JPS6240303B2 - - Google Patents

Info

Publication number
JPS6240303B2
JPS6240303B2 JP56029628A JP2962881A JPS6240303B2 JP S6240303 B2 JPS6240303 B2 JP S6240303B2 JP 56029628 A JP56029628 A JP 56029628A JP 2962881 A JP2962881 A JP 2962881A JP S6240303 B2 JPS6240303 B2 JP S6240303B2
Authority
JP
Japan
Prior art keywords
glass
fiber
temperature
glass tube
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56029628A
Other languages
Japanese (ja)
Other versions
JPS57145042A (en
Inventor
Yukio Terunuma
Shuichi Shibata
Toyotaka Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56029628A priority Critical patent/JPS57145042A/en
Publication of JPS57145042A publication Critical patent/JPS57145042A/en
Publication of JPS6240303B2 publication Critical patent/JPS6240303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/043Chalcogenide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は赤外線を透過するガラスフアイバの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a glass fiber that is transparent to infrared radiation.

従来、赤外線を透過するガラス材料としては、
カルコゲナイドガラスがよく知られている。これ
らのガラスは、それぞれの原料を粉末またはブロ
ツク状で、石英ガラス管内に真空封入し、長時間
高温度で溶融し、その後、空冷することにより得
られていた。
Traditionally, glass materials that transmit infrared rays include:
Chalcogenide glass is well known. These glasses were obtained by vacuum-sealing the respective raw materials in powder or block form in a quartz glass tube, melting them at high temperatures for a long time, and then cooling them in air.

光を伝播するガラスフアイバにおいては、用い
る波長域内で低い光損失値であることが要求さ
れ、このためには、吸収を示す不純物、たとえば
希土類金属、遷移金属および水分等の含有量を極
端に減少させたフアイバを製造しなければならな
い。不純物含有量を少なくする観点から考える
と、前述の製造方法は、はなはだ不十分な方法で
ある。現在、光フアイバには主としてSiO2系ガ
ラスフアイバが使用されているが、この場合には
以下に説明するようなCVD法(Chemical
Vapour Deposition法)によつて高純度なガラス
フアイバが製造されている。
Glass fibers that propagate light are required to have low optical loss values within the wavelength range used, and to achieve this, the content of absorbing impurities such as rare earth metals, transition metals, and water must be drastically reduced. The fiber must be manufactured in such a way that the From the point of view of reducing the impurity content, the above-mentioned production methods are extremely unsatisfactory. Currently, SiO 2 -based glass fibers are mainly used as optical fibers, but in this case, the CVD method (Chemical
High purity glass fibers are manufactured using the vapor deposition method.

すなわちCVD法による光フアイバ作製では、
SiCl4やGeCl4等、液体原料の蒸気を、Ar、O2
の輸送ガスとともに、高温部に導入し、加熱分解
して高純度の酸化物を得る。この場合の高純度性
は、容易に蒸留精製が可能な原料を使用すること
と、精製によつて高純度化された原料から、すな
わち汚染なしに、所望の物質形態である酸化物に
変換できることによつて保障されている。
In other words, in optical fiber production using the CVD method,
The vapor of a liquid raw material such as SiCl 4 or GeCl 4 is introduced into a high-temperature section along with a transport gas such as Ar or O 2 and is thermally decomposed to obtain a high-purity oxide. High purity in this case means the use of raw materials that can be easily purified by distillation, and the fact that raw materials that have been highly purified through purification can be converted into the desired substance form, ie, oxides, without contamination. guaranteed by.

塩化物を出発原料として、CVD法によるカル
コゲナイドガラスを材料とする低損失な赤外線透
過ガラスフアイバの製造が提案されている(特開
昭53−83639)。しかしこれらは、塩化物を熱分解
する反応にその基礎を置いているので、以下に述
べる致命的欠点を有し、この方法ではカルコゲナ
イドガラスおよびガラスフアイバの製造は不可能
である。すなわちカルコゲナイドガラスの場合に
は、カルコゲン成分(硫黄、セレン、テルル)の
揮発性が高いので、高温下においてはカルコゲン
成分が容易に揮発し、ガラス状態を保つことが不
可能になる。ところが、GeCl4、SiCl4等カルコゲ
ナイドガラスを形成する陽イオン成分の原料の分
解温度はGeCl4で800℃以上、SiCl4で1000℃以上
となり、カルコゲナイドガラスの揮発が活発化す
る温度(600〜700℃)に比較して、非常に高温で
ある。
It has been proposed to produce a low-loss infrared transmitting glass fiber made of chalcogenide glass using a CVD method using chloride as a starting material (Japanese Patent Application Laid-Open No. 83639/1983). However, since these methods are based on a reaction that thermally decomposes chlorides, they have the following fatal drawbacks, and chalcogenide glasses and glass fibers cannot be produced using this method. That is, in the case of chalcogenide glass, the chalcogen components (sulfur, selenium, tellurium) have high volatility, so the chalcogen components easily volatilize at high temperatures, making it impossible to maintain the glass state. However, the decomposition temperature of the raw materials for cationic components forming chalcogenide glasses such as GeCl 4 and SiCl 4 is over 800°C for GeCl 4 and over 1000°C for SiCl 4 , which is the temperature at which volatilization of chalcogenide glass becomes active (600-700°C). The temperature is very high compared to ℃).

