JPH01132128A - Manufacture of silica film - Google Patents

Manufacture of silica film

Info

Publication number
JPH01132128A
JPH01132128A JP28931587A JP28931587A JPH01132128A JP H01132128 A JPH01132128 A JP H01132128A JP 28931587 A JP28931587 A JP 28931587A JP 28931587 A JP28931587 A JP 28931587A JP H01132128 A JPH01132128 A JP H01132128A
Authority
JP
Japan
Prior art keywords
silica film
silica
film
substrate
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28931587A
Other languages
Japanese (ja)
Inventor
Chikaichi Ito
伊藤 親市
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28931587A priority Critical patent/JPH01132128A/en
Publication of JPH01132128A publication Critical patent/JPH01132128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve the moisture resistance and anti-cracking properties of a silica film by placing the silica film in the atmosphere of a gas containing F, and exposing the silica film to an ultraviolet light. CONSTITUTION:After forming a silica film on a substrate, an ultraviolet light is applied to the silica film in a gaseous atmosphere containing fluorine under a normal or reduced pressure. For instance, a groove having a width of 1mum and a depth of 2mum is formed on a silicon substrate and coated with a coating liquid of silica sol. Then, the substrate surface is exposed to an ultraviolet lamp in the stream of SF6, HF, or a mixed gas of F2 and O2 (O2 30%), and the rear surface is exposed to an infrared lamp and heated to 500 deg.C. To make the heating speed slow, the infrared light is applied intermittently, and the heating speed is 10 deg.C/min. After repeating the process 4 times and completely filling the groove of 2mum depth, it is heated in N2 up to 900 deg.C to perform a densification process, and with the SOG-filled deep groove as an isolation a MOS device is created on the silicon substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板上に形成したシリカ(SiOz)膜
の加熱処理時の耐クラツク性および耐湿性の向上に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the crack resistance and moisture resistance during heat treatment of a silica (SiOz) film formed on a semiconductor substrate.

〔従来の技術〕[Conventional technology]

ゾルゲル法によりバルクのシリカ(SiOz)を作成す
る過程において、HFを加水分解の解媒として溶液中に
添加すると作成されたシリカのゲルが800℃以下の熱
処理であまり焼締りを起さないという報告“ジャーナル
・オン・ノン−クリスタル・ソリッズ(g 、 of 
Non−Cryst、 5olids)。
A report that in the process of creating bulk silica (SiOz) using the sol-gel method, when HF is added to the solution as a dissolving medium for hydrolysis, the silica gel created does not cause much sintering compaction when heat treated at 800°C or less. “Journal on Non-Crystal Solids (g, of
Non-Cryst, 5olids).

(82(1986)78)”がある、これはHFがゾル
中での脱水縮合反応を促進するためゲル化後この反応が
起り薙くなる為と考えられる。しかしHF添加液ではゲ
ル化の反応が速い為安定性に劣り、これをSOG (ス
ピン・オン・グラス:S pin −On −G 1a
ss)用に転用するのは困難であった。
(82 (1986) 78)". This is thought to be because HF promotes the dehydration condensation reaction in the sol, and this reaction occurs after gelation, resulting in a meltdown. However, in the HF-added solution, the gelation reaction Because it is fast, it is less stable, and this is called SOG (Spin-On-G 1a).
ss) was difficult to convert to other uses.

つぎに、Fを含むガスのプラズマを用いてSiやSiO
2をエツチングする方法は現在広く行われている1′ジ
ヤーナル・オン・エレクトロケミカル・ソサエティー(
J 、 Electrochem、 Sac、)  (
129(1982)1770)”、しかし、Fをシリカ
中にドープする為にこの方法を用いた例は見当らない。
Next, using plasma of gas containing F, Si and SiO
The method for etching 2 is the 1' Journal on Electrochemical Society (1'), which is currently widely used.
J, Electrochem, Sac,) (
129 (1982) 1770)'', however, there are no examples of using this method to dope F into silica.

また、ゾルゲル法で作成したシリカゲルをSFs気流中
で1300〜1500℃に加熱することによりグラスフ
ァイバー用S i OzにFをドープする試み“ジャパ
ニーズ・ジャーナル・オン・アプライド・フィジックス
(J 、 J 、 of Appl Phys、) 。
In addition, an attempt was made to dope F into SiOz for glass fibers by heating silica gel prepared by the sol-gel method to 1300-1500°C in an SFs airflow, “Japanese Journal on Applied Physics (J, J, of Appl Phys, ).

