JPS6241294B2 - - Google Patents
Info
- Publication number
- JPS6241294B2 JPS6241294B2 JP56164827A JP16482781A JPS6241294B2 JP S6241294 B2 JPS6241294 B2 JP S6241294B2 JP 56164827 A JP56164827 A JP 56164827A JP 16482781 A JP16482781 A JP 16482781A JP S6241294 B2 JPS6241294 B2 JP S6241294B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- cooling zone
- zone
- equipment
- strong
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 151
- 229910000831 Steel Inorganic materials 0.000 claims description 44
- 239000010959 steel Substances 0.000 claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 229910001563 bainite Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241000519695 Ilex integra Species 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
この発明は、厚鋼板用冷却設備に関し、通常圧
延或いはコントロールド圧延後に厚鋼板を加速的
に冷却処理する設備において、特に冷却のための
冷却帯を前後に複数配しそのうち冷却帯入側のも
のを強冷却ゾーンとなす一方、冷却帯出側を弱冷
却ゾーンとなし、これら強冷却ゾーンの水量密度
と弱冷却ゾーンの水量密度との比Ws/Wwを2
〜12に特定することによつて特異冷却パターンで
もつて組織の微細化と焼入性の向上を図り、以つ
て厚鋼板のもつべき機械的強度を向上させるだけ
でなく殊に靭性に優れた厚鋼板を提供できるよう
にしたものである。
周知のように熱間圧延後の厚鋼板(10mm以上)
は、それを自然空冷してのち改めて焼入れ処置し
所定の機械的性質を確保するようにされていた
が、そのための燃料費は多大であり、又量産性に
欠ける等の事由で所謂加速冷却システムが新たに
採用されクローズアツプされているのが現状であ
る。
この加速冷却システムは通常圧延或いはコント
ロールド圧延後の厚鋼板に対しラミナ流とかスプ
レイ流などによつて水噴射冷却を施すもので従来
の諸問題を解決する上で非常に有効な手段である
と注目されている。しかし乍ら現行の設備では圧
延後の厚鋼板に対し通板方向において均等な水量
密度分布のもとに冷却を施すに過ぎなかつたため
第2図に示した熱伝達現象とか鋼材の熱伝導現象
などからして、たとえば、第1図に示す冷却パタ
ーンXの如く冷却開始点(Ar3点以上)からAr1
点付近迄の冷却速度がAr3点とMs点間の所謂平均
冷却速度に比べて緩徐である一方においてAr1点
付近からMs点間の冷却速度は平均冷却速度に比
べ逆に速くなる傾向となり、従つて同図にみられ
る如く鋼板の特定点の温度を時間的に捉えると冷
却パターンがXの如く上向きに凸型を呈すことと
なる結果、こうした冷却設備によると冷却時にお
ける結晶粒の微細化が今一つ促進されず、結果と
して厚鋼板の機械的性質、とり分け機械的強度
(引張強さ)並びに強靭性の向上が加速冷却採用
に伴なつて大きく期待できるには到らなかつた。
この発明はこうした事実に着目してなされたも
のであり、従つてここに特徴とする処は、仕上げ
圧延後或いはホツトレベラ後にあつて一方向へ通
板される10mm以上の厚鋼板に対し冷却帯にて水冷
を施し、鋼板をAr3点近傍からMs点近傍までの温
度範囲を冷却する厚鋼板用冷却設備に於いて、前
記冷却帯を、通板方向に対し前後複数の制御ゾー
ンとして配置すると共に、冷却帯入側のゾーンを
強冷却ゾーンとなす一方、出側を弱冷却ゾーンと
なし、強冷却ゾーンの水量密度Wsと弱冷却ゾー
ンの水量密度Wwとの比Ws/Wwを2〜12となす
と共に、強冷却ゾーンと弱冷却ゾーンとの間に空
冷ゾーンを設けた点にあり、以下、本発明の比較
例に係る冷却設備例を説明する。
第3図はその冷却設備を組込んだ場合のレイア
ウト例を示すもので、同図においては仕上げミル
1とレベラ2間に本設備を配置構成してあるが、
レベラ2後に構成する場合もある。
本設備は、前段にカーテンラミナ制御ゾーン
3,3,3を3列に亘つて上下対向型として配備
する一方、後段にはパイプラミナ制御ゾーン4を
上部から、又下部からスプレイ冷却制御ゾーン5
を2バンク宛対向配備して構成し、ここに前段の
冷却帯と後段の冷却帯とが形成され、前段の入側
が強冷却ゾーンを、又後段の出側が弱冷却ゾー
ンを夫々構成するものである。尚この各冷却ゾ
ーンの具体的構成については上記に限るものでな
く、ラミナ冷却・スプレイ冷却及びミスト冷却等
を組合わせて種々態様で実施する予定がある。
こうして強・弱両冷却ゾーン,を前後に配
備したものであるが、これによつて第1図Yで代
表される冷却パターンが完成した。
このパターンYは前述した平均冷却速度に比べ
Xとは逆の下向き凸型を呈すもので、即ち冷却開
始点(Ar3点以上)からAr1レベル付近までは平
均冷却速度よりも速い冷却速度をもち、逆にAr1
付近からMs点レベルまでは平均冷却速度よりも
遅い冷却速度が得られることを意味する。
従つてそこには強冷却ゾーンでの冷却速度
Csと弱冷却ゾーンでの冷却速度Cwとの比、即
ち冷却速度比がCs/Cw≧1なる関係を満足する
ことが条件となる。
このCs/Cw比は、強冷却ゾーンでの水量密
度Wsと、弱冷却ゾーンでの水量密度Wwとの
比、即ち第4図に示す水量密度比Ws/Wwとの
関係で決定されるのであり、従つてWs/Ww比
をここで2以上に設定すればCs/Cw比がここで
1以上となることが判つた。しかし乍らWs/
Ww比が2以上であればどの程度であつても支障
がないと云つたものではなく自から限界があるも
ので、即ち、実際の冷却帯のレイアウトを考慮し
た場合、Ws/Ww比を過度に大きくとることは
強冷却域長さLsが弱冷却域長さLwに比べて余り
に短くなり、従つて現実性に欠けることから
Ws/Ww比の上限値を12に規定したのである。
これら設備を表−1の主成分をもつA・B2種
の厚鋼板に対しWs/Ww≒6の条件のもとに実
施した場合を第5図に示してある。
The present invention relates to cooling equipment for thick steel plates, and in equipment that accelerates cooling treatment of thick steel plates after normal rolling or controlled rolling, in particular, a plurality of cooling zones are arranged at the front and rear for cooling, and one of the cooling zones is placed on the inlet side of the cooling zone. is defined as a strong cooling zone, while the cooling zone outlet side is defined as a weak cooling zone, and the ratio Ws/Ww of the water volume density of these strong cooling zones and the water volume density of the weak cooling zone is 2.
