JPS6245072A - Semiconductor memory and manufacture thereof - Google Patents

Semiconductor memory and manufacture thereof

Info

Publication number
JPS6245072A
JPS6245072A JP18296085A JP18296085A JPS6245072A JP S6245072 A JPS6245072 A JP S6245072A JP 18296085 A JP18296085 A JP 18296085A JP 18296085 A JP18296085 A JP 18296085A JP S6245072 A JPS6245072 A JP S6245072A
Authority
JP
Japan
Prior art keywords
photoresist
oxide film
pattern
insulating film
diffusion regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18296085A
Other languages
Japanese (ja)
Inventor
Hidefumi Kuroki
黒木 秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18296085A priority Critical patent/JPS6245072A/en
Publication of JPS6245072A publication Critical patent/JPS6245072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To assure a sufficient withstand voltage between the diffusion regions by forming a low concentration impurity diffusion region between high concentration impurity diffusion regions, and providing a tri-gate structure to the gate thereabove. CONSTITUTION:On the pattern on a p<-> substrate 1 divided by an element isolation region 2, an insulating film 31 which is a very thin oxide film, and subsequently an insulating film 4 consisting of a nitride film are formed respectively. Phosphorus P or the like is implanted onto the insulating film 4 to form an n<-> region and subsequently a pattern 8 of photoresist, with the resist of the pattern 8 as a mask the insulating films 31 and 4 are etched, and the photoresist 8 is removed. Then, an insulating film 9 is formed, and thereon a polysilicon layer 5 which is to become an electrode is applied, with the photoresist pattern as a mask the polysilicon layer 5 and the insulating layer 9 are etched, and thereafter the photoresist is removed. As or the like is implanted to form n<+> diffusion regions 61, 62, and an n<-> region is provided therebetween and formed into a tri-gate structure. With this, the withstand voltage between the diffusion regions 61, 62 are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、メモリゲート部に電荷を蓄積して記憶動作
を行う不揮発性型の半導体記憶装置及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonvolatile semiconductor memory device that performs a memory operation by accumulating charge in a memory gate portion, and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

第3図は従来のメモリゲートトランジスタの構造を示す
断面図である。このトランジスタは、素子分要領域(2
)で隣接するトランジスタと分離されている。そしてゲ
ート電極(5)に電圧を印加し、これが、絶縁膜(31
)を通して絶縁膜(4)に電子やホールを捕獲させ、そ
れによりVthを変動させることにより、“1″  l
lo”を判定するメモリトランジスタである。例丸ば、
上記第3図のトランジスタにおいて、ゲート電極(5)
に正の電圧を印加した場合には、絶Ii膜(3I)を通
して電子が絶縁膜(4)に捕獲されることとなり、この
トランジスタのVthは高くなる。また、ゲート電極(
5)に負の電圧を印加した場合には、このトランジスタ
のVthは低くなる。この差で論理値の11+1,11
0+1の判定を行っている。
FIG. 3 is a cross-sectional view showing the structure of a conventional memory gate transistor. This transistor has an element area (2
) is separated from adjacent transistors. Then, a voltage is applied to the gate electrode (5), which causes the insulating film (31
) through which the insulating film (4) captures electrons and holes, thereby varying Vth.
It is a memory transistor that determines “lo”. For example,
In the transistor shown in FIG. 3 above, the gate electrode (5)
When a positive voltage is applied to the insulating film (4), electrons are captured by the insulating film (4) through the insulating film (3I), and the Vth of this transistor increases. In addition, the gate electrode (
When a negative voltage is applied to 5), the Vth of this transistor becomes low. This difference is the logical value of 11+1,11
A 0+1 determination is made.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述第3図の構造であると、n“拡散領域(61)と(
62)の間に高い電圧がかがった場合、電流がリークし
て回路的に不都合が生じるので、この現象を防ぐ必要が
あった。そこでこの拡散領域(Eil)。
In the structure shown in FIG. 3 above, the n" diffusion region (61) and (
If a high voltage is applied between 62) and 62), current leaks and circuit problems occur, so it was necessary to prevent this phenomenon. So this diffusion area (Eil).

