JPS636887A - Gas laser apparatus - Google Patents

Gas laser apparatus

Info

Publication number
JPS636887A
JPS636887A JP14960186A JP14960186A JPS636887A JP S636887 A JPS636887 A JP S636887A JP 14960186 A JP14960186 A JP 14960186A JP 14960186 A JP14960186 A JP 14960186A JP S636887 A JPS636887 A JP S636887A
Authority
JP
Japan
Prior art keywords
discharge
dielectric
gas laser
laser device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14960186A
Other languages
Japanese (ja)
Inventor
Tatsuya Ariga
達也 有我
Kiyoo Matsuno
松野 清伯
Shin Takebe
武部 慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP14960186A priority Critical patent/JPS636887A/en
Publication of JPS636887A publication Critical patent/JPS636887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve the discharge resistance, heat resistance and adhesion to a discharge electrode of a discharge electrode covering dielectric by using a glass material having the main components of SiO2, N2O and K2O with an additive of TiO2 as the dielectric. CONSTITUTION:In a discharge excitation type gas laser apparatus, a glass material having the main components of SiO2, NO2 and K2O with an additive of 10%-30% TiO2 is used as a dielectric 10 to cover discharge electrodes 2 and 3. Since the dielectric 10 thus constituted has a large permittivity, injection electric power to a discharge can be increased by applying a higher voltage. Further, since TiO2 reduces a coefficient of thermal expansion, an adhesion to the discharge electrodes 2 and 3 can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、放電励起型のガスレーザ装置で、詳しくは放
電電極に被覆される誘電体の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a discharge-excited gas laser device, and specifically relates to an improvement in a dielectric material coated on a discharge electrode.

従来の技術 上記ガスレーザ装置の一般的な構成を示すと第1図に)
、(vBJに示すようになる。この両図において、−対
の放tX極2.3はその一方または双方が誘電体により
被覆されている。いま周波数fの交流電源1の出力が一
対の放電電極2゜3間に印加されると、誘電体層を介し
て放電空間4に交流放電が生じ、この放電は上記空間4
部分が封入されているレーザ媒質ガス5を励起する。こ
の結果、全反射鏡6と部分透過鏡7からなる光共振器の
間でレーザ発振が生起され、その発振光の一部がレーザ
光として上記部分透過鏡7より取出される。このとき、
上記レーザ媒質ガスはプロア8によって放電空間4を数
1゜〜数roo m/zの速度で通過したのち、熱交換
器9で冷却され、再び上記放電空間4へ送り込まれる。
Conventional technology The general configuration of the above gas laser device is shown in Figure 1).
, (vBJ). In both figures, one or both of the -pair of discharge t When applied between the electrodes 2 and 3, an alternating current discharge is generated in the discharge space 4 through the dielectric layer, and this discharge flows into the space 4.
The laser medium gas 5 in which the part is enclosed is excited. As a result, laser oscillation is generated between the optical resonator made up of the total reflection mirror 6 and the partially transmitting mirror 7, and a part of the oscillated light is extracted from the partially transmitting mirror 7 as a laser beam. At this time,
The laser medium gas passes through the discharge space 4 by the proar 8 at a speed of several 1° to several room m/z, is cooled by the heat exchanger 9, and is sent into the discharge space 4 again.

第2図、第3図に上記放電電極の一例を示す。An example of the discharge electrode described above is shown in FIGS. 2 and 3.

放電電極2.3は鋼管にて構成されており、これの周囲
に誘電体10が被覆されている。なお各電極2.3内に
は冷却水が循環されている。
The discharge electrode 2.3 is made of a steel tube, and the circumference of the discharge electrode 2.3 is covered with a dielectric material 10. Note that cooling water is circulated within each electrode 2.3.

上記放電電極2.3に被覆される誘電体には絶縁性、耐
圧性(絶縁強度)、緻密性、耐熱性等が要求される。そ
してこの放電電極2,3には従来誘電体としてpyre
s等のホウケイ酸ガラス及びホウロウ等の材料が使用さ
れていた。
The dielectric material covering the discharge electrode 2.3 is required to have insulation properties, voltage resistance (insulating strength), denseness, heat resistance, and the like. Conventionally, the discharge electrodes 2 and 3 are made of pyre as a dielectric material.
Materials such as borosilicate glass and enamel were used.

