositely arranged to a ground side metallic electrode 1 is composed of the dielectric 3a of titanium silicate glass. The temperature of the dielectric electrode is elevated normally to approximately 300-400 deg.C by discharge, but titanium silicate glass has breakdown voltage of 10kV/mm or higher, the temperature of thermal shock resistance of 1000 deg.C or more and even an extremely small linear expansion coefficient of 0.5X10<-7>, and has optimum conditions as the dielectric electrode employed at high voltage and a high temperature. Accordingly, spontaneous cooling is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無声放電式ガスレーザ装置の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a silent discharge type gas laser device.

〔従来の技術〕[Conventional technology]

まず、従来のガスレーザ装置を横励起形0021/−ザ
ーを例として説明する。
First, a conventional gas laser device will be explained using a horizontally pumped type 0021/- laser as an example.

第2図はその構成原理図であり、(1)は接地側金属電
極、(2)はこの接地側金属電極(1)に対向配設され
た高電圧側金属電極で、放電面は、例えばホウケイ酸バ
リウムガラス等の材料から成る誘電体(3)で覆われて
いる。そしてこの両電極はレーザ媒質ガスを満たした容
器内に設けられている。(4)は放電空間、(5)は変
圧器、(6)は高周波電源、(7)は全反射鏡、(8)
はこの全反射鏡(7)とレーザ光の光軸上に配設された
出力側反射鏡(一部透過) 、(9)は冷却水循環ポン
プ、(10は冷却器、(ロ)はイオン交換純水器である
Fig. 2 is a diagram showing the principle of its construction. (1) is a ground side metal electrode, (2) is a high voltage side metal electrode arranged opposite to this ground side metal electrode (1), and the discharge surface is, for example, It is covered with a dielectric (3) made of a material such as barium borosilicate glass. Both electrodes are provided in a container filled with laser medium gas. (4) is a discharge space, (5) is a transformer, (6) is a high frequency power supply, (7) is a total reflection mirror, (8)
are the total reflection mirror (7) and the output side reflection mirror placed on the optical axis of the laser beam (partially transmitted), (9) is the cooling water circulation pump, (10 is the cooler, and (b) is the ion exchanger. It is a water purifier.

上記の構成において、高電圧側金属電極(2)に、高周
波電酋(6)と変圧器(5)より交流高電圧が印加され
ると、放電空間(4)に無声放電と呼ばれる安定な放電
が起る。無声放電は両電極間に誘電体(3)を介し交交
流放電であるため、アーク放電に移行することなく、電
子温度のみが高く、分子温度の上昇しない非平衡放電が
安定に実現できる。放電空間(4)内で励起された分子
による光誘導輻射過程の説明は省略するが、放電空間(
4)内で無声放電が起ると、全反射鏡(7)と出力側反
射鏡(8)により構成される共振器内でレーザ発振が起
り、出力側反射鏡(8)よりレーザ光が出力される。接
地側金属電極(1)と高電圧側金属電極(2)はともに
電気伝導度の小さい冷却水で冷却されており、冷却水は
冷却水循環ポンプ(9)で、冷却器αQ、イオン交換純
水器(ロ)を通してそれぞれの電極(1)、 (2)内
に循環される。これによりレーザ発振の放電に伴う各電
極(1)、 (2)の温度上昇を抑制するとともに、特
に誘電体(3)の放電面と高電圧側金属電極(2)との
温度差を所定の値に維持するものである。そして、イオ
ン交換純水器(2)は、冷却水の電気伝導度を小さくし
て高電圧側金属電極(2)からの電流漏洩を防ぐために
必要である。
In the above configuration, when an AC high voltage is applied to the high voltage side metal electrode (2) from the high frequency electric current (6) and the transformer (5), a stable discharge called silent discharge occurs in the discharge space (4). happens. Since the silent discharge is an alternating current discharge via the dielectric (3) between both electrodes, a non-equilibrium discharge in which only the electron temperature is high and the molecular temperature does not increase can be stably realized without transitioning to arc discharge. Although the explanation of the photoinduced radiation process by excited molecules in the discharge space (4) will be omitted, the discharge space (4)
4) When silent discharge occurs inside the resonator, laser oscillation occurs within the resonator consisting of the total reflection mirror (7) and the output side reflection mirror (8), and laser light is output from the output side reflection mirror (8). be done. Both the ground side metal electrode (1) and the high voltage side metal electrode (2) are cooled by cooling water with low electrical conductivity, and the cooling water is supplied by a cooling water circulation pump (9), a cooler αQ, and ion exchange pure water It is circulated through the container (b) into each electrode (1), (2). This suppresses the temperature rise of each electrode (1) and (2) due to the discharge of laser oscillation, and in particular reduces the temperature difference between the discharge surface of the dielectric (3) and the high voltage side metal electrode (2). It is something that maintains the value. The ion exchange water purifier (2) is necessary to reduce the electrical conductivity of the cooling water and prevent current leakage from the high voltage side metal electrode (2).