(25,Nα11 (1986)L902”も行なわれ
ている。この場合Fドープの反応温度が1200℃以上
と高く、Siデバイスの絶縁膜の処理には適さない。
(25, Nα11 (1986) L902'' has also been carried out. In this case, the reaction temperature of F doping is as high as 1200° C. or more, and it is not suitable for processing an insulating film of a Si device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

半導体装置の層間絶縁やパッシベーションのために用い
るシリカ膜はりフロー温度を下げたり、その熱膨張係数
を大きくして、基板材料のSiや配線材料のAQのそれ
に近づける事によりクラックの発生を防ぐためにPやB
等の元素を添加する。
Silica film used for interlayer insulation and passivation of semiconductor devices is used to prevent cracks by lowering the flow temperature and increasing its thermal expansion coefficient to approach that of Si for the substrate material and AQ for the wiring material. YaB
Add elements such as

しかし、これらの元素の酸化物が強い吸湿性を持つため
か、これらの元素を添加したシリカは耐湿性に劣り、し
ばしばこれを用いた半導体装置の特性劣化の原因となっ
ている。
However, perhaps because oxides of these elements have strong hygroscopic properties, silica to which these elements are added has poor moisture resistance, which often causes deterioration in the characteristics of semiconductor devices using them.

特にSiの有機化合物の溶液を塗布・加熱してガラス膜
とする塗布型ガラス(SOG)膜においては上記の問題
点に加え、ガラス化に際して、収縮が起こり、これがク
ラック発生の原因となるためあまり厚いSOG膜は形成
できないという問題点もあった。
In particular, in coated glass (SOG) films, in which a solution of an organic compound of Si is applied and heated to form a glass film, in addition to the above-mentioned problems, shrinkage occurs during vitrification, which causes cracks to form. Another problem was that a thick SOG film could not be formed.

本発明の目的は以上のようなシリカ膜の耐湿性と耐クラ
ツク性を改善する事にある。
The object of the present invention is to improve the moisture resistance and crack resistance of the silica film as described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はシリカ膜をFを含むガスの雰囲気中に置き、
シリカ膜に紫外線を照射することにより達成される。
The above purpose is to place a silica membrane in an atmosphere of gas containing F,
This is achieved by irradiating the silica film with ultraviolet light.

上記紫外線照射の際に膜を徐々に加熱する事により、反
応が促進される。
The reaction is accelerated by gradually heating the film during the ultraviolet irradiation.

加熱方法としては、赤外線レーザや赤外線ランプにより
、シリカ膜を選択的に膜底部から加熱する方法が優れて
いる。
An excellent heating method is to selectively heat the silica film from the bottom using an infrared laser or an infrared lamp.

また、上記ガスに酸素を混合することにより。Also, by mixing oxygen with the above gas.

シリカ膜の膜厚減少を防ぐことができる。A reduction in the thickness of the silica film can be prevented.

さらに、雰囲気ガス中の水分濃度を低下させるために乾
燥ガスを用いるとF置換反応の生成物である水分の膜か
らの離脱が加速される。
Furthermore, when a dry gas is used to reduce the moisture concentration in the atmospheric gas, the separation of moisture, which is a product of the F substitution reaction, from the film is accelerated.

また、雰囲気ガスの気圧を1気圧より減圧することによ
りF置換反応を加速する事ができる。
Moreover, the F substitution reaction can be accelerated by reducing the atmospheric pressure of the atmospheric gas from 1 atm.

〔作用〕[Effect]

本発明で目的としているFドープはシリカ膜の0原子を
F原子で置換するのではなく、シリカ表面に多数存在す
るOH基をF原子で置換する事により達成される。前で
述べたようにゾルゲル法により得られたシリカゲルをS
Foを含むガス気流中で1200℃以上に加熱する事に
よりFをドープする技術は知られているが、この場合に
はFドープの時点では高温加熱のためほとんどのOH基
はすでに失なわれていると考えられる。従ってこの場合
のFドープはOを置換する事により達成されていると考
えられるので本発明の目的には適さない。
F doping, which is the object of the present invention, is achieved not by replacing zero atoms in the silica film with F atoms, but by replacing many OH groups present on the silica surface with F atoms. As mentioned earlier, the silica gel obtained by the sol-gel method was
A technique to dope F by heating to 1200°C or higher in a gas stream containing Fo is known, but in this case, most of the OH groups have already been lost due to the high temperature heating at the time of F doping. It is thought that there are. Therefore, F doping in this case is considered to be achieved by substituting O, and is therefore not suitable for the purpose of the present invention.

