JPS61159781A - Silent discharge type gas laser device - Google Patents
Silent discharge type gas laser deviceInfo
- Publication number
- JPS61159781A JPS61159781A JP54185A JP54185A JPS61159781A JP S61159781 A JPS61159781 A JP S61159781A JP 54185 A JP54185 A JP 54185A JP 54185 A JP54185 A JP 54185A JP S61159781 A JPS61159781 A JP S61159781A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- bismuth oxide
- weight
- laser device
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/038—Electrodes, e.g. special shape, configuration or composition
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、無声放電式ガスレーザ装置の改良に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a silent discharge type gas laser device.
まず、従来のガスレーザ&tを横励起形COルーザーを
例として説明する、
第4図はその構成原理図であり、(1)は接地側金F1
.wt極、(2)はこの接地側金属電極(1)に対向配
設されπ高電圧側金鵬電極で、放電面は鉛含有ガラスま
たはマイカ等の材料から成る誘電体(3)で覆われてい
る。そしてこの両電極はレーザ媒質ガスを満1コしT;
容器内Iζ設けられている、(4)は放電空間、(5)
は変圧器、(6)は高周波電源、(7)は全反射鏡、(
8)はこの全反射鏡(7)とレーザ光の光軸上に配設さ
れに出力側反射鏡(一部透過)、(9)は冷却水循環ポ
ンプ、αOは冷却器、0′0はイオン交換純水器である
。First, the conventional gas laser
.. The wt electrode (2) is the π high voltage side metal electrode disposed opposite to this ground side metal electrode (1), and the discharge surface is covered with a dielectric material (3) made of a material such as lead-containing glass or mica. There is. Both electrodes are filled with laser medium gas T;
Inside the container Iζ is provided, (4) is a discharge space, (5)
is a transformer, (6) is a high frequency power supply, (7) is a total reflection mirror, (
8) is a total reflection mirror (7) and an output side reflection mirror placed on the optical axis of the laser beam (partially transmitted), (9) is a cooling water circulation pump, αO is a cooler, and 0'0 is an ion This is a replacement water purifier.
上記の構成において、高電圧側金属電極(2)に、高周
波電画(6)と変圧器(5)より交流高電圧が印加され
ると、放電空間(4)に無声放電と呼ばれる安定な放電
が起る、無声放電は両電極間に誘電体(3)を介しrこ
交流放電であるため、アーク放電に移行することなく、
電子温度のみが扁く、分子温度の上昇しない非平衡放電
が安定に実現できる、放電空間(4)内で励起されに分
子Cとよる光誘導輻射過程の説明は省略するが、放電空
間(4)内で無声放電が起ると、全反射鏡(7)と出力
側反射鏡(8)により構成される共振器内でレーぜ発振
が起り、出力側反射鏡(8)よりレーザ光が出力されろ
、接地側金属電極(1)と高電圧側合g4電極(2)は
ともに電気伝導度の小さい冷却水で冷却されており、冷
却水は冷却水循環ポンプ(9)で、冷却器GO,イオン
交換純水器0υを通して循環される、イオン交換純水器
αυは冷却水の電気伝導度を小さくして高電圧側金属電
極(2)からの電流痛洩を防ぐために必要である。なお
、図には示していないが放電空間のガスは電極間をレー
ザ光とI角の方向に高速で流れている。In the above configuration, when an AC high voltage is applied to the high voltage side metal electrode (2) from the high frequency electric image (6) and the transformer (5), a stable discharge called silent discharge occurs in the discharge space (4). Since the silent discharge is an alternating current discharge through the dielectric (3) between the two electrodes, it does not transition to an arc discharge.
Although we will omit the explanation of the photoinduced radiation process caused by excited molecules C in the discharge space (4), in which a non-equilibrium discharge in which only the electron temperature is low and the molecular temperature does not rise can be stably realized, the discharge space (4) ), when a silent discharge occurs in the resonator formed by the total reflection mirror (7) and the output side reflection mirror (8), laser oscillation occurs in the resonator, and a laser beam is output from the output side reflection mirror (8). Both the ground side metal electrode (1) and the high voltage side G4 electrode (2) are cooled by cooling water with low electrical conductivity, and the cooling water is supplied to the cooling water circulating pump (9) and the cooler GO, The ion exchange water purifier αυ, which is circulated through the ion exchange water purifier 0υ, is necessary to reduce the electrical conductivity of the cooling water and prevent current leakage from the high voltage side metal electrode (2). Although not shown in the figure, gas in the discharge space is flowing at high speed between the electrodes in the direction of the I angle with respect to the laser beam.