なお、図には示していないが放電空間のガスは電極間を
レーザ光と直角の方向に高速で流れている。
Although not shown in the figure, gas in the discharge space flows at high speed between the electrodes in a direction perpendicular to the laser beam.

第8図は上記放電電極部の拡大図で、接地側金属電極(
1)、高電圧側金属電極(2)とともに放電面は平行平
板であり、放電は図中に示すように両電極間で一様に起
る。ところで、金属電極を誘電体で覆う方法として、誘
電体(3)を高電圧側金属電極(2)側に設ける以外に
、接地側合1i4電極(1)に設けるとか、又は第4図
に示すように高電圧側金属電極(2)及び接地側金属電
極(1)の両方に設けることが知られている。
Figure 8 is an enlarged view of the discharge electrode section, and shows the ground side metal electrode (
1) The discharge surface together with the high-voltage side metal electrode (2) is a parallel plate, and discharge occurs uniformly between both electrodes as shown in the figure. By the way, as a method of covering the metal electrode with a dielectric material, in addition to providing the dielectric material (3) on the high voltage side metal electrode (2) side, there is also a method of providing the dielectric material (3) on the ground side 1i4 electrode (1), or as shown in Fig. 4. It is known that the metal electrode is provided on both the high voltage side metal electrode (2) and the ground side metal electrode (1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の装置は、金属電極を覆う誘電体(3)が、耐熱衝
撃温度の非常に低い(100’CjJ下ノホウケイ酸バ
リウムガラスで構成されているので冷却しなければなら
ず、この1こめ冷却用の設備として、循環ポンプ(9)
、冷却器αりおよびイオン交換純水器(ロ)などコスト
の高いものが必要になるとともに電極構造の複雑化、装
置の大形化を招くなどの問題点があった。
In the conventional device, the dielectric (3) covering the metal electrode is made of barium borosilicate glass, which has a very low thermal shock resistance (100'CjJ), and must be cooled. Circulation pump (9) as equipment for
However, there were problems such as requiring expensive equipment such as a cooler and an ion exchange deionizer (b), as well as complicating the electrode structure and increasing the size of the device.

この発明は上記のような問題点を解消するためになされ
たもので、誘電体を耐熱衝撃性の高いもので構成するこ
とにより、冷却設備を不要とする無声放電式ガスレーザ
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a silent discharge type gas laser device that does not require cooling equipment by configuring the dielectric material with a material that has high thermal shock resistance. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無声放電式ガスレーザ装置は、レーザ媒
質ガスが満たされた容器内に対向配設された金属電極の
少なくともいづれか一方を、チタンケイ酸ガラスの誘電
体で被覆したものである。
The silent discharge type gas laser device according to the present invention has at least one of metal electrodes disposed facing each other in a container filled with a laser medium gas coated with a dielectric material of titanium silicate glass.

〔作用〕[Effect]