発明が解決しようとする問題点 従来誘電体として使用されているホウケイ酸ガラス及び
ホウロウには次のような問題がある。
Problems to be Solved by the Invention Borosilicate glass and enamel conventionally used as dielectric materials have the following problems.

ホウケイ酸ガラスには低膨張(25℃〜32℃での平均
線膨張係数が32〜36XIO)、耐熱性、耐化学性な
どの利点がある。しかし金属とホウケイ酸ガラスの膨張
係数の差が大きいため被覆が困難である。また、ホウケ
イ酸ガラスは成形温度が高い丸め(溶融を行うには16
00℃の高温が必要)冷却速度が早く加工しにくいとい
う問題もある。
Borosilicate glass has advantages such as low expansion (average coefficient of linear expansion at 25° C. to 32° C. 32 to 36 XIO), heat resistance, and chemical resistance. However, coating is difficult due to the large difference in expansion coefficient between metal and borosilicate glass. In addition, borosilicate glass has a high forming temperature (16°C for melting).
There is also the problem that the cooling rate is fast and processing is difficult.

一方、ホウロウの場合400〜500℃まで使用でき、
この温度以下ではゆう薬がおかされないが、電気的に絶
縁体であるのは約200℃までである。放t′kL極2
.3の放電時の誘電体温度は約300℃と推定される。
On the other hand, enamel can be used up to 400-500℃,
At temperatures below this temperature, the material is not damaged, but it is an electrical insulator up to about 200°C. Radiation t′kL pole 2
.. The dielectric temperature during discharge in No. 3 is estimated to be approximately 300°C.

よって、放電時のホウロウの絶縁性はよくないと考えら
れる。レーザ励起放電のような高密度エネルギ放電下に
おいては、本質的に耐放電性に問題点がある。また、ゆ
う薬面に気泡が残ることをあわといい、気泡がつぶれて
針でさしたような毛孔状のものをピンホールといい、ま
たゆう薬が半月状鱗片状に欠けおちる現象を爪飛びとい
うが製造過程では上記のるわ、ピンホール、爪飛び又は
ホウロウの表面にしわが発生しやすい。よって、アーク
放電の発生しゃすい又放電が不安定な誘電体電極ができ
易いという問題点もあった。
Therefore, the insulation properties of the enamel during discharge are considered to be poor. Under high-density energy discharge such as laser-excited discharge, there is essentially a problem in discharge resistance. In addition, the air bubbles that remain on the surface of the medicine are called bubbles, and the pore-like formations that are punctured by a needle when the air bubbles collapse are called pinholes. However, during the manufacturing process, wrinkles are likely to occur on the surface of the above-mentioned wires, pinholes, skipped nails, or enamel. Therefore, there are problems in that arc discharge is likely to occur and a dielectric electrode with unstable discharge is likely to be formed.

問題点を解決するための手段 本発明は誘電体電極の被覆として従来から使用されてい
る誘電体(ホウケイ酸ガラス、ホウロウ)の問題点をな
くした誘電体を提供しようというものである。本発明で
は耐熱、耐放電性を落さずに膨張係数を大きくし、鉄と
の接着がよく作業温度700℃〜800℃の適当な値に
するために、Sin、−Na、 o −A、 oを主成
分とする一般的なガラスに7’i0.(チタニア)を1
0〜30%添加した。TiO,の他に若干Altos 
* P、 0. 、 B、o。
Means for Solving the Problems The present invention seeks to provide a dielectric that eliminates the problems of dielectrics (borosilicate glass, enamel) conventionally used as coatings for dielectric electrodes. In the present invention, in order to increase the expansion coefficient without reducing heat resistance and discharge resistance, and to achieve a suitable value for good adhesion with iron and a working temperature of 700°C to 800°C, Sin, -Na, o -A, 7'i0. (Titania) 1
It was added in an amount of 0 to 30%. TiO, some Altos
*P, 0. , B, o.

が含まれてもよい。may be included.

基礎となる一般的ガラスの成分範囲は次の通りである。The range of components of the basic glass is as follows.