一方、低温のシリカ膜にFをドープする方法としてF含
有ガスのプラズマにシリカ膜を晒す方法がある。F含有
ガスとしてはCF 4 @ HF g CzFs +N
Fa等の炭素、水素、窒素の弗化物の他にCQやSを含
んだCCQ F sやSFeさらにはBFa。
On the other hand, as a method of doping a low-temperature silica film with F, there is a method of exposing the silica film to plasma of an F-containing gas. As F-containing gas, CF 4 @ HF g CzFs +N
In addition to fluorides of carbon, hydrogen, and nitrogen such as Fa, CCQ F s and SFe containing CQ and S, as well as BFa.

PFFI等がある。このようなガスのプラズマはSiや
シリカのエツチング用ガスとしと使用されている事から
も分るように、5iftの膜厚減少の原因となっている
。これはCの介在や高エネルギのFイオンにより5in
s中の0とFの置換が起るからである。この0置換を極
力防止し、OHとFとの置換反応を効率良く行うために
はFを弱くイオン化する必要がある。このためにFを含
むガス雰囲気中のシリカ膜に紫外線を照射する。この方
法によりFの電離エネルギを必要最小限にとどめる事が
可能となる。
There are PFFI, etc. As can be seen from the fact that such gas plasma is often used as an etching gas for Si and silica, it causes a reduction in film thickness of 5ift. This is due to the intervention of C and high energy F ions.
This is because substitution of 0 and F in s occurs. In order to prevent this zero substitution as much as possible and to perform the substitution reaction between OH and F efficiently, it is necessary to weakly ionize F. For this purpose, the silica film in a gas atmosphere containing F is irradiated with ultraviolet rays. This method makes it possible to keep the ionization energy of F to the necessary minimum.

ここで、上記の反応は膜を加熱しなくとも進行するが、
乾燥雰囲気中で100℃以上に加熱することにより、反
応生成物である水を膜から離脱せしめる作用を促進し、
その結果としてFのドーピングの反応を促進することが
できる。
Here, although the above reaction proceeds without heating the membrane,
By heating to 100°C or higher in a dry atmosphere, the action of separating water, which is a reaction product, from the membrane is promoted,
As a result, the F doping reaction can be promoted.

また、Fを含むガス雰囲気中でシリカ膜に紫外線を照射
しなからシリカ膜を徐々に加熱して最終ベーク温度まで
昇温する方法も有効である。
It is also effective to gradually heat the silica film to the final baking temperature without irradiating the silica film with ultraviolet rays in a gas atmosphere containing F.

さらに、雰囲気中の02の濃度を増す事により、FとO
の置換反応を抑制する事ができる。
Furthermore, by increasing the concentration of 02 in the atmosphere, F and O
The substitution reaction of can be suppressed.

【実施例〕【Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 シリコン基板に幅1μm、深さ2μmの溝を形成し、東
京応化工業(株)社製の0CDP−48340(SiO
a成分4.8wt%、PzOso、4g / 100 
m Q )を塗布した。
Example 1 A groove with a width of 1 μm and a depth of 2 μm was formed on a silicon substrate, and a groove was formed using 0CDP-48340 (SiO
A component 4.8wt%, PzOso, 4g/100
mQ) was applied.

SFe、あるいはHFあるいはF2とOzの混合気体(
0230%)気流中で紫外線ランプで基板表面を照射し
、赤外線ランプで裏面を照射して500℃まで加熱した
。加熱速度を遅くするために赤外線照射は間歇的に行な
った。昇温速度は10℃/分である。上記の工程を4回
繰返して、深さ2μmの溝を完全に充填した。その後、
N2中900℃まで加熱して緻密化処理を行なった0以
上の方法によりSOGによるクラックのない深溝の充填
が可能となった。このSOG充填の深溝をアイソレーシ
ョンとしてシリコン基板にMOSデバイスを作成した。
SFe, or HF or a mixture of F2 and Oz (
0230%) In an air stream, the front surface of the substrate was irradiated with an ultraviolet lamp, and the back surface was irradiated with an infrared lamp and heated to 500°C. Infrared irradiation was performed intermittently to slow down the heating rate. The temperature increase rate is 10°C/min. The above process was repeated four times to completely fill the 2 μm deep groove. after that,
The method described above, in which densification treatment was performed by heating to 900° C. in N2, made it possible to fill deep grooves without cracks with SOG. A MOS device was fabricated on a silicon substrate using this SOG-filled deep groove as isolation.