この発明におけるチタンケイ酸ガラスの誘電体は、高温
時の電気特性および耐熱衝撃性が良好であることにより
、熱衝撃などによる損傷を防止する。
The titanium silicate glass dielectric of the present invention has good electrical properties and thermal shock resistance at high temperatures, thereby preventing damage due to thermal shock and the like.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を説明する。第1図において
、従来装置の構成を示す第2図と同一符号は同一部分を
示し説明を省略する。(2)は接地側金属電極(1)に
対向配設された高電圧側金属電極であり、放電面はチタ
ンケイ酸ガラスの誘電体(8a)で構成されている。誘
電体(8a)の放電面と反対側には、銅を主体とした導
電性のペーストが薄く焼き付は処理されて給電電極(2
a)を形成し、更に、その給電*極面には給電端子(2
)としてのステンレスブラシが圧接されている。次に動
作について説明するが、上記構成による放電空間(4)
の無声放電およびレーザ発振は従来と同様にして行われ
るので説明は省略する。
An embodiment of this invention will be described below. In FIG. 1, the same reference numerals as in FIG. 2, which shows the configuration of a conventional device, indicate the same parts and the explanation will be omitted. (2) is a high voltage side metal electrode disposed opposite to the ground side metal electrode (1), and the discharge surface is made of a dielectric material (8a) of titanium silicate glass. On the opposite side of the dielectric (8a) from the discharge surface, a thin conductive paste mainly made of copper is applied and the baking process is applied to form the feed electrode (2).
a), and furthermore, a power supply terminal (2
) is pressure-welded with a stainless steel brush. Next, the operation will be explained. The discharge space (4) with the above configuration
Silent discharge and laser oscillation are performed in the same manner as in the prior art, so their explanation will be omitted.

次に、この発明によるチタンケイ酸ガラスの誘電体(8
a月ζついて述べる 誘電体(8&]の材料としては上
記の他に石英ガラス、リチウムアルミノシリケート結晶
化ガラスおよび従来装置に用いられていたホウケイ酸バ
リウムガラスが知られているが、誘電体(8a)として
は電気特性および耐熱衝撃性に優れていることが望まし
く、これらの点では表に示すとおりチタンケイ酸ガラス
が最も良好であることが判る。
Next, a titanium silicate glass dielectric (8
In addition to the above-mentioned materials, quartz glass, lithium aluminosilicate crystallized glass, and barium borosilicate glass used in conventional devices are known as materials for the dielectric (8 &). ) is desirable to have excellent electrical properties and thermal shock resistance, and as shown in the table, titanium silicate glass is found to be the best in these respects.

表 即ち、リチウムアルミノシリケート結晶化ガラスとホウ
ケイ酸バリウムガラスは、扁温時(400”C)での電
気特性(絶縁破壊電圧IKV/sw以下)と耐熱衝撃温
度とも悪く、一方の石英ガラスは電気特性は良好である
ものの耐熱衝撃温度が劣っている。その点、チタンケイ
酸ガラスは絶縁破壊電圧が10KV/swJJ上、耐熱
衝撃温度が1000℃以上、かつ線膨張率も0.5X1
0  と極めて小さく、高電圧高温下で使用される誘電
体電極としては最適の条件を備えていることになる。
In other words, lithium aluminosilicate crystallized glass and barium borosilicate glass have poor electrical properties (breakdown voltage IKV/sw or less) and thermal shock resistance at low temperatures (400"C), while quartz glass has poor electrical properties. Although its properties are good, its thermal shock resistance is poor.In this respect, titanium silicate glass has a dielectric breakdown voltage of 10KV/swJJ or higher, a thermal shock resistance of 1000°C or higher, and a coefficient of linear expansion of 0.5X1.
0, which is extremely small and has the optimum conditions for a dielectric electrode used under high voltage and high temperature.

通常、放電によって誘電体電極の温度は800〜400
℃程度迄昇温するが、チタンケイ酸ガラスは上述したよ
うにこの温度領域における絶縁破壊電圧がIQF、V/
fi以上であり、線膨張率も極めて小さいため放電を止
めたり、急激に出力を上げてもクラ−Jりなどの不具合
が生じることは全くない。
Normally, the temperature of the dielectric electrode due to discharge is 800 to 400
℃, but as mentioned above, the dielectric breakdown voltage of titanium silicate glass in this temperature range is IQF, V/
fi, and the coefficient of linear expansion is extremely small, so even if the discharge is stopped or the output is suddenly increased, problems such as cracking will not occur at all.

