JPS61159782A - Silent discharge type gas laser device - Google Patents

Silent discharge type gas laser device

Info

Publication number
JPS61159782A
JPS61159782A JP54285A JP54285A JPS61159782A JP S61159782 A JPS61159782 A JP S61159782A JP 54285 A JP54285 A JP 54285A JP 54285 A JP54285 A JP 54285A JP S61159782 A JPS61159782 A JP S61159782A
Authority
JP
Japan
Prior art keywords
dielectric
laser device
ceramic material
silent discharge
gas laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP54285A
Other languages
Japanese (ja)
Inventor
Satoru Hayashi
悟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP54285A priority Critical patent/JPS61159782A/en
Publication of JPS61159782A publication Critical patent/JPS61159782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To increase discharge power density by coating the surface of at least one electrode of a grounding-side metallic electrode and a high-voltage side metallic electrode with a dielectric consisting of a ceramics material. CONSTITUTION:Dielectrics composed of a ceramics material 12 are mounted onto both high-voltage and grounding-side metallic electrodes 1, 2. Accordingly, discharge power density can be increased remarkably, and a laser can be oscillated at low voltage or low supply frequency on the same power density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明rj、無声放電式がスレーザ装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an improvement of a silent discharge type laser device.

〔従来の技術〕[Conventional technology]

まず、従来のガスレーザ装mを横励起形Cot v−ザ
ーを例として説明する。
First, a conventional gas laser device m will be explained using a horizontally pumped Cot V-laser as an example.

第1図はそのW成原珊図であり、(1)Fi接地側金属
電極、(2)はこの接地側金属tffl(1)に対向配
設された高電圧側金属tgで、放電面は鉛含有ガラスま
たはマイカ等の材料からなる誘電体(3)で覆われてい
る。そしてこの両[41はレーザ謀質ガスを満たした容
器内に配設されてbる。(4)は放電空間。
Figure 1 is the W Narihara diagram, in which (1) the Fi ground side metal electrode, (2) the high voltage side metal tg disposed opposite to this ground side metal tffl (1), and the discharge surface is It is covered with a dielectric (3) made of a material such as lead-containing glass or mica. Both of these [41] are placed in a container filled with laser contaminant gas. (4) is the discharge space.

(5)は変圧器、(6)は高周波電源、(7)は全父射
鏡、(8)はこの全反射!!!(7)とレーザ光の光軸
上VC9設された出力141反射鏡(一部透過) 、 
(9)は冷却水循環ポンプ、叫は冷却器、0Mはイオン
交換純水器である。
(5) is a transformer, (6) is a high frequency power supply, (7) is a total mirror, and (8) is this total reflection! ! ! (7) and the output 141 reflecting mirror (partially transmitted) installed on the optical axis of the laser beam VC9,
(9) is a cooling water circulation pump, 0M is a cooler, and 0M is an ion exchange water purifier.

上記の構成において、高電圧側金属! ! (2)に、
4E周波It & (6)と変圧器(5)より交流高1
圧が印加されると、無声放電は両電極間に誘電体(3)
を介した交流放電であるため、アーク放電に移行するこ
となく、を子温度のみが高く1分子温度の上昇しない非
平衡放電が安定に1J!境できる。放電空間(4)内で
励起された分子による光誘導輻射過程の説明は省略する
が、放を空間(4)内で無声放電が起ると。
In the above configuration, the high voltage side metal! ! (2),
4E frequency It & (6) and AC height 1 from transformer (5)
When pressure is applied, a silent discharge occurs due to the dielectric (3) between both electrodes.
Since it is an alternating current discharge via an electric current, there is no transition to an arc discharge, and a non-equilibrium discharge in which only the temperature of a single molecule is high and the temperature of a single molecule does not rise can be stably maintained at 1 J! I can border. Although a description of the photoinduced radiation process by excited molecules in the discharge space (4) will be omitted, it is assumed that a silent discharge occurs in the discharge space (4).