(62)間の耐圧を高めるため、新しい構造のトランジ
スタおよびその製造方法の開発が要望されてぃた。
In order to increase the withstand voltage between (62) and 62, there has been a demand for the development of a transistor with a new structure and a method for manufacturing the same.

この発明は上記のような要望を満たすためになされたも
ので、拡散領域間に十分な耐圧が得られる半導体記憶装
置及びその製造方法を得ることを目的としたものである
The present invention was made in order to satisfy the above-mentioned needs, and an object of the present invention is to provide a semiconductor memory device and a method for manufacturing the same that can provide a sufficient breakdown voltage between diffusion regions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高濃度の不純物拡散領域間に、低濃度の不純
物拡散領域を形成し、この上方のゲートを、トライゲー
ト構造としたことを特徴とするものである。
The present invention is characterized in that a low concentration impurity diffusion region is formed between the high concentration impurity diffusion regions, and the gate above the region has a tri-gate structure.

〔作用〕[Effect]

低濃度の不純物の拡散及びトライゲート構造により、電
流のリークが低減され、ドレイン耐圧が向上する。
Due to the diffusion of low concentration impurities and the tri-gate structure, current leakage is reduced and drain breakdown voltage is improved.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例によるメモリゲート構造の断
面図およびその製造プロセスによる各断面図を示した第
1図および第2図(λ)ないしくh)について説明する
。なお、これらの図で第3図に対応する部分と同一また
は相当部分はこれと同一の符号で示す。
Hereinafter, a description will be given of FIG. 1 and FIG. 2 (λ) to h) showing a cross-sectional view of a memory gate structure according to an embodiment of the present invention and each cross-sectional view according to its manufacturing process. In these figures, parts that are the same as or corresponding to those in FIG. 3 are designated by the same reference numerals.

まず、第2図(a)のように、p−の基板(1)の上に
素子分離領域(2)で分離されtコバターン上に極めて
薄い酸化膜の絶縁膜(31)、続いて厚さが約500A
程度の窒化膜よりなる絶縁膜(4)を各々形成する。
First, as shown in FIG. 2(a), an extremely thin oxide insulating film (31) is formed on a p-substrate (1) separated by an element isolation region (2) on a t-substrate (31). is about 500A
An insulating film (4) made of a nitride film of about 100% is formed.

この状態で同図(b)のように絶縁膜(4)上にリン(
Plなどの物資を注入してn−の領域を形成する。続い
てフォトレジストのパターン(8)を形成しく同図(C
))、このパターン(8)のレジストをマスクにして絶
縁膜(3])および(4)をエツチングし、次いでフォ
トレジス+−f81を除去する(同図(d))。乙の状
態から次に厚さが600A程度の酸化膜よりなる絶縁膜
(9)を形成しく同図(e))、さらにその上から電極
になるポリシリコン層(5)を被覆しく同図(f))、
次にフォトレジストパターンをマスクとして前記ポリシ
リコン層(5)および絶縁層(9)をエツチングした後
、フ第1・レジストを除去する(同図(g))。
In this state, phosphorus (
A material such as Pl is injected to form an n- region. Next, a photoresist pattern (8) is formed as shown in the same figure (C).
)), using the resist pattern (8) as a mask, the insulating films (3]) and (4) are etched, and then the photoresist +-f81 is removed (FIG. 4(d)). Next, from the state shown in B, an insulating film (9) made of an oxide film with a thickness of about 600 A is formed (Fig. 2(e)), and then a polysilicon layer (5) which will become an electrode is coated on top of it (Fig. 3(e)). f)),
Next, the polysilicon layer (5) and the insulating layer (9) are etched using the photoresist pattern as a mask, and then the first resist is removed (FIG. 1(g)).