-12, we aim to refine the structure and improve hardenability with a specific cooling pattern, which not only improves the mechanical strength that thick steel plates should have, but also creates thick steel sheets with particularly excellent toughness. It is designed to provide steel plates. As is well known, thick steel plate (10mm or more) after hot rolling
In the past, it was naturally air-cooled and then quenched again to ensure the desired mechanical properties, but the fuel cost for this was high and mass production was lacking, so a so-called accelerated cooling system was used. The current situation is that it has been newly adopted and is being brought up close. This accelerated cooling system applies water injection cooling to thick steel plates after normal rolling or controlled rolling using laminar flow or spray flow, and is considered to be a very effective means to solve the various problems of the conventional method. Attention has been paid. However, with current equipment, the thick steel plate after rolling is only cooled with an even distribution of water flow and density in the threading direction. Therefore, for example, as shown in the cooling pattern X shown in Fig. 1, Ar 1 is
While the cooling rate up to the point near the point is slower than the so-called average cooling rate between the Ar 3 point and the Ms point, the cooling rate between the Ar 1 point and the Ms point tends to be faster than the average cooling rate. Therefore, as shown in the same figure, if the temperature at a specific point on the steel plate is captured over time, the cooling pattern will take on an upwardly convex shape as shown by As a result, the mechanical properties of thick steel plates, especially the mechanical strength (tensile strength) and toughness, could not be greatly improved as a result of the adoption of accelerated cooling. This invention was made by paying attention to these facts, and the feature here is that a thick steel plate of 10 mm or more is threaded in one direction after finish rolling or hot leveling, and a cooling zone is used. In the cooling equipment for thick steel plates that cools the steel plate in the temperature range from the vicinity of the Ar 3 point to the vicinity of the Ms point by water-cooling the steel plate, the cooling zone is arranged as a plurality of control zones in the front and rear of the sheet threading direction. , the inlet side of the cooling zone is made a strong cooling zone, while the outlet side is made a weak cooling zone, and the ratio Ws/Ww of the water volume density Ws of the strong cooling zone and the water volume density Ww of the weak cooling zone is set to 2 to 12. In addition, an air cooling zone is provided between the strong cooling zone and the weak cooling zone.Hereinafter, an example of cooling equipment according to a comparative example of the present invention will be described. Figure 3 shows an example of the layout when the cooling equipment is incorporated. In the figure, this equipment is arranged between the finishing mill 1 and the leveler 2.