全反射i1f (7)と出力側反射鏡(8)により構成
される共搬器内でレーザ発振が起フ、出力側反射鏡(8
)よりレーザ光が出力される。接地側金属電極(1)と
脣電圧園金属電極(2)はともに電気伝導度の小さい冷
却水で〜却されており、冷却水は冷却水循環ポンプ(9
)で、冷却器αO,イオン交換純水器a5を通して循環
される。イオン交換純水器a5は冷却水の!気伝41f
を小さくして制鑞圧圓金属を極(2)からの電流漏洩を
防ぐために必要である。なお1図には示してないが放電
空間のガスは電極間をレーザ光と直角の方向に高速で流
れている。
Laser oscillation occurs within the cocarrier composed of the total reflection i1f (7) and the output side reflector (8), and the output side reflector (8)
) outputs laser light. Both the ground side metal electrode (1) and the voltage field metal electrode (2) are cooled by cooling water with low electrical conductivity, and the cooling water is supplied by a cooling water circulation pump (9).
), the water is circulated through the cooler αO and the ion exchange deionizer a5. The ion exchange water purifier A5 is for cooling water! Kiden 41f
This is necessary in order to reduce current leakage from the soldering pressure round metal pole (2). Although not shown in Figure 1, gas in the discharge space is flowing at high speed between the electrodes in a direction perpendicular to the laser beam.

第5図は上記放電電極部の拡大図で、接地111金属電
ff1(1)、高す圧側金属W、極(2)ともに放電面
は平行平板であり、W*は図中に示すように両電極間で
一様に起る。
Figure 5 is an enlarged view of the discharge electrode section, and the discharge surfaces of the ground 111 metal electrode ff1 (1), the high voltage side metal W, and the pole (2) are parallel flat plates, and W* is as shown in the figure. Occurs uniformly between both electrodes.

第5図に示す実施例では、誘電体(3)を高電圧III
金属を極(2)側に設けたが、接地側金属電極(g r
mに設けるとか、高電圧側金属を極(2)及び接地II
I金属電極(1)の両方に設けることでも同一の効果が
あることは明らかである。第6図ij高電圧及び接地側
金属電極の両方に誘電体を設けた例である。
In the embodiment shown in FIG. 5, the dielectric (3) is connected to a high voltage III
Although the metal was provided on the pole (2) side, the ground side metal electrode (g r
m, or connect the high voltage side metal to the pole (2) and ground II.
It is clear that the same effect can be obtained by providing both I metal electrodes (1). FIG. 6 ij This is an example in which a dielectric material is provided on both the high voltage and ground side metal electrodes.

レーザ発振が起こるためには1反射!! (7)、出力
側反射鏡(8)のロスに打ち勝つだけのレーザ利得が放
電空間で必要であり、レーザ利it′i放電空間の光軸
方向の長さと放[[力密度(単位体積当たりに投入され
る放電電力)で決まるので、光軸方向の長さを決めると
放tl![力密*’eきよく値以上におばな匹と発橡が
起こらない。放電電力密度を高めるためには!E源の周
波数を高くするか、印加電圧を高(するか、誘電体の静
電容量を太きくするかである。
One reflection is required for laser oscillation to occur! ! (7) Laser gain sufficient to overcome the loss of the output side reflector (8) is required in the discharge space, and the laser gain is the length of the discharge space in the optical axis direction and the emitted force density (per unit volume). Since it is determined by the discharge power input into the tl!, if the length in the optical axis direction is determined, [The force is dense*'e, and no ejaculation occurs with the obanako than the value. How to increase discharge power density! Either increase the frequency of the E source, increase the applied voltage, or increase the capacitance of the dielectric.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の無声放電式がスレーザ装wit、以上のように構
成され、を5周波数はせいぜLn100KHz程度が東
用的であり、また印加電圧を高くするのは端部絶縁の関
係で制限値がある。さらに誘電体の比誘率もぜいぜい7
以下であり放電電力密度の向上には限界があった。
The conventional silent discharge type is a laser device, which is configured as described above, and the 5 frequencies are typically about 100 KHz at most, and there is a limit to the high applied voltage due to the end insulation. . Furthermore, the relative permittivity of the dielectric is at most 7.
There was a limit to the improvement of the discharge power density.

を5周波数を高めたり、印加電圧をK<Lようとすれば
、装置自体が大型化し、また高価なものとなる。
If the frequency is increased or the applied voltage is set to K<L, the device itself becomes larger and more expensive.

