JPS6241433B2 - - Google Patents

Info

Publication number
JPS6241433B2
JPS6241433B2 JP10868380A JP10868380A JPS6241433B2 JP S6241433 B2 JPS6241433 B2 JP S6241433B2 JP 10868380 A JP10868380 A JP 10868380A JP 10868380 A JP10868380 A JP 10868380A JP S6241433 B2 JPS6241433 B2 JP S6241433B2
Authority
JP
Japan
Prior art keywords
electrode
dielectric
gate electrode
chip
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10868380A
Other languages
Japanese (ja)
Other versions
JPS5732676A (en
Inventor
Masaaki Nakatani
Mutsuyuki Ootsubo
Yasuro Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10868380A priority Critical patent/JPS5732676A/en
Publication of JPS5732676A publication Critical patent/JPS5732676A/en
Publication of JPS6241433B2 publication Critical patent/JPS6241433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32153Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/32175Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • H01L2224/32188Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic the layer connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 この発明は、出力特性を向上させた電界効果ト
ランジスタ、具体的にはフリツプチツプ型高出力
電界効果トランジスタ(以下、F−GaAsと称す
る)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor with improved output characteristics, and specifically to a flip-chip type high power field effect transistor (hereinafter referred to as F-GaAs).

まず、従来のF−GaAsFETの構造について簡
単に説明する。第1図aは従来のGaAsFETのチ
ツプの表面構造を示すもので、半絶縁性基板上に
n型エピタキシヤル層を成長させたGaAsウエハ
1上に、AuGeNiなどのオーミツク金属のソース
電極2とドレイン電極3およびAlなどのシヨツ
トキ金属のゲート電極4が形成されている。この
ソース電極2、ドレイン電極3、ゲート電極4の
一部分を、Auメツキなどにより数10μmの厚さ
にして各電極のボンデイングパツド22,33,
44を形成する。このようにして形成された
GaAsFETのチツプをその表面を下にしていわゆ
るフリツプチツプ構造にし、第1図bにその断面
図を示すようにAuメツキされたCuのヒートシン
ク5と、下面がメタライズされた上面にボンデイ
ング用の電極パターンが形成された誘電体基板6
からなるパツケージマウントに熱圧着すると高出
力のF−GaAsFETができあがる。
First, the structure of a conventional F-GaAsFET will be briefly explained. Figure 1a shows the surface structure of a conventional GaAsFET chip. A GaAs wafer 1 on which an n-type epitaxial layer is grown on a semi-insulating substrate is covered with a source electrode 2 and a drain made of an ohmic metal such as AuGeNi. An electrode 3 and a gate electrode 4 made of a shot metal such as Al are formed. A portion of the source electrode 2, drain electrode 3, and gate electrode 4 is plated with Au or the like to a thickness of several tens of micrometers, and bonding pads 22, 33, and
Form 44. formed in this way
A GaAsFET chip is placed in a so-called flip-chip structure with its surface facing down, and as shown in the cross-sectional view of FIG. Formed dielectric substrate 6
A high-output F-GaAs FET is created by thermocompression bonding to a package mount made of .

従来のこのような構造のF−GaAsFETは内部
整合型にして高周波における優れた特性を引き出
せる反面、次のような欠点を有していた。
Although the conventional F-GaAs FET having such a structure is an internal matching type and can bring out excellent characteristics at high frequencies, it has the following drawbacks.

すなわち、第1図aにおいて、チツプのソース
電極2の幅wは高周波特性を良くするためには
300μm以下にする必要があり、そのため、第1
図bのパツケージマウントのヒートシンク5の凸
部55の幅Wをwと同程度に短かい寸法にしてお
かなければならない。さもないと、いたずらに第
1図aのチツプ幅aを大きくして、ドレイン電極
3やゲート電極4の面積を大きくして寄生要素を
増やし、高周波特性を劣化させる結果にになる。
しかしながら、パツケージマウントのヒートシン
ク5の凸部55の幅Wを短かくすることは製作加
工上難しい。また、凸部55の幅Wが高さHより
も小さくなることもあり、その部分の熱抵抗が大
きくなり高出力特性を損なう結果になる。
That is, in FIG. 1a, the width w of the source electrode 2 of the chip is set to
It is necessary to make it less than 300μm, so the first
The width W of the convex portion 55 of the heat sink 5 of the package mount shown in FIG. b must be made as short as w. Otherwise, the chip width a in FIG. 1a will be unnecessarily increased, the areas of the drain electrode 3 and gate electrode 4 will be increased, the number of parasitic elements will increase, and the high frequency characteristics will deteriorate.
However, it is difficult to shorten the width W of the convex portion 55 of the heat sink 5 of the package mount due to the manufacturing process. Further, the width W of the convex portion 55 may be smaller than the height H, and the thermal resistance of that portion increases, resulting in a loss of high output characteristics.