It may be configured after leveler 2. This equipment has three rows of curtain lamina control zones 3, 3, 3 facing each other vertically in the front stage, while a pipe lamina control zone 4 in the rear stage from the top and a spray cooling control zone 5 from the bottom.
are arranged facing each other in two banks, forming a cooling zone in the front stage and a cooling zone in the rear stage, with the entrance side of the front stage forming a strong cooling zone and the exit side of the latter stage forming a weak cooling zone. be. Note that the specific configuration of each cooling zone is not limited to the above, and there are plans to implement it in various ways by combining lamina cooling, spray cooling, mist cooling, etc. In this way, both strong and weak cooling zones were arranged at the front and rear, and the cooling pattern represented by Y in FIG. 1 was completed. This pattern Y exhibits a downward convex shape, which is the opposite of that of X, compared to the average cooling rate mentioned above.In other words, from the cooling start point (Ar 3 points or more) to around the Ar 1 level, the cooling rate is faster than the average cooling rate. Mochi, conversely Ar 1
This means that a cooling rate slower than the average cooling rate can be obtained from the vicinity to the Ms point level. Therefore, there is a cooling rate in the strong cooling zone.
The condition is that the ratio between Cs and the cooling rate Cw in the weak cooling zone, that is, the cooling rate ratio, satisfies the relationship Cs/Cw≧1. This Cs/Cw ratio is determined by the ratio between the water volume density Ws in the strong cooling zone and the water volume density Ww in the weak cooling zone, that is, the relationship between the water volume density ratio Ws/Ww shown in Figure 4. Therefore, it was found that if the Ws/Ww ratio is set to 2 or more, the Cs/Cw ratio becomes 1 or more. However, Ws/
This does not mean that there will be no problems no matter how much the Ww ratio is 2 or more, but there is a limit of its own.In other words, when considering the actual layout of the cooling zone, the Ws/Ww ratio cannot be set too high. Taking a large value is because the length of the strong cooling region Ls is too short compared to the length of the weak cooling region Lw, and therefore it is unrealistic.
The upper limit of the Ws/Ww ratio was set at 12. Figure 5 shows a case in which these facilities were applied to two types of A and B thick steel plates having the main components shown in Table 1 under the condition of Ws/Ww≈6.
【表】【table】
【表】
この一比較例では強冷却ゾーンと弱冷却ゾー
ンを、フエライト変態終了温度又はベーナイト
変態開始近傍温度を一つの目安としその中間温度
から決定しており、表−2に示した実施結果から
みて明らかなように本設備を使用したことにより
前段で強冷却が、又後段で弱冷却が実現された結
果、2〜3Kg/mm2の強度増大が得られただけでな
く、特に靭性に関してはvTrs値で40℃前後も優
れた厚鋼板を得ることができたのであり、又、一
方冷却開始温度をAr3点以下から開始した場合の
結果を示す表−8の実施例においては、従来設備
によつては冷却開始温度が多少遅れると機械的強
度(靭性を含む)の低下がみられた訳であるが、
本設備使用に伴ないその防止が可能であり、それ
に伴ない鋼板の冷却帯入側での温度の長手方向の
変化に関して安定な性質を得ることができた。[Table] In this comparative example, the strong cooling zone and weak cooling zone are determined from the intermediate temperature using the ferrite transformation end temperature or bainite transformation start temperature as a guide, and from the implementation results shown in Table 2. As is clear from the above, by using this equipment, strong cooling was achieved in the front stage and weak cooling was achieved in the latter stage, which not only resulted in an increase in strength of 2 to 3 kg/ mm2 , but also in terms of toughness in particular. We were able to obtain a thick steel plate with an excellent vTrs value of around 40°C.On the other hand, in the example shown in Table 8, which shows the results when the cooling start temperature was started from Ar 3 points or lower, the conventional equipment In some cases, a decrease in mechanical strength (including toughness) was observed when the cooling start temperature was delayed to some extent.
By using this equipment, it was possible to prevent this, and as a result, we were able to obtain stable properties with respect to changes in temperature in the longitudinal direction on the entrance side of the cooling zone of the steel plate.