Sin、 : 60%〜90チ、Na、O:1〜15%
、そしてに、O:Q〜5チである。i次、AI、0. 
 、P* 05、Bt Os  が添加される場合、次
の成分範囲になる。Al2O,: 0〜35%、p、o
、:o〜10%、BvOm:O〜20チである。
Sin: 60% to 90%, Na, O: 1 to 15%
, and O:Q~5chi. i-th order, AI, 0.
, P* 05, when Bt Os is added, the following component range is obtained. Al2O,: 0-35%, p, o
, : o~10%, BvOm: O~20%.

作用 Sin、 −Na、O−に、O系の一般ガラスの特性は
、膨張係数が大きくて、作業温度が低いということにあ
る。T i O,には次のような特性がある。
The characteristics of common glasses of the Sin, -Na, O-, and O systems are that they have a large coefficient of expansion and a low working temperature. T i O, has the following characteristics.

cL)重金属酸化物なので誘電率が大きい。すなわち、
印加電圧を高くして放電への注入電力を増大させること
ができる。
cL) Since it is a heavy metal oxide, it has a large dielectric constant. That is,
The power injected into the discharge can be increased by increasing the applied voltage.

b)熱膨張率を低下させる成分である。鉄との密着性が
よく鉄−ガラスの界面においては樹枝状結晶(デンドラ
イト・チタン酸鉄)の成長で密着する。
b) A component that lowers the coefficient of thermal expansion. It has good adhesion to iron and adheres to the iron-glass interface through the growth of dendrites (iron titanate).

上記特性より、S i O,−Na、O−に、O系ガラ
スにT10.を添加することにより耐放電性、耐熱性(
膨張率の低いものと高いものが一緒になり適当な値にな
る)、鉄への密着性のあるガラスができる。それ故、本
発明により従来の誘電体電極の電気的特性を向上させた
うえ信頼性の高い電極を容易に製造できるようになった
From the above characteristics, T10. By adding , discharge resistance and heat resistance (
The combination of low and high expansion coefficients results in an appropriate value), producing glass that has good adhesion to iron. Therefore, according to the present invention, it has become possible to improve the electrical characteristics of conventional dielectric electrodes and to easily manufacture highly reliable electrodes.

実施例 現在、交流放電を用いるオゾナイザ用の放電電極にホウ
ケイ酸ガラスを被績する技術は確立されている。しかし
、交流放電をレーザ用の励起放電として用いる場合、放
電電力がオゾナイザ等に用いる時より大きくなり、それ
だけの放電電力に耐えつるホウケイ酸ガラス被覆を電極
に被覆することは困難で電極として長時間の放電に耐え
るものは得られていない。
Embodiments Currently, the technology of coating borosilicate glass on a discharge electrode for an ozonizer using alternating current discharge has been established. However, when AC discharge is used as an excitation discharge for a laser, the discharge power is larger than when used for an ozonizer, etc., and it is difficult to cover the electrode with a borosilicate glass coating that can withstand that much discharge power, so it cannot be used as an electrode for a long time. No one has been found that can withstand this discharge.

よって被覆する誘電体としてホウロウを用いた場合と本
発明のTie、を添加し之誘電体を用いfC場合の電極
寿命を比較する。
Therefore, the electrode life will be compared between the case where enamel is used as the covering dielectric material and the case where fC is used as the dielectric material to which the Tie of the present invention is added.

実験結果は次のようになった。故障状況とはコーテイン
グ材が破損する状態をいう。
The experimental results were as follows. A failure condition is a condition in which the coating material is damaged.

以下余白 以上の結果よりホウロウの平均的故障時間は1&2j!
/ 平均的故障時間は次の様にも求めることができる。平均
的故障時間はMTTF として表わすととする。
From the results in the margin below, the average failure time of enamel is 1 & 2j!
/ The average failure time can also be calculated as follows. The mean time to failure is expressed as MTTF.

T:信頼性水準(1−α)の電極寿命 α:ある時間までに電極が故障する場合式に)より T
ie、を含む誘電体のMTTF t−求める。
T: Electrode life at reliability level (1-α) α: If the electrode fails by a certain time (from the formula), T
Find the MTTF t- of a dielectric material containing ie.