この発明は、かかる問題点を解決するためになされたも
ので電源周波数を小さくシ、あるいは低電圧化しても静
電容量を大きくし所定のレーザ利得を得るための放ft
力vM廖を得ることができる無声放電式ガスレーザ装置
1を得ることを目的としている。
This invention was made to solve this problem, and it is possible to reduce the power supply frequency or increase the capacitance even when the voltage is reduced, thereby increasing the radiation ft to obtain a predetermined laser gain.
The object of the present invention is to obtain a silent discharge type gas laser device 1 that can obtain a power vM.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るガスレーザ装置け、接地側金属電極、高
電圧側金属を極の少なくとも一方のW、極表面がセラミ
ックス材の誘電体によって被覆されたものである。
In the gas laser device according to the present invention, at least one of the metal electrodes on the ground side and the metal on the high voltage side is made of W, and the surface of the electrode is covered with a dielectric material made of ceramic material.

〔作 用〕[For production]

この発明にお匹ては接地側金属KW、 NEW圧側金属
電極の少なくとも一方の電極要衝に被覆され九セラミッ
クス材の誘電体によって、放電電力密度を高くする。
In accordance with the present invention, the discharge power density is increased by a dielectric material made of a ceramic material coated on at least one of the electrode points of the ground side metal KW and the NEW voltage side metal electrode.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示すW/lF1!2原印
図。
FIG. 1 is an original seal drawing of W/lF1!2 showing an embodiment of the present invention.

第2図は第1図の放電電極部の拡大図、第8図は高電圧
及び接地側金属電極の双方に誘電体を設けた池の実施例
である放電゛電極部の拡大図である。
FIG. 2 is an enlarged view of the discharge electrode section shown in FIG. 1, and FIG. 8 is an enlarged view of the discharge electrode section, which is an example of a cell in which dielectrics are provided on both the high voltage and ground side metal electrodes.

図において(1)(2)(4)〜αDは上記従来装階と
全く同一のものである。(5)は電極表面′f1:覆う
誘電体であるセラミックス材である。このセラミックス
材(2)について詳述する。
In the figure, (1), (2), and (4) to αD are completely the same as the conventional floors. (5) is a ceramic material which is a dielectric covering the electrode surface 'f1. This ceramic material (2) will be explained in detail.

この発明の比誘電率500 、1200 、2500の
チタン酸パリワム系セラミックス材を用−従来と同じ放
電電力を得るには次表のようになる。
The following table shows how to obtain the same discharge power as in the conventional case using the parywum titanate ceramic materials of the present invention having dielectric constants of 500, 1200, and 2500.

表  1 チタン酸バリヮム系セツミックス材は添加する2次的成
分1例えば酸化マグネジツムあるいは酸化カルシツムな
どにより比誘電率を小さくすることもできるし、酸化ダ
ンタンなど他の成分を用いて大きくすることも可能であ
る。
Table 1 The dielectric constant of barium titanate-based set mix materials can be lowered by adding secondary components 1, such as magnetium oxide or calcium oxide, or it can be increased by using other components such as dantane oxide. It is.

比誘[率500のチタン酸バリワム系セラミックス材を
用いたに!では従来使用されている誘電体の比誘電率5
と比べて100倍の値となる。従って格段に放電電力密
度を上げることができる。同じ電力密度であれば低い電
圧、あるいは低い電源周波数でレーザ余振が可能となる
。例えば無声放電式CX3xガスレーザ装置にお^では
周波数が数IQB至数100 KHzの場合、放電電力
Wは電源周波数で、レーザ電極の誘電体の静W、容量c
g*に比例関係にあることが知られている。従って、!
j源周波数f又は誘電体の静電容tcgft増大するこ
とにより放am力の増大が計れる。
Made of Baliwam titanate ceramic material with a dielectric constant of 500! So, the dielectric constant of the conventionally used dielectric is 5.
The value is 100 times higher than that of . Therefore, the discharge power density can be significantly increased. If the power density is the same, laser aftershock is possible with a lower voltage or lower power frequency. For example, in a silent discharge type CX3x gas laser device, when the frequency is from several IQB to several 100 KHz, the discharge power W is the power supply frequency, the static W of the dielectric of the laser electrode, and the capacitance c.
It is known that there is a proportional relationship to g*. Therefore,!
The radiation force can be increased by increasing the j source frequency f or the dielectric capacitance tcgft.