【表】
以上のように比較例に基づく実施結果は平均冷
却速度で表わされるパターンを基準として従来と
は逆の冷却パターンとなしたことにより得られた
訳であるが、この結果得られた事実その他金属組
織の一般的変態特性等を充分考慮し、冷却パター
ンを前段と後段に分けて考察した結果次の如き理
論的根拠を見出すに到つたのでその紹介をする。
即ちまず前段(Ar3以上からAr1付近迄)の冷
却速度を平均冷却速度よりも速くした理由につい
て述べると、フエライト粒は既によく知られてい
るようにその微細化によつて強度・靭性をともに
向上させる重要な因子であり、圧延後の加速冷却
は、このフエライト粒の微細化を促進させること
を主眼としたものであつて、圧延制御によつてオ
ーステナイト粒界面積の増大や変形帯等の加工下
部組織の導入によるフエライト核生成サイトを増
せば、フエライト粒の微細化はより一層促進され
る。加速冷却では更に、このフエライト粒の微細
化に加えて細粒ベイナイト(上部ベイナイト)を
生成されることが重要なことである。過去におい
て上部ベイナイト組織は強度上昇に寄与できる反
面、靭性を著しく損なうとされていたが、加速冷
却によつて生成されるような細粒ベイナイトは靭
性劣化に殆んど影響を及ぼさない。従つて従来検
討されているような加速冷却技術よりも微細なフ
エライトが得られ、かつ靭性を損なう度合をさら
に低減できるような上部ベイナイトを生成できれ
ば更に一層の強靭効果を期待しうることとなる。
本発明の大きな特徴として、同一冷却速度で比較
した場合この効果を充分発揮できることが挙げら
れる。すなわち加速冷却後、フエライトα+ベイ
ナイトB、α+B+パーライトP、ないしはα+
P、を有する鋼板は、加速冷却の前段階において
αを核生成並びに成長する。
このような冷却を考えた場合、第1図にみられ
るように強制冷却温度範囲における平均冷却速度
が同一であつても、比較例は前段の冷却が従来法
より速くなるもので、このことはαが生成開始し
その後停止するまでの温度範囲において、比較例
では単位時間当りの過冷度が大となることからα
の核生成を促す駆動力が大きくなること、さらに
αの核生成後の成長をみた場合比較例ではα生成
開始から終了までの時間が短いことから従来法よ
りαの成長が抑制されることによりαの微細化を
従来よりも促進させることができるものである。
次に後段の冷却を平均冷却速度よりも小とした
理由については、強制冷却後期段階(Ar1付近か
らMsまで)では、Bが生成する場合が多くこの
Bの靭性を支配する機構については、なお不明な
点が多いが、おおまかにはそのサイズとベイナイ
トを構成する島状マルテンサイトが靭性に大きな
影響を与えると考えられる。一般にベイナイト粒
径は、熱間圧延制御によつて最終的に得られるオ
ーステナイトγ粒界面積によつて律速され、基本
的には、強制冷却範囲における冷却速度によつて
そのサイズは大きく変らないと考えてよい。一方
ベイナイト粒内に生成する島状マルテンサイト
は、鋼板の靭性を大幅に劣化させることが知られ
ており、このマルテンサイトの生成を抑制できれ
ばベイナイト生成に伴なう靭性の劣化を防止する
ことが可能となる。この場合島状マルテンサイト
の生成メカニズムについても不明な点が多いが、
一般に針状α生成に伴なうC、Mn等の合金元素
の濃縮がα/γ界面におけるγ側で生じこの位置
で高濃度のマルテンサイトとしての島状マルテン
サイトが生成すると考えられている。従つてα/
γ界面でのC、Mn等の拡散を十分起させるよに
してこれら合金元素の濃縮を緩和できれば島状マ
ルテンサイトの生成を抑制できる訳である。この
濃縮を緩和させる方法としてB生成開始温度以下
の冷却を遅らせることが有効であり、比較例で後
段階の冷却速度を従前よりも遅くしたのはこうし
た理由に基づくものである。
次に比較例設備によれば強靭性に大きな効果を
もたらす未再結晶γ域(低温域)圧延を従前より
も強化し、かつα粒微細化に有効な加速冷却を実
施できる。
即ち、炭素鋼や含V鋼のようにNbを含有しな
い鋼種では圧延パスに無関係に未再結晶γ状態に
ある温度範囲が狭い(Nb鋼よりも100〜150℃)
ため、このような鋼種の未再結晶γ域における強
圧下を付与した圧延は、当温度域全体に亘る場合
があり、圧延後の加速冷却開始と同時ないしは圧
延後加速冷却開始までにαの生成が始まる。この
場合従来の加速冷却を実施すると第1図に示すよ
うに冷却開始後漸くは温度低下が少なくこの間で
の冷却速度が著しく遅くなるため、αの核生成頻
度も少なくかつ成長も高温で早くなることから、
α粒が粗大化し、加速冷却によつて均一で微細な
α粒を得る効果が損なわれる結果となる。一方α
粒微細化に有効な温度域を加速冷却しようとすれ
ば加速冷却開始後温度低下の少ない温度域での冷
却は、必然的にオーステナイト温度域となり未再
結晶γ域での合計圧下率は減少せざるを得なくな
る。
比較例設備によれば冷却開始直後の温度低下は
従来より大きく、従つて未再結晶γ域全体に亘る
強圧下を付与した場合でも冷却開始後直ちにα粒
微細化に有効な冷却となり、従来にもまして強靭
化効果を期待することができることとなつた。
尚、対象を10mm以上の板厚鋼板としたのは、そ
れ以下の板厚を対象とすると冷却パターンが従前
のものと大幅に変異せず又強靭化効果もそれに伴
なつて減退することに基くものである。更に上記
では平均冷却速度を種々設定してあるが、設備実
施上、1〜30℃/secの範囲を選定するもので、
その理由は、それより速い冷却速度ではα生成量
が少なくBないしはM(マルテンサイト)の割合
が増大し強度は上昇するものの圧延のままでは靭
性に著しい劣化がみられることに基づく。
こうして前記した厚鋼板冷却装置(例えば第3
図示設備)を用いて材質的に大きな効果が得られ