第5図は上記数K 叡ai部の拡大図で、接地側金属電
極(1)、高電圧側金属電極(2)とともに放電面は平
行平析であり、放電は図中(ζ示すように両電極間で一
様に起る、
第5図に示す実施例では、誘電体を高電圧側金属電極側
に設けたが、接地側金鵬%E&に設けるとか、高電圧側
金属電極及び接地側金属電極の両方に設けることでも同
一の効果があることは明らかである。第6図は高電圧及
び接地側合Milt&の両方に誘電体を設けに例である
。Figure 5 is an enlarged view of the above-mentioned several K-AI section, and the discharge surface is parallel flat, together with the ground side metal electrode (1) and the high voltage side metal electrode (2), and the discharge is as shown in the figure (ζ). In the embodiment shown in FIG. 5, the dielectric is provided on the high voltage side metal electrode side, but it may be provided on the ground side metal electrode and on the high voltage side metal electrode and the ground side. It is clear that the same effect can be obtained by providing the metal electrodes on both sides. Fig. 6 shows an example in which dielectrics are provided on both the high voltage and ground sides (Milt&).
レーザー発振が起るγこめ≦とは、反射鏡(7)、出力
側反射鏡(8)のロスに打ち勝つだけのレーザー利得が
放電空間で必要であり、レーザー利得は放電空間の光軸
方向の長さと放!gカ密度(単位体積当りに投入される
放電電力)で決まるので、光軸方向の長さケ決めると放
電電力密度をきよく値以上にあげないと発振が起らない
、放電電力密度を高めるγこめ畜では電源の周波数を高
くするか、印加電圧ケ高くするか、誘電体の静電容量を
大きくするの)である、
〔発明が解決しようとする問題点〕
従来の無声放電式ガスレーザ装置は以上のように構成さ
れ、電源周波数はせいぜい100 fez 程度が実用
的であり、また印加電圧を高くするのは端部絶縁の関係
で制限値がある。さらに誘電体の比誘電率もせいぜい7
以下であり放電電力密度の向上には限界があった、
この発明は上記のような従来のものの欠点を除去するr
こめになされたもので、ガスレーザ装置の出力を向上さ
せることを目的としている、〔問題点ケ解決する1こめ
の手段〕
この発明に係るガスレーザ装置は接地側合NI4電極、
高電圧側金属電極の少なくとも一方の電極表面が、酸化
ビスマス含有の誘電体ガラスで被覆されtこものである
、
〔作用〕
この発明番ζおいては接地側金属電極、高電圧側金属′
NL極の少なくとも一方の電極表面に被覆された高誘電
率の酸化ビスマス含有の誘電体ガラスによ−・て放[電
力密度を高くし、ガスレーザ装置の出カケ向上させる。γ<= at which laser oscillation occurs means that laser gain is required in the discharge space to overcome the loss of the reflector (7) and output side reflector (8), and the laser gain is determined by the laser gain in the optical axis direction of the discharge space. Length and release! Since it is determined by the g power density (discharge power input per unit volume), if the length in the optical axis direction is determined, oscillation will not occur unless the discharge power density is raised above the value, increasing the discharge power density. [Problems to be solved by the invention] Conventional silent discharge gas laser equipment is constructed as described above, and the practical power supply frequency is about 100 fez at most, and there is a limit to increasing the applied voltage due to end insulation. Furthermore, the dielectric constant of the dielectric is at most 7.
Therefore, there was a limit to the improvement of the discharge power density.This invention eliminates the drawbacks of the conventional ones as described above.
[First means to solve the problem] The gas laser device according to the present invention has an NI4 electrode on the ground side,
At least one electrode surface of the high voltage side metal electrode is coated with dielectric glass containing bismuth oxide. [Function] In this invention number ζ, the ground side metal electrode and the high voltage side metal '
The dielectric glass containing high dielectric constant bismuth oxide coated on the surface of at least one of the NL electrodes is used to increase the power density and improve the output of the gas laser device.