この発明は、上述の欠点を除去するためになさ
れたもので、高周波特性を損なうことなく出力特
性を向上できる素子構造を提供するものである。
以下、図面に従いこの発明を説明する。
This invention was made to eliminate the above-mentioned drawbacks, and provides an element structure that can improve output characteristics without impairing high frequency characteristics.
The present invention will be explained below with reference to the drawings.

第2図はこの発明によるF−GaAsFETの構造
を示すもので、第2図aはチツプの表面構造を、
第2図bはチツプをパツケージマウントに圧着し
た断面構造を示す。第2図aにおいて、半絶縁性
GaAs基板上にn型エピタキシヤル層を成長させ
たGaAsウエハ1上に、AuGeNiなどのオーミツ
ク金属のソース電極2とドレイン電極3および
Alなどのシヨツトキ金属のゲート電極4が形成
されている。このソース電極2、ドレイン電極
3、ゲート電極4の一部分を、Auメツキなどに
より数10μmの厚さにして各電極のボンデイング
パツド22,33,44を形成する。さらにこの
ドレイン電極3、ゲート電極4の一部に、
BaTiO3などの誘電体7とAuなどの導電性金属を
連続してスパツタ蒸着し、そのAu金属上をAuメ
ツキなどにより数10μmの厚さにした金属層3
7,47を形成する。このようにして形成された
GaAsFETのチツプをその表面を下にして、フリ
ツプチツプ型で第2図にその断面図を示すような
AuメツキされたCuのヒートシンク5と、下面が
メタライズされ上面にボンデイング用の電極パタ
ーンが形成された誘電体基板6からなるパツケー
ジマウントに熱圧着して、F−GaAsFETとす
る。
Figure 2 shows the structure of the F-GaAsFET according to the present invention, and Figure 2a shows the surface structure of the chip.
FIG. 2b shows a cross-sectional structure in which the chip is crimped onto the package mount. In Figure 2 a, semi-insulating
On a GaAs wafer 1 on which an n-type epitaxial layer is grown on a GaAs substrate, a source electrode 2, a drain electrode 3 and
A gate electrode 4 made of a solid metal such as Al is formed. A portion of the source electrode 2, drain electrode 3, and gate electrode 4 is plated with Au or the like to a thickness of several tens of micrometers to form bonding pads 22, 33, and 44 for each electrode. Furthermore, in a part of this drain electrode 3 and gate electrode 4,
A dielectric material 7 such as BaTiO 3 and a conductive metal such as Au are successively deposited by sputtering, and then a metal layer 3 is formed on the Au metal to a thickness of several tens of μm by Au plating or the like.
Form 7,47. formed in this way
Place the GaAsFET chip with its surface facing down and use a flip-chip type device as shown in the cross-sectional view in Figure 2.
An F-GaAs FET is obtained by thermocompression bonding to a package mount consisting of a Au-plated Cu heat sink 5 and a dielectric substrate 6 whose lower surface is metallized and whose upper surface has an electrode pattern for bonding.