たのであるが、強冷却ゾーンでの冷却速度が大き
く、特に25mm以上の厚鋼板を対象としている場合
には、板厚方向の温度分布が著しく生じるため鋼
板表面近傍が低温となつてMs点以下となる。こ
の場合鋼種によつては焼入性効果のため表面近傍
で硬くなり、鋼板厚さ方向で硬度分布が生ずる。
こうした比較例における問題点をも解決したの
が本発明であつて、本発明では、第6図に示すよ
うに前段強冷却ゾーンと後段弱強冷ゾーンの
中間に空冷ゾーンを設けたのである。なお第6
図Lacは空冷ゾーン長を示すものである。又操業
上は第1図に示した設備において弱冷却ゾーン
の強冷却ゾーン寄りからの一部注水に代えここ
を空冷ゾーンとして使用することも可能であ
る。
ここで第3図の設備(以下、設備Aとする)を
用いた場合と、第6図の設備(以下、設備Bとす
る)を用いた場合における両者の鋼板冷却の様子
を第7図において示す。
この場合第7図では、強冷却ゾーンの後に空
冷ゾーンを設けたことにより、表面近傍のMs
点以下の過冷部は急激な復熱作用を呈し、これに
より次の弱冷却ゾーンにおいて表面においても
Ms点以上での冷却を実施できることとなり、そ
の結果として表面近傍の硬化性を緩和できるに到
つたものである。
第8図は設備Aによる場合の板厚中心位置から
の距離からみたビツカース硬さHvの関係を示
し、又第9図は設備B、即ち空冷ゾーンを付加
した場合の関係を示し、これら比較からみると第
8図の設備Aによると表面層での硬化現象が明示
されている一方、第9図の設備Bによると表面層
の軟化がみられることこれら実施結果から明らか
である。
以上のように、本発明に係る冷却設備によれば
従来より極めて優れた強度・靭性を有する強靭性
非調質鋼の製造が可能となると共に、鋼板の表面
近傍の硬化性も緩和できる。[Table] As mentioned above, the implementation results based on the comparative example were obtained by creating a cooling pattern that is opposite to the conventional one based on the pattern expressed by the average cooling rate. After fully considering other general transformation characteristics of metal structures, etc., and considering the cooling pattern by dividing it into the first stage and the second stage, we came to the following theoretical basis, which we would like to introduce. That is, first of all, the reason why the cooling rate in the first stage (from Ar 3 or more to around Ar 1 ) was made faster than the average cooling rate is that, as is already well known, ferrite grains improve strength and toughness by making them finer. Accelerated cooling after rolling is aimed at promoting the refinement of these ferrite grains, and rolling control can increase the austenite grain boundary area, deformation bands, etc. If the number of ferrite nucleation sites is increased by introducing a processed substructure, the refinement of ferrite grains will be further promoted. Furthermore, it is important that accelerated cooling not only refines the ferrite grains but also produces fine bainite (upper bainite). In the past, it was thought that the upper bainite structure could contribute to an increase in strength, but at the same time significantly impair toughness, but fine-grained bainite, such as that produced by accelerated cooling, has almost no effect on toughness deterioration. Therefore, if it is possible to obtain finer ferrite than conventional accelerated cooling techniques and to generate upper bainite that can further reduce the degree of loss of toughness, further toughening effects can be expected.