比誘電率が小さ^ものは放wL!ij力密度が小さくな
るという不都合がある。表1によれば従来例と比べて1
本発明の放電管の比誘イ率の値が大きく。
Those with a small dielectric constant are discharged wL! There is a disadvantage that the force density becomes small. According to Table 1, compared to the conventional example,
The discharge tube of the present invention has a large relative permittivity.

St体層の靜1容量は格段に増加している。従って放電
電力密度が向上し低い電源周波数あるいは低^電圧で、
従来のレーザ出力のものを得ることができる。しかし低
電圧化した場合に印加電圧は放電開始電圧以上であるこ
とは述べるまで本ない。
The capacity of the St body layer has increased significantly. Therefore, the discharge power density is improved, and at low power frequency or low voltage,
Conventional laser output can be obtained. However, it is unnecessary to mention that when the voltage is lowered, the applied voltage is equal to or higher than the discharge starting voltage.

なお上記実施例では、誘電体にチタン酸バリヮム系セラ
ミックス材を用いた場合について説明したが、チタン酸
バリヮム系セラミックス材以外のチタン酸ストロンチヮ
ム系セラミックス材、チタン酸マグネシヮム系セラミッ
クス材、チタン酸カルシワム系セラミックヌ材であって
もよく上記実施例と同様の効果を奏する。
In the above embodiment, a case was explained in which a barium titanate ceramic material was used as the dielectric material, but other than barium titanate ceramic material, strontium titanate ceramic material, magnesium titanate ceramic material, calcium titanate ceramic material A ceramic material may also be used and the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば無声放電電極の誘電体に
高誘電率のセ畔ミックヌ材で覆われているから、ta周
波数を小さくシ、あるいは低電圧化しても静電容Jlヲ
太き(し所定のレーザ利得を得るための族1冒力密廖を
得ることができる効果がある。
As described above, according to the present invention, since the dielectric of the silent discharge electrode is covered with a ceramic material having a high dielectric constant, the capacitance Jl remains large ( However, it is possible to obtain a Group 1 efficiency for obtaining a predetermined laser gain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例t−示すWs殴原珊図。 第2図は放!tiE極部の拡大図、第8図は高電圧およ
び接地側金属wLWiの両方に誘電体を設けた場合の池
の実施例である放電電極部の拡大図、第4図は従来の無
声放電式ガスレーザ装謄の構成厘理図。 第5図は放am極部の拡大図、第6図は高電圧および接
地側金属電極の両方に誘電体を設けた場合の放tt極部
の拡大図である。 図において、(1)は接地側金属電極、(2)は高電圧
側金属電極、(7)は全反射鏡、(8)は出力側仄射*
。 CI2ハセラミックス材である。 なお、各図中同一符号は同一またげ相当部分を示す。 第2図 第3図 各 第5図 第6図 毒
FIG. 1 is a diagram showing one embodiment of the present invention. Figure 2 is release! An enlarged view of the tiE pole part, Fig. 8 is an enlarged view of the discharge electrode part which is an example of a cell in which a dielectric is provided on both the high voltage and ground side metal wLWi, and Fig. 4 is an enlarged view of the conventional silent discharge type. A diagram of the configuration of the gas laser equipment. FIG. 5 is an enlarged view of the radiation pole part, and FIG. 6 is an enlarged view of the radiation tt pole part when a dielectric material is provided on both the high voltage and ground side metal electrodes. In the figure, (1) is the ground side metal electrode, (2) is the high voltage side metal electrode, (7) is the total reflection mirror, and (8) is the output side radiation *
. CI2 is a ceramic material. Note that the same reference numerals in each figure indicate parts corresponding to the same straddle. Figure 2 Figure 3 Each Figure 5 Figure 6 Poison

Claims (5)