その状態からAsなどを注入し、もってn“の拡散領域
(61J 、 (62)を形成する(同図(h)及び第
1図)。
From this state, As or the like is implanted to form n'' diffusion regions (61J, (62)) (FIG. 1(h) and FIG. 1).

この製造プロセスにて形成される構造は n +拡散領
域(61) 、 (62)間にn1域を設け、かつゲー
ト絶縁M(9)のある構造(トライゲート構造)にする
ことにより、前記拡散領域(61) 、 (62)rI
IIの耐圧が向上することをねらったものである。
The structure formed by this manufacturing process has an n1 region between the n+ diffusion regions (61) and (62), and a structure (tri-gate structure) with gate insulation M(9). Region (61), (62)rI
This is aimed at improving the breakdown voltage of II.

なお、上記実施例では、基板としてp−型のものを用い
、これにn“型の拡散領域を形成しているが、本発明は
何らこれに限定されるものではなく、各々異なる導電型
のものを用いろようにしてもよい。
In the above embodiment, a p-type substrate is used and an n" type diffusion region is formed on it, but the present invention is not limited to this in any way. You may try to use something.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、メモリゲートを
、不純物濃度の異なる二重の拡散領域を形成するととも
に、トライゲート構造としたので、拡散領域間の耐圧(
ドレイン耐圧)が向上するという効果がある。
As explained above, according to the present invention, the memory gate has double diffusion regions with different impurity concentrations and has a tri-gate structure, so that the breakdown voltage between the diffusion regions (
This has the effect of improving drain breakdown voltage).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるrFr面構造図、第
2図(a)〜(h)はこの発明に係る半導体記憶装置の
構造方法の実施例を示す工程図、第3図は従来のメモリ
ゲートの構造を示す断面図である。 図中、(1)は半導体基板、(2)は素子分離領域、(
31) 、 +41 、 (91は絶縁膜、(5)はゲ
ート電極、(61)。 (62)は波数領域である。 なお、各図中同一符号は同一または相当部分を示す。 代理人 弁理士 佐 藤 正 年 第1図 第8図 第2図 第2図
FIG. 1 is an rFr surface structure diagram according to an embodiment of the present invention, FIGS. 2(a) to (h) are process diagrams showing an embodiment of the method for structuring a semiconductor memory device according to the present invention, and FIG. 3 is a conventional FIG. 3 is a cross-sectional view showing the structure of a memory gate of FIG. In the figure, (1) is a semiconductor substrate, (2) is an element isolation region, (
31) , +41 , (91 is an insulating film, (5) is a gate electrode, (61). (62) is a wave number domain. The same reference numerals in each figure indicate the same or equivalent parts. Agent Patent attorney Masaru Sato Figure 1 Figure 8 Figure 2 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)高濃度不純物が拡散されている第1及び第2の拡
散領域間に絶縁膜を介してゲート電極が形成された半導
体記憶装置において、 前記第1及び第2の拡散領域間には、該拡散領域に対し
同導電型となる低濃度不純物が拡散されており、 前記ゲート電極をトライゲート構造としたことを特徴と
する半導体記憶装置。
(1) In a semiconductor memory device in which a gate electrode is formed with an insulating film interposed between first and second diffusion regions in which high concentration impurities are diffused, between the first and second diffusion regions: A semiconductor memory device, wherein a low concentration impurity having the same conductivity type is diffused into the diffusion region, and the gate electrode has a tri-gate structure.
(2)半導体基板と絶縁膜と電極とから構成されるトラ
ンジスタ部に電荷を蓄積させて記憶動作を行う半導体記
憶装置の製造方法において、前記半導体基板表面上に薄
い酸化膜を形成する工程と、前記生成された酸化膜上に
窒化膜を生成する工程と、前記生成された窒化膜上から
イオンを注入する工程と、前記生成された窒化膜上にフ
ォトレジストを塗布し写真製版によってパターニングす
る工程と、前記形成されたフォトレジストのパターンを
マスクとして前記形成した酸化膜および窒化膜をエッチ
ングする工程と、前記形成されたパターンで酸化膜を形
成する工程と、前記形成されたパターンで酸化膜を形成
する工程と、前記形成された酸化膜上にポリシリコン層
を生成する工程と、前記形成されたポリシリコン層上に
フォトレジストを塗布し写真製版によつてパターニング
する工程と、前記形成されたフォトレジストパターンを
マスクとして前記ポリシリコン層および酸化膜をエッチ
ングしトライゲート構造を形成する工程とを含む半導体
記憶装置の製造方法。
(2) A method for manufacturing a semiconductor memory device that performs a memory operation by accumulating charges in a transistor section composed of a semiconductor substrate, an insulating film, and an electrode, including the step of forming a thin oxide film on the surface of the semiconductor substrate; A step of generating a nitride film on the generated oxide film, a step of implanting ions onto the generated nitride film, and a step of applying a photoresist on the generated nitride film and patterning it by photolithography. a step of etching the formed oxide film and nitride film using the formed photoresist pattern as a mask; a step of forming an oxide film with the formed pattern; and a step of etching the oxide film with the formed pattern. a step of forming a polysilicon layer on the formed oxide film; a step of applying a photoresist on the formed polysilicon layer and patterning it by photolithography; A method for manufacturing a semiconductor memory device, comprising the step of etching the polysilicon layer and the oxide film using a photoresist pattern as a mask to form a tri-gate structure.
JP18296085A 1985-08-22 1985-08-22 Semiconductor memory and manufacture thereof Pending JPS6245072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18296085A JPS6245072A (en) 1985-08-22 1985-08-22 Semiconductor memory and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18296085A JPS6245072A (en) 1985-08-22 1985-08-22 Semiconductor memory and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6245072A true JPS6245072A (en) 1987-02-27