A major feature of the present invention is that this effect can be fully exhibited when compared at the same cooling rate. That is, after accelerated cooling, ferrite α + bainite B, α + B + pearlite P, or α +
In the steel plate having P, α nucleates and grows in the pre-accelerated cooling stage. Considering this kind of cooling, even if the average cooling rate in the forced cooling temperature range is the same as shown in Figure 1, the cooling of the first stage is faster in the comparative example than in the conventional method; In the comparative example, the degree of supercooling per unit time is large in the temperature range from when α begins to generate until it stops, so α
In addition, when looking at the growth of α after nucleation, the time from the start to the end of α generation is shorter in the comparative example, so the growth of α is suppressed compared to the conventional method. This allows the miniaturization of α to be promoted more than in the past. Next, the reason why the cooling rate in the latter stage was made smaller than the average cooling rate is that in the latter stage of forced cooling (from around Ar 1 to Ms), B is often generated, and the mechanism that governs the toughness of this B is as follows. Although there are still many unknown points, it is thought that the size and the island-like martensite that constitutes bainite have a large effect on toughness. Generally, the bainite grain size is determined by the austenite γ grain boundary area finally obtained through hot rolling control, and basically, the size does not change significantly depending on the cooling rate in the forced cooling range. You can think about it. On the other hand, island-like martensite that forms within bainite grains is known to significantly deteriorate the toughness of steel sheets, and if the formation of this martensite can be suppressed, the deterioration of toughness that accompanies bainite formation can be prevented. It becomes possible. In this case, there are many unknowns about the formation mechanism of island martensite, but
It is generally believed that concentration of alloying elements such as C and Mn accompanying the formation of acicular α occurs on the γ side of the α/γ interface, and island-like martensite as highly concentrated martensite is formed at this position. Therefore α/
If the concentration of these alloying elements can be alleviated by sufficiently causing diffusion of C, Mn, etc. at the γ interface, the formation of island-like martensite can be suppressed. As a method of alleviating this concentration, it is effective to delay the cooling below the B formation start temperature, and this is the reason why the cooling rate in the latter stage was made slower in the comparative example than before. Next, according to the comparative equipment, rolling in the non-recrystallized γ range (low temperature range), which has a great effect on toughness, can be strengthened more than before, and accelerated cooling can be performed, which is effective for refining the α grains. In other words, in steels that do not contain Nb, such as carbon steel and V-containing steel, the temperature range in which they are in the unrecrystallized γ state is narrower (100 to 150°C than in Nb steel), regardless of the rolling pass.
Therefore, rolling with strong reduction in the non-recrystallized γ range of such steels may extend over the entire temperature range, and the formation of α may occur at the same time as or before the start of accelerated cooling after rolling. begins. In this case, when conventional accelerated cooling is performed, as shown in Figure 1, after the start of cooling there is little temperature drop and the cooling rate during this period becomes extremely slow, so the frequency of α nucleation is low and growth is rapid at high temperatures. Therefore,
The α grains become coarse, and the effect of obtaining uniform and fine α grains by accelerated cooling is impaired. On the other hand α
If we try to accelerate cooling in a temperature range that is effective for grain refinement, cooling in a temperature range where there is little temperature drop after the start of accelerated cooling will inevitably result in an austenite temperature range, and the total reduction rate in the non-recrystallized γ range will decrease. I have no choice but to do it. According to the comparative example equipment, the temperature drop immediately after the start of cooling is greater than that of the conventional method. Therefore, even when strong pressure is applied over the entire unrecrystallized γ region, cooling becomes effective for refining the α grains immediately after the start of cooling, which is different from the conventional method. Furthermore, we can expect a toughening effect. The reason why we targeted steel plates with a thickness of 10 mm or more is because if we target steel plates with a thickness less than that, the cooling pattern will not change significantly from the previous one, and the toughening effect will also decrease accordingly. It is something. Furthermore, although various average cooling rates are set above, the range of 1 to 30°C/sec is selected for equipment implementation.
The reason for this is that if the cooling rate is faster than that, the amount of α produced is small and the proportion of B or M (martensite) increases, and the strength increases, but if the steel is kept as rolled, there is a significant deterioration in toughness. In this way, the above-mentioned thick steel plate cooling device (for example, the third
However, the cooling rate in the strong cooling zone is large, and the temperature distribution in the thickness direction is particularly poor when dealing with thick steel plates of 25 mm or more. As this occurs significantly, the temperature near the surface of the steel plate becomes lower than the Ms point. In this case, depending on the type of steel, it becomes hard near the surface due to the hardenability effect, resulting in a hardness distribution in the thickness direction of the steel plate. The present invention solves these problems in the comparative example, and in the present invention, as shown in FIG. 6, an air cooling zone is provided between the front stage strong cooling zone and the rear stage weak strong cooling zone. Furthermore, the 6th
Figure Lac shows the air cooling zone length. Furthermore, in terms of operation, in the equipment shown in FIG. 1, it is also possible to use this area as an air cooling zone instead of partially injecting water from the weak cooling zone closer to the strong cooling zone. Here, Fig. 7 shows the state of steel plate cooling when using the equipment shown in Fig. 3 (hereinafter referred to as equipment A) and when using the equipment shown in Fig. 6 (hereinafter referred to as equipment B). show. In this case, in Figure 7, by providing an air cooling zone after the strong cooling zone, Ms.