α=α9すなわち最悪384Bが信頼性水準10%のと
きの値だと仮定する。この時a(rrp = 166.
8jt七なる。よってTie、  を添加したSin、
 −Na、0−KtOのMTTFは現時点でのそれより
約9.1倍誘電体電極の寿命が伸びたことがわかる。
Assume that α=α9, that is, the worst case value is 384B, which is the value when the reliability level is 10%. At this time a(rrp = 166.
8jt seven. Therefore, Tie, Sin added,
It can be seen that the life of the dielectric electrode of the -Na, 0-KtO MTTF is about 9.1 times longer than that of the current one.

T i O,が10%含Mの時384B、 20%含有
の時406B、30チ含有の時398Hまで破損せず電
極は現在でも稼動してあり、破損する兆候すらない。T
 i O,の含有率が10%〜30%の成分範囲におい
ては現在のところ問題なく電極は稼動しており、実験デ
ータより少なくとも従来の技術より寿命の長い電極がで
きたことがわかる。
When T i O, contained 10% M, 384B, 20% M contained 406B, and 30% M contained no damage up to 398H, and the electrode is still in operation, with no signs of damage. T
At present, the electrode is operating without problems in a component range in which the i O content is 10% to 30%, and the experimental data shows that an electrode with a longer life than the conventional technology has been created.

TL Otの含有率が5%そして35%の時は双方とも
約200Hで破損したこの理山として5チ含有の場合は
、含有率が低い次めに誘電体の熱膨張率低下にT10.
が寄与していないためだと考えられる。また、含有率が
35%の場合は1’ i 0.は含有量が多いため誘電
体熱膨張率が鉄のそれより大きくな抄、また5 L 0
1の含有率が減少して高温度に対して耐熱性がなくなり
電極誘電体破損に至ったと考えられる。従ってTie、
の含有率は10%〜30チ範囲にあることが実用上望ま
しい。
When the TL Ot content was 5% and 35%, both were damaged in about 200H.When the TL Ot content was 5% and 35%, however, the T10.
This is probably because it does not contribute. Moreover, when the content rate is 35%, 1' i 0. Because the content is large, the dielectric thermal expansion coefficient is larger than that of iron, and 5 L 0
It is thought that the content of 1 decreased, resulting in loss of heat resistance to high temperatures, leading to electrode dielectric damage. Therefore Tie,
Practically speaking, it is desirable that the content is in the range of 10% to 30%.

発明の効果 S i Oo−Na、 O−に、O系の一般ガラスの特
性は、膨張係数が大きくて、作業温度が低いということ
にある。T i O,には次のような特性がある。
Effects of the Invention S i Oo-Na, O- and O-based general glasses have a large expansion coefficient and a low working temperature. T i O, has the following characteristics.

(α)重金属酸化物なので誘電率が太きい。すなわち、
印加電圧を高くすることなく注入を力を増大させること
ができる。
(α) Since it is a heavy metal oxide, it has a large dielectric constant. That is,
The injection force can be increased without increasing the applied voltage.

Cb)  熱膨張率を低下させる成分である。鉄との@
層性、がよく鉄−ガラスの界面においては樹枝状結晶(
プント2イト・チタン酸鉄)の成長で密着する。
Cb) A component that lowers the coefficient of thermal expansion. @ with iron
Layering is good, and dendrites (
Punto 2ite iron titanate) grows closely.

上記特性より、S i O,−Na、O−K、O系ガラ
スにTiらを添加することにより耐放電性、耐熱性、鉄
への密着性のあるガラスができる。それ故、本発明によ
り電気的特性を向上させたうえ1機械的特性の劣化をひ
きおこすことなく、信頼性の高い誘電体電極が実現可能
になった。
From the above characteristics, by adding Ti and the like to SiO, -Na, OK, O-based glass, a glass with discharge resistance, heat resistance, and adhesion to iron can be produced. Therefore, according to the present invention, it has become possible to realize a highly reliable dielectric electrode with improved electrical characteristics and without deterioration of mechanical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は交流放電励起式のガスレーザ装置の一般的な構
成を示した概念図であり、同図(Aはその正面図、同図
(ロ)はその側面図、第2図は放電電極の被接構造を示
す断面図、第3図は第2図の■−m線に沿う断面図であ
る。 1は交流電源、2.3は放電電極、5はレーザ媒質ガラ
ス、10は誘電体◎
Figure 1 is a conceptual diagram showing the general configuration of an AC discharge excitation type gas laser device. 3 is a sectional view showing the connected structure, and FIG. 3 is a sectional view taken along the line ■-m in FIG. 2. 1 is an AC power source, 2.3 is a discharge electrode, 5 is a laser medium glass, and 10 is a dielectric material