し1こがって、チタンケイ酸ガラスを電極の誘電体とし
て用いるレーザ装置では、熱衝撃に充分耐えられる特性
を有しているので、自然冷却が可能となるのである。
However, in a laser device using titanium silicate glass as the dielectric material of the electrode, natural cooling is possible because the laser device has characteristics that can sufficiently withstand thermal shock.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、対向配設された電極の
少なくともいづれか一方を、チタンケイ酸ガラスの誘電
体で被覆したので、電極を冷却するための設備が不要と
なり、安価で小形化が図れる無声放電式ガスレーザ装置
が得られる効果がある。
As described above, according to the present invention, at least one of the opposing electrodes is coated with a dielectric material of titanium silicate glass, which eliminates the need for equipment for cooling the electrodes, making it possible to reduce the cost and size. This has the effect of providing a silent discharge type gas laser device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による無声放電式ガスレーザ装置を示
す構成図、第2図は従来の装置の構成図、第8図および
第4図は従来装置の部分拡大図である。 図において、(1)は接地側金属電極、(2)は高電圧
側金属電極、taa月よ誘電体である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing a silent discharge type gas laser device according to the present invention, FIG. 2 is a block diagram of a conventional device, and FIGS. 8 and 4 are partially enlarged views of the conventional device. In the figure, (1) is the metal electrode on the ground side, (2) is the metal electrode on the high voltage side, and is the dielectric material. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] レーザ媒質ガスを満たした容器と、この容器内に対向配
設された金属電極と、この両電極間の無声放電により励
起されて発光するレーザ光の光軸上の双方に配設された
鏡とを備えた無声放電式ガスレーザ装置において、上記
両電極のうち少なくともいづれか一方の電極表面をチタ
ンケイ酸ガラスの誘電体で被覆したことを特徴とする無
声放電式ガスレーザ装置。
A container filled with a laser medium gas, metal electrodes placed opposite each other in the container, and mirrors placed on both sides of the optical axis of the laser beam that is excited and emitted by a silent discharge between the two electrodes. A silent discharge gas laser device comprising: a silent discharge gas laser device comprising: a surface of at least one of the electrodes is coated with a dielectric material of titanium silicate glass;
JP15051687A 1987-06-17 1987-06-17 Silent discharge type gas laser device Pending JPS63313881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15051687A JPS63313881A (en) 1987-06-17 1987-06-17 Silent discharge type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15051687A JPS63313881A (en) 1987-06-17 1987-06-17 Silent discharge type gas laser device

Publications (1)

Publication Number Publication Date
JPS63313881A true JPS63313881A (en) 1988-12-21

Family

ID=15498567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15051687A Pending JPS63313881A (en) 1987-06-17 1987-06-17 Silent discharge type gas laser device

Country Status (1)

Country Link
JP (1) JPS63313881A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260172A (en) * 1984-06-07 1985-12-23 Komatsu Ltd Silent discharge excitation laser
JPS636887A (en) * 1986-06-27 1988-01-12 Komatsu Ltd Gas laser apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260172A (en) * 1984-06-07 1985-12-23 Komatsu Ltd Silent discharge excitation laser
JPS636887A (en) * 1986-06-27 1988-01-12 Komatsu Ltd Gas laser apparatus

Similar Documents

Publication Publication Date Title
US3753144A (en) Gas laser structure
JPS61168978A (en) Gas laser
US3670257A (en) Method of gas ion laser action
GB2098389A (en) Apparatus for producing laser radiation
JPS6248397B2 (en)
US3469207A (en) Metal-ceramic gas laser discharge tube
JPS63313881A (en) Silent discharge type gas laser device
JPS6310597B2 (en)
US3611183A (en) Double-ended ion laser tube
JPS6026310B2 (en) gas laser equipment
CN85100563A (en) High power he-ne laser
JPS61159782A (en) Silent discharge type gas laser device
JPS61170087A (en) Silent discharge type gas laser device
GB2065960A (en) Structure of waveguide gas laser
JPS61170086A (en) Silent discharge type gas laser device
JP4450980B2 (en) AC discharge gas laser oscillator
JPS60260172A (en) Silent discharge excitation laser
RU2102825C1 (en) Sectionalized cermet discharge tube
JPS61137381A (en) Silent discharge gas laser
JPS61159781A (en) Silent discharge type gas laser device
JP2880731B2 (en) Laser oscillation device
JPS6346995B2 (en)
JPS6358884A (en) Silent discharge type gas laser device
JPS6035836B2 (en) gas laser equipment
JPH03297181A (en) Gas laser oscillator