The supercooled zone below the point exhibits a rapid reheating effect, which causes the surface to cool down in the next weakly cooled zone.
It became possible to perform cooling above the Ms point, and as a result, it was possible to alleviate the hardening properties near the surface. Figure 8 shows the relationship between the Vickers hardness Hv as seen from the distance from the center of plate thickness when using equipment A, and Figure 9 shows the relationship when using equipment B, that is, adding an air cooling zone. It is clear from these results that the hardening phenomenon in the surface layer is clearly observed in the equipment A of FIG. 8, while the softening of the surface layer is observed in the equipment B of FIG. As described above, according to the cooling equipment according to the present invention, it is possible to produce strong non-thermal steel having extremely superior strength and toughness compared to conventional steels, and it is also possible to reduce the hardenability near the surface of the steel plate.
第1図は鋼板冷却パターンの比較図、第2図は
水による冷却伝熱特性図、第3図は本発明の比較
例におけるプロセスレイアウト及び鋼板冷却設備
例を示した説明図、第4図は強冷却域と弱冷却域
の水量密度比と鋼板冷却速度比との関係グラフ
図、第5図は前記比較例による鋼板冷却曲線図、
第6図は本発明の一実施例を示す空冷ゾーンを
強・弱冷ゾーン間に設けた設備例図、第7図は設
備Aと設備Bによる鋼板の表面部・中央部温度比
較を示す冷却曲線例図、第8図は設備Aによる板
厚上のビツカース硬さを示す実施結果図、第9図
は設備Bによる板厚上のビツカース硬さを示す実
施結果図である。
1……仕上ミル、2……レベラ、……強冷却
ゾーン、……弱冷却ゾーン、……空冷ゾー
ン、X……従来設備による冷却パターン例、Y…
…本発明設備による冷却パターン例。
Fig. 1 is a comparison diagram of steel plate cooling patterns, Fig. 2 is a diagram of cooling heat transfer characteristics using water, Fig. 3 is an explanatory diagram showing a process layout and an example of steel plate cooling equipment in a comparative example of the present invention, and Fig. 4 is an explanatory diagram showing an example of a steel plate cooling equipment. A graph showing the relationship between the water volume density ratio and the steel sheet cooling rate ratio in the strong cooling region and the weak cooling region, and FIG. 5 is a steel sheet cooling curve diagram according to the comparative example.
Fig. 6 is an example of a facility in which an air cooling zone is provided between strong and weak cooling zones, showing an embodiment of the present invention, and Fig. 7 is a cooling diagram showing a comparison of surface and center temperatures of a steel plate using equipment A and equipment B. FIG. 8 is a diagram showing the results of an implementation showing the Vickers hardness over the plate thickness using the equipment A, and FIG. 9 is a diagram showing the results of implementing the Vickers hardness over the thickness using the equipment B. 1...Finishing mill, 2...Leveler,...Strong cooling zone,...Weak cooling zone,...Air cooling zone, X...Example of cooling pattern using conventional equipment, Y...
...An example of a cooling pattern using the equipment of the present invention.
Claims (1)
一方向へ通板される10mm以上の厚鋼板に対し冷却
帯にて水冷を施し、鋼板をAr3点近傍からMs点近
傍までの温度範囲を冷却する厚鋼板用冷却設備に
於いて、前記冷却帯を、通板方向に対し前後複数
の制御ゾーンとして配置すると共に、冷却帯入側
のゾーンを強冷却ゾーンとなす一方、出側を弱冷
却ゾーンとなし、強冷却ゾーンの水量密度Wsと
弱冷却ゾーンの水量密度Wwとの比Ws/Wwを2
〜12となすと共に、強冷却ゾーンと弱冷却ゾーン
との間に空冷ゾーンを設けたことを特徴とする厚
鋼板用冷却設備。1 A thick steel plate in which a thick steel plate of 10 mm or more is threaded in one direction after finish rolling or hot leveling and is water-cooled in a cooling zone to cool the steel plate in a temperature range from near the Ar 3 point to near the Ms point. In the cooling equipment for use, the cooling zone is arranged as a plurality of control zones in the front and rear with respect to the sheet passing direction, and the zone on the entrance side of the cooling zone is a strong cooling zone, while the exit side is a weak cooling zone, The ratio Ws/Ww of the water volume density Ws in the strong cooling zone and the water volume density Ww in the weak cooling zone is 2.