第1図はこの発明の一実施例を示す構成原理図、第2図
は第1図の放電電極部の拡大図、第8図は高電圧及び接
地側金属電極の双方に誘電体ケ設けに他の実施例である
放電電極部の拡大図である。Fig. 1 is a diagram showing the principle of construction of an embodiment of the present invention, Fig. 2 is an enlarged view of the discharge electrode section in Fig. 1, and Fig. 8 is a diagram showing the dielectric material provided on both the high voltage and ground side metal electrodes. It is an enlarged view of the discharge electrode part which is another Example.
図において(1)(2)(41〜α〃は上記従来装置と
全く同一のものである、@は電極表面を覆う誘電体ガラ
スである。この誘電体ガラスQ2fζついて詳述する、
誘電体ガラスυは、通常のホウロウフリー・トを製造す
る方法により調整できる。調整の1例を次に示す、
酸化ビスマス5Qwt%、8i0目5wt%、 AJ
203Q0gwt%、NazOjLtO及びLiz04
合計で0.2wt%jsa012wt%、Ua01,5
wt%、CoO,NiO及びZnOIt合計でQ、5w
t%、B20目Qwt%ケ 量し、950℃の温度で約
45分溶融し水中に投入して急冷する、急冷されたガラ
スはさらlζ粉末Iζ粉砕しスプレー塗装法などにより
金属素管に塗布し焼成する、
表1ニこの方法で得られrコ誘電体ガラス@である酸化
ビスマス含有ガラスの電気特性を示す7なお酸化ビスマ
スの含有量が80重量%以上であるとガラスの結晶化が
著しく放電管塗布焼成には不適切である。In the figure, (1), (2), and (41 to α〃) are exactly the same as the above-mentioned conventional device. @ is a dielectric glass that covers the electrode surface. This dielectric glass Q2fζ will be explained in detail.
The dielectric glass υ can be adjusted by the usual method of manufacturing enamel fleet. An example of adjustment is shown below: Bismuth oxide 5Qwt%, 8i0 5wt%, AJ
203Q0gwt%, NazOjLtO and Liz04
Total 0.2wt%jsa012wt%, Ua01.5
wt%, total of CoO, NiO and ZnOIt, Q, 5w
t%, B20th Qwt%ke, melted at a temperature of 950℃ for about 45 minutes, put into water and quenched.The quenched glass is further crushed into lζ powder and applied to the metal tube by spray painting method etc. Table 1 shows the electrical properties of bismuth oxide-containing glass, which is a dielectric glass obtained by this method.7 Note that if the content of bismuth oxide is 80% by weight or more, the crystallization of the glass will be significant. It is unsuitable for coating and firing discharge tubes.
一方、酸化ビスマスの含有量が1ON量%より少ないと
比誘電率があまり大きくなく放電電力密度の増加は少な
い一比誘電率18の酸化ビスマス含有の誘電体ガラスを
用い′r−電極では従来使用されている誘電体の比誘電
率5と比べてl a15 倍の値となる。従−・て格段
に放電電力密度を上げることができる。同じ電力密度で
あれば低い電圧、あるいは低い電源周波数でレーザ発振
が可能となる。On the other hand, when the content of bismuth oxide is less than 1ON amount%, the dielectric constant is not so large and the increase in discharge power density is small.A bismuth oxide-containing dielectric glass with a dielectric constant of 18 is used in conventional 'r-electrodes. The relative permittivity of the dielectric material used is 15 times as much as the relative permittivity of 5. Therefore, the discharge power density can be significantly increased. As long as the power density is the same, laser oscillation is possible with a lower voltage or lower power frequency.
例えば無声放電式00zガスレーザ装置においては周波
数が数10tLfiz至数1001)1zの場合、放電
電力Wは電源周波数f、レーザ電極の誘電体の静電容j
iog@ifζ比例関係にあることが知られている、従
りて、電源周波数f又は誘電体の静電谷型Cgを増大す
ることにより放電電力の増大が計れる。For example, in a silent discharge type 00z gas laser device, when the frequency is from several 10tLfiz to several 1001)1z, the discharge power W is the power supply frequency f, the electrostatic capacitance of the dielectric of the laser electrode j
It is known that there is a proportional relationship iog@ifζ. Therefore, by increasing the power supply frequency f or the electrostatic valley type Cg of the dielectric, the discharge power can be increased.