上述したこの発明によるF−GaAsFETによれ
ば、第2図bに示す誘電体7によつて積極的に容
量を形成し、ドレイン電極3、ゲート電極4の電
線インダクタと共に、高周波特性を引出すのに有
利な一種の内部整合化を計つている。この容量
は、誘電体7の種類や厚みによつて任意の設計値
に選ぶことができる。さらに第2図bに示すよう
に、チツプのソース電極幅wをヒートシンク5の
凸部55の幅Wよりも小さくすることができ、チ
ツプの高周波特性を向上させることが可能にな
る。逆に、幅Wを大きくすることができるので、
凸部55の高さHとの比率によりその部分の熱抵
抗を低下させることができ、高出力特性を一層向
上させることが可能となる。
According to the above-described F-GaAsFET according to the present invention, a capacitance is actively formed by the dielectric 7 shown in FIG. It provides a kind of internal consistency that is advantageous. This capacitance can be selected to any design value depending on the type and thickness of the dielectric 7. Furthermore, as shown in FIG. 2b, the width w of the source electrode of the chip can be made smaller than the width W of the convex portion 55 of the heat sink 5, making it possible to improve the high frequency characteristics of the chip. Conversely, since the width W can be increased,
Depending on the ratio of the height H of the convex portion 55, the thermal resistance of that portion can be lowered, making it possible to further improve high output characteristics.

なお、上記の実施例はフリツプチツプ型高出力
GaAsFETを用いて説明したものであるが、内部
整合化をさらに進めたモノリシツクICにもその
適用を拡張することができる。
Note that the above embodiment is a flip-chip type high output
Although the explanation was given using a GaAsFET, its application can also be extended to monolithic ICs with further advanced internal matching.

以上詳細に説明したように、この発明はドレイ
ン電極とゲート電極の表面の一部に、表面に金属
層を形成した誘電体をそれぞれ設け、これらの誘
電体の金属層およびソース電極をこのソース電極
より幅の大きいヒートシンクの凸部に圧着し、ド
レイン電極とゲート電極、ドレイン電極とゲート
電極の表面の一部に形成した誘電体、およびこの
誘電体上の金属層とにより高周波特性の内部整合
化のための容量を構成せしめたので、ヒートシン
クの凸部の幅を大きくでき、したがつて、殊に高
周波において高出力を得ることができる利点があ
る。
As explained in detail above, the present invention provides a dielectric material with a metal layer formed on the surface of a part of the drain electrode and a gate electrode, respectively, and connects the metal layer of these dielectric materials and the source electrode to the source electrode. The high-frequency characteristics are internally matched by the drain electrode and gate electrode, the dielectric material formed on a part of the surface of the drain electrode and gate electrode, and the metal layer on the dielectric material, which is crimped onto the convex part of the wider heat sink. Since the capacitance for the heat sink is configured, the width of the convex portion of the heat sink can be increased, which has the advantage that high output can be obtained, especially at high frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の通常のフリツプチツプ型
高出力GaAsFETのチツプの平面図およびチツプ
をパツケージマウントに圧着した状態を示す断面
図、第2図a,bはこの発明によるフリツプチツ
プ型高出力GaAsFETのチツプの平面図およびチ
ツプをパツケージマウントに圧着した状態を示す
断面図である。 図中、1はGaAsウエハ、2,3,4はソー
ス、ドレイン、ゲート電極、22,33,44は
そのボンデイングパツド部、5はヒートシンク、
55はその凸部、6は誘電体基板、7は蒸着で形
成する誘電体、37,47はその誘電体のボンデ
イングパツドの部分である金属層を示す。なお、
図中の同一符号は同一または相当部分を示す。
Figures 1a and b are a plan view of a conventional flip-chip type high-power GaAsFET chip and a sectional view showing the chip crimped to a package mount, and Figures 2a and b are flip-chip type high-power GaAsFETs according to the present invention. FIG. 3 is a plan view of the chip and a cross-sectional view showing the state in which the chip is crimped onto a package mount. In the figure, 1 is a GaAs wafer, 2, 3, and 4 are source, drain, and gate electrodes, 22, 33, and 44 are its bonding pads, and 5 is a heat sink.
Reference numeral 55 indicates the convex portion, 6 indicates a dielectric substrate, 7 indicates a dielectric formed by vapor deposition, and 37 and 47 indicate metal layers which are bonding pad portions of the dielectric. In addition,
The same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 ソース電極をヒートシンクに、ドレイン電極
とゲート電極を誘電体基板上の電極パターンにそ
れぞれ直接的に同一平面的に圧着してなるフリツ
プチツプ型GaAs電界効果トランジスタにおい
て、前記ドレイン電極とゲート電極の表面の一部
に、表面に金属層を形成した誘電体をそれぞれ設
け、前記各誘電体の金属層および前記ソース電極
を前記ソース電極の幅よりも大きい前記ヒートシ
ンクの凸部に圧着し、前記ドレイン電極とゲート
電極、これらのドレイン電極とゲート電極の表面
の一部に形成した前記誘電体、およびこの誘電体
上の前記金属層とにより高周波特性の内部整合化
のための容量を構成せしめたことを特徴とする高
出力GaAs電界効果トランジスタ。
1. In a flip-chip type GaAs field effect transistor in which the source electrode is used as a heat sink and the drain electrode and gate electrode are bonded directly and coplanarly to an electrode pattern on a dielectric substrate, the surfaces of the drain electrode and gate electrode are A dielectric material having a metal layer formed on the surface thereof is provided in a part, and the metal layer of each dielectric material and the source electrode are crimped to a convex portion of the heat sink that is larger than the width of the source electrode, and the drain electrode and The gate electrode, the drain electrode, the dielectric formed on a part of the surface of the gate electrode, and the metal layer on the dielectric constitute a capacitor for internal matching of high frequency characteristics. High power GaAs field effect transistor.
JP10868380A 1980-08-06 1980-08-06 High power gaas field effect transistor Granted JPS5732676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10868380A JPS5732676A (en) 1980-08-06 1980-08-06 High power gaas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10868380A JPS5732676A (en) 1980-08-06 1980-08-06 High power gaas field effect transistor