実施例2 Si基板上に熱酸化5iOz膜を形成し、AQ導体層を
設置し、パターン化処理後、プラズマCVD法によるP
SG膜を厚さ0.2μmi9[し、その上に実施例1と
同様のOCD塗布液を平坦部膜厚が0.2μmとなる条
件でスピン塗布した。
Example 2 A thermally oxidized 5iOz film was formed on a Si substrate, an AQ conductor layer was placed, and after patterning, P was deposited by plasma CVD.
The SG film was formed to a thickness of 0.2 μm, and the same OCD coating solution as in Example 1 was spin-coated thereon under conditions such that the film thickness at the flat portion was 0.2 μm.

上記処理をしたSi基板をサセプタ上に置き、高周波誘
導法により加熱した。雰囲気はCF4と0x(Oz40
%)との混合気体気流である。紫外線レーザにより表面
を照射した。室温から徐々の昇温(20℃/分)し、4
50℃まで加熱し、その温度に30分保持した。さらに
その上部に厚さ0.2μmのプラズマCVD法によるP
SG膜を形成した。上記3層のシリカ膜を層間絶縁膜と
して用いその上に第2層のAQ配線層を設置した。
The Si substrate treated as described above was placed on a susceptor and heated by high frequency induction method. The atmosphere is CF4 and 0x (Oz40
%) is a mixed gas flow. The surface was irradiated with an ultraviolet laser. Gradually raise the temperature (20°C/min) from room temperature, and
It was heated to 50°C and held at that temperature for 30 minutes. Furthermore, on top of that, a P layer with a thickness of 0.2 μm is made by plasma CVD method.
An SG film was formed. The three layers of silica films were used as interlayer insulating films, and a second AQ wiring layer was placed thereon.

以上の方法により、電気特性に優れた、クラックのない
層間絶縁膜を形成する事ができた。
By the above method, it was possible to form a crack-free interlayer insulating film with excellent electrical properties.

上記実施例は主にSOG膜の耐湿性、耐クラツク性に注
目した検討結果であるが、他の方法で作製したシリカ膜
においても同様の検討を行い、同様の効果がある事を確
認した。特にPSG、BPSGの耐湿性改善効果は著し
い。
Although the above examples are the results of studies focusing mainly on the moisture resistance and crack resistance of the SOG film, similar studies were conducted on silica films prepared by other methods, and it was confirmed that similar effects were obtained. In particular, the moisture resistance improvement effect of PSG and BPSG is remarkable.

〔発明の効果〕〔Effect of the invention〕

Claims (5)

【特許請求の範囲】[Claims] 1.基板上にシリカ膜を形成後、フッ素を含む常圧又は
減圧下のガス雰囲気中で該シリカ膜に紫外線を照射する
事を特徴とするシリカ膜の製造法。
1. A method for producing a silica film, which comprises forming a silica film on a substrate and then irradiating the silica film with ultraviolet rays in a gas atmosphere containing fluorine at normal pressure or reduced pressure.
2.シリカ膜を1000℃以下の温度に加熱する事を特
徴とする特許請求の範囲第1項記載のシリカ膜の製造法
2. A method for producing a silica film according to claim 1, characterized in that the silica film is heated to a temperature of 1000° C. or less.
3.赤外線を熱源として、基板を通して該シリカ膜を照
射加熱する事を特徴とする特許請求の範囲第2項記載の
シリカ膜の製造法。
3. 3. The method for producing a silica film according to claim 2, wherein the silica film is irradiated and heated through a substrate using infrared rays as a heat source.
4.フッ素を含むガスに酸素を混合する事を特徴とする
特許請求の範囲第1乃至第3項記載のシリカ膜の製造法
4. A method for producing a silica film according to any one of claims 1 to 3, characterized in that oxygen is mixed with a gas containing fluorine.
5.シリカ膜として塗布ガラス膜を用いる事を特徴とす
る特許請求の範囲第1乃至第4項記載のシリカ膜の製造
法。
5. A method for producing a silica film according to any one of claims 1 to 4, characterized in that a coated glass film is used as the silica film.
JP28931587A 1987-11-18 1987-11-18 Manufacture of silica film Pending JPH01132128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28931587A JPH01132128A (en) 1987-11-18 1987-11-18 Manufacture of silica film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28931587A JPH01132128A (en) 1987-11-18 1987-11-18 Manufacture of silica film