Family

ID=16127345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18296085A Pending JPS6245072A (en) 1985-08-22 1985-08-22 Semiconductor memory and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6245072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913515A (en) * 1995-04-10 1999-06-22 Kabushiki Kaisha Ace Denken Game machine with display device and special condition generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913515A (en) * 1995-04-10 1999-06-22 Kabushiki Kaisha Ace Denken Game machine with display device and special condition generation

Similar Documents

Publication Publication Date Title
JPS62188277A (en) Formation of low concentration doped structure
JPH02166762A (en) Compact cmos device and
JPH0730107A (en) High voltage withstand transistor and its manufacture
JPS59121976A (en) Semiconductor device
JPS6395669A (en) Manufacture of semiconductor integrated circuit device
KR100232197B1 (en) Method of manufacturing semiconductor device
JPS63244683A (en) Field effect type semiconductor device and its manufacture
JPS6245072A (en) Semiconductor memory and manufacture thereof
CN112992663B (en) Manufacturing method of high-voltage CMOS, high-voltage CMOS and electronic device
JP2817226B2 (en) Method for manufacturing semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPH0422345B2 (en)
JPH0346272A (en) Manufacture of semiconductor device
KR100252754B1 (en) Thin film transistor and the manufacturing method thereof
KR900001063B1 (en) Isolation method of semiconductore device
JPS6345860A (en) Manufacture of semiconductor device
JPS6211277A (en) Manufacture of semiconductor integrated circuit
JPS5816567A (en) Manufacture of insulating gate type field effect semiconductor device
JPS59197174A (en) Mis type semiconductor device
JPS63281470A (en) Semiconductor device
JPH0498850A (en) Semiconductor device
JPS63244762A (en) Semiconductor device and manufacture thereof
JPS5834975A (en) Insulated gate type field effective semiconductor device
JPH02121369A (en) Mis type field effect transistor
JPS63226965A (en) Semiconductor device