Publications (2)

Publication Number Publication Date
JPS5732676A JPS5732676A (en) 1982-02-22
JPS6241433B2 true JPS6241433B2 (en) 1987-09-02

Family

ID=14491013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10868380A Granted JPS5732676A (en) 1980-08-06 1980-08-06 High power gaas field effect transistor

Country Status (1)

Country Link
JP (1) JPS5732676A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623231A (en) * 1994-09-26 1997-04-22 Endgate Corporation Push-pull power amplifier
DE10220396B4 (en) * 2002-05-07 2007-08-23 Infineon Technologies Ag Power semiconductor component arrangement
TWI236117B (en) * 2003-02-26 2005-07-11 Advanced Semiconductor Eng Semiconductor package with a heat sink
CN102201449B (en) * 2011-05-27 2013-01-09 电子科技大学 Low-heat-resistance packaging structure of power MOS (Metal Oxide Semiconductor) device
US9196577B2 (en) * 2014-01-09 2015-11-24 Infineon Technologies Ag Semiconductor packaging arrangement

Also Published As

Publication number Publication date
JPS5732676A (en) 1982-02-22

Similar Documents

Publication Publication Date Title
US4250520A (en) Flip chip mounted diode
US3986196A (en) Through-substrate source contact for microwave FET
JPH065881A (en) Semiconductor device and its manufacturing method
US6166436A (en) High frequency semiconductor device
JP3674780B2 (en) High frequency semiconductor device
JP7380310B2 (en) Field effect transistors and semiconductor devices
US4298846A (en) Semiconductor device
JPS6241433B2 (en)
JP2728322B2 (en) Semiconductor device
JP2574510B2 (en) High frequency semiconductor device
JPH05335487A (en) Transmission circuit element
JPS5914906B2 (en) Method for manufacturing field effect transistors
JP4718751B2 (en) Semiconductor device
JPS6255721B2 (en)
JPH10321762A (en) Semiconductor device
JP7332130B2 (en) Semiconductor device manufacturing method, semiconductor device manufacturing method, semiconductor device, and semiconductor device
JPS5917979B2 (en) semiconductor equipment
JPH0513539B2 (en)
JP2758888B2 (en) Semiconductor device
JPS5832270Y2 (en) field effect transistor
JPH05235194A (en) Microwave monolithic integrated circuit
JPS5929377Y2 (en) High frequency high power transistor device
JP2701348B2 (en) Semiconductor device
JPH0436112Y2 (en)
JP2549795B2 (en) Compound semiconductor integrated circuit and manufacturing method thereof