Publications (1)

Publication Number Publication Date
JPH01132128A true JPH01132128A (en) 1989-05-24

Family

ID=17741595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28931587A Pending JPH01132128A (en) 1987-11-18 1987-11-18 Manufacture of silica film

Country Status (1)

Country Link
JP (1) JPH01132128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226053A (en) * 1988-07-14 1990-01-29 Matsushita Electron Corp Manufacture of semiconductor device
JPH0274779A (en) * 1988-09-10 1990-03-14 Toyo Sash Co Ltd Door with curtain
US5763329A (en) * 1996-01-26 1998-06-09 Nec Corporation Method for making semiconductor device by coating an SOG film in amine gas atmosphere
WO2014080841A1 (en) * 2012-11-22 2014-05-30 Azエレクトロニックマテリアルズマニュファクチャリング株式会社 Method for forming of siliceous film and siliceous film formed using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226053A (en) * 1988-07-14 1990-01-29 Matsushita Electron Corp Manufacture of semiconductor device
JPH0274779A (en) * 1988-09-10 1990-03-14 Toyo Sash Co Ltd Door with curtain
US5763329A (en) * 1996-01-26 1998-06-09 Nec Corporation Method for making semiconductor device by coating an SOG film in amine gas atmosphere
WO2014080841A1 (en) * 2012-11-22 2014-05-30 Azエレクトロニックマテリアルズマニュファクチャリング株式会社 Method for forming of siliceous film and siliceous film formed using same
JP2014103351A (en) * 2012-11-22 2014-06-05 Az Electronic Materials Mfg Co Ltd Method for forming siliceous film, and siliceous film formed by the same
CN104885204A (en) * 2012-11-22 2015-09-02 Az电子材料(卢森堡)有限公司 Method for forming of siliceous film and siliceous film formed using same
CN104885204B (en) * 2012-11-22 2017-04-12 Az电子材料(卢森堡)有限公司 Method for forming of siliceous film and siliceous film formed using same
TWI600614B (en) * 2012-11-22 2017-10-01 Az電子材料盧森堡有限公司 Method of forming siliceous film and the siliceous film formed by using the method thereof
US10000386B2 (en) 2012-11-22 2018-06-19 AZ Electronic Materials (Luxembourg) S.à.r.l. Method for forming of siliceous film and siliceous film formed using same

Similar Documents

Publication Publication Date Title
KR100454618B1 (en) Hardening Method of Hydrogen Silsesquioxane Resin by Electron Beam
KR100658393B1 (en) Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content
KR940009599B1 (en) Forming method of inter-dielectric film for semiconductor device
US6699797B1 (en) Method of fabrication of low dielectric constant porous metal silicate films
US6559071B2 (en) Process for producing dielectric thin films
US20050272220A1 (en) Ultraviolet curing process for spin-on dielectric materials used in pre-metal and/or shallow trench isolation applications
CN101194344A (en) UV curing process for spin-on dielectric materials used in pre-metal and/or shallow trench isolation applications
JPH04360533A (en) Chemical vapor deposition method
KR880001029A (en) Integrated Circuit Multilayer Interconnect Device and Method
KR20030034054A (en) Plasma processing for porous silica thin film
EP1265813A2 (en) Plasma processing for porous silica thin film
US5629246A (en) Method for forming fluorine-doped glass having low concentrations of free fluorine
US20030062600A1 (en) Process for optimizing mechanical strength of nanoporous silica
JPH01199678A (en) Formation of high purity thin sio2 film
US4406053A (en) Process for manufacturing a semiconductor device having a non-porous passivation layer
JPH01132128A (en) Manufacture of silica film
JPH1092804A (en) Manufacture of porous dielectric film
US4420503A (en) Low temperature elevated pressure glass flow/re-flow process
JPH09275102A (en) Formation of insulating film
JP2691565B2 (en) Silicon oxide film modification method
JPH0316129A (en) Generation of silicon nitride film
JP2739788B2 (en) Insulating film processing method for semiconductor device
JPH0950995A (en) Silicon-based oxide and interlayer insulating film for semiconductor device
JPH04174520A (en) Stabilizing method for sog film
SU1711269A1 (en) Method of producing interlayer insulation in production of integral microcircuits