Claims (4)

【特許請求の範囲】[Claims] (1)少なくともいずれか一方を誘電体で被覆した1対
の放電電極および、上記電極間に交流電界を印加し放電
を誘起せしめる電源を備えてなる、放電励起形のガスレ
ーザ装置において、上記誘電体としてSiO_2、N_
2O、K_2Oを主成分として、10%〜30%のTi
O_2を添加したガラス材を使用したことを特徴とする
ガスレーザ装置。
(1) In a discharge-excited gas laser device comprising a pair of discharge electrodes, at least one of which is covered with a dielectric, and a power source that applies an alternating current electric field between the electrodes to induce discharge, the dielectric as SiO_2, N_
2O, K_2O as main components, 10% to 30% Ti
A gas laser device characterized by using a glass material added with O_2.
(2)上記交流電界の周波数が1KHz以上の高周波で
あることを特徴とする特許請求の範囲第1項記載のガス
レーザ装置。
(2) The gas laser device according to claim 1, wherein the frequency of the alternating current electric field is a high frequency of 1 KHz or more.
(3)上記ガラス材にさらにAl_2O_3、P_2O
_5、B_2O_3のうち少なくとも1つの成分が含ま
れていることを特徴とする特許請求の範囲第1項記載の
ガスレーザ装置。
(3) In addition to the above glass material, Al_2O_3 and P_2O
The gas laser device according to claim 1, characterized in that the gas laser device contains at least one component among _5 and B_2O_3.
(4)上記電極の金属母材として鉄以外の金属(線熱膨
張率が1×10^−^7〜1×10^−^4)を使用し
た特許請求の範囲第1項記載のガスレーザ装置。
(4) The gas laser device according to claim 1, wherein a metal other than iron (having a coefficient of linear thermal expansion of 1 x 10^-^7 to 1 x 10^-^4) is used as the metal base material of the electrode. .
JP14960186A 1986-06-27 1986-06-27 Gas laser apparatus Pending JPS636887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14960186A JPS636887A (en) 1986-06-27 1986-06-27 Gas laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14960186A JPS636887A (en) 1986-06-27 1986-06-27 Gas laser apparatus

Publications (1)

Publication Number Publication Date
JPS636887A true JPS636887A (en) 1988-01-12

Family

ID=15478768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14960186A Pending JPS636887A (en) 1986-06-27 1986-06-27 Gas laser apparatus

Country Status (1)

Country Link
JP (1) JPS636887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313881A (en) * 1987-06-17 1988-12-21 Mitsubishi Electric Corp Silent discharge type gas laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313881A (en) * 1987-06-17 1988-12-21 Mitsubishi Electric Corp Silent discharge type gas laser device

Similar Documents

Publication Publication Date Title
US5436409A (en) Electrical conductor member such as a wire with an inorganic insulating coating
US4936957A (en) Thin film oxide dielectric structure and method
US4047067A (en) Sodium halide discharge lamp with an alumina silicate barrier zone in fused silica envelope
JP3459318B2 (en) Light bulb electrical conductor
JP2001102199A (en) Plasma treatment apparatus and method therefor
JPS636887A (en) Gas laser apparatus
SE450438B (en) NON-WATER-ELECTROCHEMICAL CELL
JP2628313B2 (en) Gas laser device
JPS62111487A (en) Laser tube
JPS60260172A (en) Silent discharge excitation laser
JP3942441B2 (en) Method for producing aluminum nitride
JPS58216481A (en) High frequency discharge sealing type gas laser
JPH0653088A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JPS5932187A (en) Silent discharge type gas laser device
JPH02239520A (en) Manufacture of superconductive wire
JPH06104493A (en) Coated thermocouple
JPH07107690A (en) Electric rotary machine
JPH01132128A (en) Manufacture of silica film
JPH02250209A (en) Insulated electric wire
JPS61168276A (en) Voiceless discharge type gas laser
KR940009182B1 (en) Heater of crt
JPS61159781A (en) Silent discharge type gas laser device
JPS6086797A (en) Thin film el display panel
JPS63313881A (en) Silent discharge type gas laser device
US3115432A (en) Method for producing high temperature electrical insulation