一方、放電電力の増大の手段として放電電圧の増大も有
効であるが、電極に使用される絶縁材料の耐電圧からの
制約等で[極構造が複雑となり、放電電圧はせいぜい常
用15〜HLVである、又、電源周波数fを数I Q
Q Kflzに設計することは技術的に可能であるが、
高周波数の1コめ、電力伝送時のケーブル、接続導体で
の損失が大きい(高周波の表皮効果による)、高周波変
圧器等電気機器内部での損失が大きくなる2この結果高
周波電源発振器の出力が放電電極部に至るまでに低減し
、効率が低下する欠点がある、又、漏洩電波に対する対
策等も必要となる、
〔発明の効果〕
以上のようにこの発明によれば、接地側金属電極、襄電
圧側金5tir極の少なくとも一方の電極表面番ζ高誘
電率の酸化ビスマス含有の誘電体ガラスで被覆されてい
るので、*m周波数ケ小さくあるいは低電圧化して静電
容iliケ大きくすることができ、ガスレーぜ装置の出
力を向上することができるといりrこ効果がある6On the other hand, increasing the discharge voltage is also effective as a means of increasing the discharge power, but due to restrictions such as the withstand voltage of the insulating material used for the electrodes, the electrode structure becomes complicated, and the discharge voltage is usually 15~HLV at most. Also, the power supply frequency f is a number IQ
Although it is technically possible to design to Q Kflz,
1. High frequency, high loss in cables and connecting conductors during power transmission (due to high frequency skin effect), high loss inside electrical equipment such as high frequency transformers 2. As a result, the output of the high frequency power supply oscillator There is a drawback that the radio waves are reduced before reaching the discharge electrode part, resulting in a decrease in efficiency, and countermeasures against leakage radio waves are also required. [Effects of the Invention] As described above, according to the present invention, Since at least one electrode surface number of the gold electrode on the side voltage side is coated with dielectric glass containing bismuth oxide with a high dielectric constant, it is possible to reduce the *m frequency or lower the voltage and increase the electrostatic capacitance. It is possible to improve the output of the gas wreze device, which has a ricocheting effect6.
第1図はこの発明の一実施例ケ示す構成原理図、第2図
は第1図の放電電極部の拡大図、第8図は高電圧及び接
地側電極の双万醗ζ誘電体を設けTコ他の実施例の放電
電極部の拡大図、第4図は従来の無声放電式ガスレーザ
装置の構成原理図、第5図は第4図の放電電極部の拡大
図、第6図は高電圧及び接地側電極の双方に誘電体ケ設
けy、=例の放電tatai部の拡大図である、
図において、(1)は接地側金属電極、(2)は島電圧
側金属電極、(7)は全反射鏡、(8)は出力側反射鏡
、叫は誘電体ガラスである。
なお、各図中同一符号は同一または相当部分ケ示す。Fig. 1 is a diagram showing the principle of construction of an embodiment of the present invention, Fig. 2 is an enlarged view of the discharge electrode section of Fig. 1, and Fig. 8 is a diagram showing the high voltage and ground side electrodes provided with dual dielectrics. Figure 4 is an enlarged view of the discharge electrode part of another embodiment, Figure 4 is a diagram of the configuration principle of a conventional silent discharge gas laser device, Figure 5 is an enlarged view of the discharge electrode part of Figure 4, and Figure 6 is a high-level view. Dielectric material is provided on both the voltage and ground side electrodes, = This is an enlarged view of the discharge section in the example. In the figure, (1) is the ground side metal electrode, (2) is the island voltage side metal electrode, (7) ) is a total reflection mirror, (8) is an output side reflection mirror, and (8) is a dielectric glass. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (3)
向配設された金属電極と、この両電極間の放電により励
起されて発光するレーザ光の光軸上の双方に配設された
鏡とを備え、上記再電極のうち少なくとも一方の電極表
面に酸化ビスマス含有の誘電体ガラスが被覆されている
ことを特徴とする無声放電式ガスレーザ装置。(1) A container filled with laser medium gas, metal electrodes placed opposite each other in this container, and mirrors placed on both sides of the optical axis of the laser beam that is excited and emitted by the discharge between these two electrodes. A silent discharge type gas laser device, characterized in that the surface of at least one of the re-electrodes is coated with dielectric glass containing bismuth oxide.