【特許請求の範囲】[Claims] (1)レーザ媒質ガスを満たした容器とこの容器内に対
向配設された金属電極と、この両電極間の放電により励
起されて発光するレーザ光の光軸上の双方に配設された
鏡とを備え、上記両電極のうち少なくとも一方の電極表
面にセラミックス材の誘電体が被覆されていることを特
徴とする無声放電式ガスレーザ装置。
(1) A container filled with laser medium gas, metal electrodes placed opposite each other in this container, and mirrors placed on both sides of the optical axis of the laser beam that is excited and emitted by the discharge between these two electrodes. A silent discharge type gas laser device, characterized in that the surface of at least one of the two electrodes is coated with a dielectric material made of a ceramic material.
(2)セラミックス材の誘電体は、チタン酸バリウム系
セラミックス材であることを特徴とする特許請求の範囲
第1項記載の無声放電式ガスレーザ装置。
(2) The silent discharge gas laser device according to claim 1, wherein the ceramic dielectric is a barium titanate ceramic material.
(3)セラミックス材の誘電体は、チタン酸ストロンチ
ウム系セラミックス材であることを特徴とする特許請求
の範囲第1項記載の無声放電式ガスレーザ装置。
(3) The silent discharge type gas laser device according to claim 1, wherein the dielectric material of the ceramic material is a strontium titanate ceramic material.
(4)セラミックス材の誘電体は、チタン酸マグネシウ
ム系セラミックス材であることを特徴とする特許請求の
範囲第1項記載の無声放電式ガスレーザ装置。
(4) The silent discharge gas laser device according to claim 1, wherein the ceramic dielectric is a magnesium titanate ceramic material.
(5)セラミックス材の誘電体は、チタン酸カルシウム
系セラミックス材であることを特徴とする特許請求の範
囲第1項記載の無声放電式ガスレーザ装置。
(5) The silent discharge gas laser device according to claim 1, wherein the ceramic dielectric is a calcium titanate ceramic material.
JP54285A 1985-01-07 1985-01-07 Silent discharge type gas laser device Pending JPS61159782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54285A JPS61159782A (en) 1985-01-07 1985-01-07 Silent discharge type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54285A JPS61159782A (en) 1985-01-07 1985-01-07 Silent discharge type gas laser device

Publications (1)

Publication Number Publication Date
JPS61159782A true JPS61159782A (en) 1986-07-19

Family

ID=11476629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54285A Pending JPS61159782A (en) 1985-01-07 1985-01-07 Silent discharge type gas laser device

Country Status (1)

Country Link
JP (1) JPS61159782A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688387A (en) * 1979-12-13 1981-07-17 Dexter Katherine Waveguide laser structure
JPS56110280A (en) * 1980-02-05 1981-09-01 Mitsubishi Electric Corp Gas laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688387A (en) * 1979-12-13 1981-07-17 Dexter Katherine Waveguide laser structure
JPS56110280A (en) * 1980-02-05 1981-09-01 Mitsubishi Electric Corp Gas laser device

Similar Documents

Publication Publication Date Title
US5479428A (en) Laser apparatus
GB2172739A (en) Laser gas discharge tube
US4247829A (en) Silent discharge type gas laser device
KR100407447B1 (en) Apparatus for generating ozone in high concentration
US4491949A (en) Apparatus for producing laser radiation
JPS6248397B2 (en)
US4703489A (en) Waveguide laser
US4800567A (en) High-frequency-discharge excited gas laser
JPS6310597B2 (en)
JPS61159782A (en) Silent discharge type gas laser device
JPS6026310B2 (en) gas laser equipment
US4315299A (en) Power capacitor with high heat dissipation
JP3088579B2 (en) Laser device
JPS63313881A (en) Silent discharge type gas laser device
JPS61170087A (en) Silent discharge type gas laser device
JPS58115876A (en) Silent discharge type gas laser device
JP4450980B2 (en) AC discharge gas laser oscillator
JPS639395B2 (en)
JPS61170086A (en) Silent discharge type gas laser device
JPS60260172A (en) Silent discharge excitation laser
JP2001251000A (en) Ac discharge gas laser oscillator
JPH024148B2 (en)
JPS62183580A (en) Silent discharge gas laser device
JPS647512B2 (en)
JPS6310915B2 (en)