12, and an air cooling zone is provided between a strong cooling zone and a weak cooling zone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16482781A JPS5864320A (en) | 1981-10-14 | 1981-10-14 | Cooling equipment for thick steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16482781A JPS5864320A (en) | 1981-10-14 | 1981-10-14 | Cooling equipment for thick steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5864320A JPS5864320A (en) | 1983-04-16 |
JPS6241294B2 true JPS6241294B2 (en) | 1987-09-02 |
Family
ID=15800669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16482781A Granted JPS5864320A (en) | 1981-10-14 | 1981-10-14 | Cooling equipment for thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5864320A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60184635A (en) * | 1984-02-29 | 1985-09-20 | Ishikawajima Harima Heavy Ind Co Ltd | Device for cooling metallic plate |
FR2571384A1 (en) * | 1984-10-09 | 1986-04-11 | Bertin & Cie | PROCESS OF HARDENING HARDWARE OF METAL SHEETS SUCH AS STEEL AND INSTALLATION FOR IMPLEMENTING SAME |
KR101277914B1 (en) * | 2010-12-28 | 2013-06-21 | 주식회사 포스코 | Thick Plate Cooling Apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917923A (en) * | 1972-06-07 | 1974-02-16 | ||
JPS5120003A (en) * | 1974-08-10 | 1976-02-17 | Sumitomo Metal Ind | |
JPS5658920A (en) * | 1979-10-16 | 1981-05-22 | Sumitomo Metal Ind Ltd | Direct hardening method of steel plate |
JPS57152430A (en) * | 1981-03-16 | 1982-09-20 | Nippon Steel Corp | Cooling method for obtaining steel plate of reduced hardness irregularity in thickness direction |
-
1981
- 1981-10-14 JP JP16482781A patent/JPS5864320A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917923A (en) * | 1972-06-07 | 1974-02-16 | ||
JPS5120003A (en) * | 1974-08-10 | 1976-02-17 | Sumitomo Metal Ind | |
JPS5658920A (en) * | 1979-10-16 | 1981-05-22 | Sumitomo Metal Ind Ltd | Direct hardening method of steel plate |
JPS57152430A (en) * | 1981-03-16 | 1982-09-20 | Nippon Steel Corp | Cooling method for obtaining steel plate of reduced hardness irregularity in thickness direction |
Also Published As
Publication number | Publication date |
---|---|
JPS5864320A (en) | 1983-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4375995A (en) | Method for manufacturing high strength rail of excellent weldability | |
KR20140014276A (en) | High carbon thin steel sheet and method for producing same | |
JPS6155572B2 (en) | ||
JPS5983722A (en) | Preparation of low carbon equivalent unnormalized high tensile steel plate | |
JPH02254120A (en) | Production of high tension strength steel having excellent weldability and low temperature toughness | |
US3904446A (en) | Process of making high strength cold rolled steel having excellent bake-hardening properties | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JPS6241294B2 (en) | ||
JPH04358022A (en) | Production of high strength steel | |
JPH05195058A (en) | Production of thick steel plate having high toughness and high tensile strength | |
CN112795755B (en) | Method for flexibly producing low-alloy high-strength hot-rolled H-shaped steel | |
TWI711708B (en) | Method for increasing spheroidization rate of chrome molybdenum steel material | |
JPS6167717A (en) | Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone | |
JPS602364B2 (en) | Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness | |
JPS6057490B2 (en) | Manufacturing method of high-strength steel plate with low yield ratio | |
CN1206048C (en) | Rolling process of H-shaped niobium-containing steel | |
JPH05295432A (en) | Production of steel plate having high strength and high toughness by online thermomechanical treatment | |
CN115522135B (en) | Method for cooperatively regulating and controlling strength, toughness and uniformity of super-large-section non-quenched and tempered steel through multi-stage precipitation and controlled rolling and controlled cooling | |
JPH0676617B2 (en) | Method for manufacturing high-strength hot-rolled thin steel sheet with excellent press workability | |
JPS5952207B2 (en) | Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate | |
JPS60121225A (en) | Production of high-tension hot-rolled steel sheet having excellent workability | |
JPH0745687B2 (en) | Method for producing high-strength hot-rolled thin steel sheet with excellent stretch-flangeability | |
JPH0233768B2 (en) | ||
JPH08143955A (en) | Production of thick-walled high tensile strength steel uniformized in strength in plate thickness direction | |
KR890002614B1 (en) | Process for manufacturing of high tension wire rod for pc steel wire |