0重量%であることを特徴とする特許請求の範囲第1項
記載の無声放電式ガスレーザ装置。(2) Dielectric glass has a bismuth oxide content of 10 to 8
The silent discharge type gas laser device according to claim 1, wherein the content is 0% by weight.
ラス成分としてそれぞれSiO_2が10〜67重量%
、B_2O_3が30重量%以下、Al_2O_3が1
0重量%以下、Na_2O、K_2O、Li_2Oから
なる群から選ばれた一種又は二種以上の金属酸化物が5
重量%以下、BaO、CaO、MgO、SrO及びSb
_2O_3から成る群から選ばれた2種以上の金属酸化
物が40重量%以下、CoO、MgO、ZnONiO、
Fe_2O_3及びTiO_2の群から選ばれた一種又
は二種以上の金属酸化物が5重量%以下であることを特
徴とする特許請求の範囲第2項記載の無声放電式ガスレ
ーザ装置。(3) The dielectric glass contains 10 to 67% by weight of SiO_2 as glass components other than bismuth oxide.
, B_2O_3 is 30% by weight or less, Al_2O_3 is 1
0% by weight or less, one or more metal oxides selected from the group consisting of Na_2O, K_2O, Li_2O
Weight% or less, BaO, CaO, MgO, SrO and Sb
40% by weight or less of two or more metal oxides selected from the group consisting of _2O_3, CoO, MgO, ZnONiO,
3. The silent discharge gas laser device according to claim 2, wherein the content of one or more metal oxides selected from the group of Fe_2O_3 and TiO_2 is 5% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54185A JPS61159781A (en) | 1985-01-07 | 1985-01-07 | Silent discharge type gas laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54185A JPS61159781A (en) | 1985-01-07 | 1985-01-07 | Silent discharge type gas laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61159781A true JPS61159781A (en) | 1986-07-19 |
JPH0360190B2 JPH0360190B2 (en) | 1991-09-12 |
Family
ID=11476599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54185A Granted JPS61159781A (en) | 1985-01-07 | 1985-01-07 | Silent discharge type gas laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61159781A (en) |
-
1985
- 1985-01-07 JP JP54185A patent/JPS61159781A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0360190B2 (en) | 1991-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2126369C1 (en) | Lime-soda glass, electric gas-discharge and fluorescent lamps | |
JPS6243058A (en) | Electrode-free sodium iodide arc lamp | |
JPH07302578A (en) | Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device and electrodeless discharge light | |
GB968392A (en) | ||
JPS61159781A (en) | Silent discharge type gas laser device | |
US3727098A (en) | Magnetron filter box | |
DE2659859C2 (en) | Device for maintaining an electrical discharge | |
JPS6310597B2 (en) | ||
GB2249215A (en) | Discharge tube and method of manufacture | |
JPH0850859A (en) | High frequency device | |
JPH04215242A (en) | Electrodeless low-pressure discharge lamp | |
JPS61168502A (en) | Ozonizer | |
JPS60260172A (en) | Silent discharge excitation laser | |
JP2628313B2 (en) | Gas laser device | |
CN85100563A (en) | High power he-ne laser | |
JPS61168276A (en) | Voiceless discharge type gas laser | |
JPS63313881A (en) | Silent discharge type gas laser device | |
EP0559421B1 (en) | Seal construction arrangement for an electrodeless high intensity discharge lamp | |
JPS61137381A (en) | Silent discharge gas laser | |
JPS60169178A (en) | Gas laser device | |
JPH0437007A (en) | Gas laser oscillator | |
JPS61159782A (en) | Silent discharge type gas laser device | |
JPS636887A (en) | Gas laser apparatus | |
JPH04276677A (en) | High-frequency transformer for gas laser oscillation device use | |
JPH0536460A (en) | Discharge type surge absorbing element |