このため、Ge、Si等を熱分解によつて形成せ
しめる温度に反応系を置くと、部分的にカルコゲ
ナイドガラスが生じたにしても、たちまちカルコ
ゲン成分が揮発し、ガラスの形成は起こらない。
またカルコゲナイドガラスのカルコゲン成分が揮
発しない温度(たとえば600℃)に反応系を保持
すると、今度はGeCl4、SiCl4の分解反応は起こら
ず、カルコゲナイドガラスは形成されない。
Therefore, if the reaction system is placed at a temperature that causes Ge, Si, etc. to be formed by thermal decomposition, even if chalcogenide glass is partially formed, the chalcogen component immediately volatilizes and no glass is formed.
Furthermore, if the reaction system is maintained at a temperature at which the chalcogen component of chalcogenide glass does not volatilize (for example, 600°C), the decomposition reaction of GeCl 4 and SiCl 4 will not occur, and chalcogenide glass will not be formed.

実際、「特開昭53−83639」の実施例に記述され
ている方法に従つて、GeS2およびGe−P−Sの
作製を試みたが、ガラス状物質の製造は不可能で
あつた。さらに流量比、加熱温度等を種々に変化
させたが、塩化物を用いる限りでは、ガラス状物
質は形成されなかつた。
In fact, attempts were made to produce GeS 2 and Ge-P-S according to the method described in the examples of ``Japanese Patent Application Laid-Open No. 53-83639,'' but it was impossible to produce a glassy substance. Furthermore, although the flow rate ratio, heating temperature, etc. were varied, no glassy substance was formed as long as chloride was used.

本発明はこのように、従来のCVD法、すなわ
ちハロゲン化物同志の熱分解反応では、カルコゲ
ナイドガラスが形成されないという致命的欠点を
解決するため、GeH4、SiH4、PH3等の水素化物
を用い、CVD法によりカルコゲナイドガラスを
生成せしめ、さらにガラスフアイバを製造したも
のである。以下実施例について詳しく説明する。
In this way, the present invention uses hydrides such as GeH 4 , SiH 4 , and PH 3 to solve the fatal drawback that chalcogenide glass is not formed in the conventional CVD method, that is, thermal decomposition reaction of halides. , chalcogenide glass was produced using the CVD method, and glass fiber was further manufactured. Examples will be described in detail below.

実施例 1 第1図は本発明のCVD法によるガラス薄膜作
製装置の構成図で、1は液体原料用容器、2は原
料ガスボンベ、3は流量調節器、4は減圧弁、5
は原料輸送用パイプ、6はパイプとガラス管をつ
なぐ接続部(回転コネクタ)、7はガラス管、8
はバーナ、9はガラス管をおさえ、回転させる平
行旋盤のチヤツクである。
Embodiment 1 FIG. 1 is a block diagram of a glass thin film production apparatus using the CVD method of the present invention, in which 1 is a liquid raw material container, 2 is a raw material gas cylinder, 3 is a flow rate regulator, 4 is a pressure reducing valve, and 5
is a pipe for transporting raw materials, 6 is a connection part (rotary connector) that connects the pipe and glass tube, 7 is a glass tube, 8
is a burner, and 9 is a chuck for a parallel lathe that holds and rotates the glass tube.

液体原料S2Cl2を容器1に入れ、Arガスで輸送
し、同時に原料ガスボンベ2からGeH4ガスを、
減圧弁4を通して、原料輸送用パイプ5によつ
て、ガラス管7の中へ送り込んだ。それぞれの流
量は流量調節器により、精密に制御した。
Liquid raw material S 2 Cl 2 is placed in container 1 and transported with Ar gas, and at the same time GeH 4 gas is supplied from raw material gas cylinder 2.
The material was fed through a pressure reducing valve 4 and into a glass tube 7 via a raw material transport pipe 5. Each flow rate was precisely controlled using a flow rate controller.

一方、原料を送り込まれたガラス管7は、旋盤
によつて50rpmの速度で回転し、その下部から移
動式の酸水素炎バーナ8で、ガラス管7を加熱
し、ガラス管7の中で以下の反応を起こさせた。
On the other hand, the glass tube 7 into which the raw materials have been fed is rotated by a lathe at a speed of 50 rpm, and a mobile oxyhydrogen flame burner 8 heats the glass tube 7 from the bottom. caused a reaction.

GeH4→Ge+2H2↑ (反応に必要な温度約500℃) S2Cl2→2S+Cl2↑ (反応に必要な温度400〜500℃) x・S+Ge→GeSx 第2図に輸送した原料比(S2Cl2/GeH4)を横
軸にとり、加熱温度を縦軸にとつたときのガラス
化範囲を示した。第2図において〇印はガラス化
した状態、×印はガラス化しない状態、△印はガ
ラス化が不十分な状態を示すそれぞれ実験値であ
る。
GeH 4 →Ge+2H 2 ↑ (Temperature required for reaction: approximately 500℃) S 2 Cl 2 →2S+Cl 2 ↑ (Temperature required for reaction: 400-500℃) x・S+Ge→GeSx Figure 2 shows the ratio of raw materials transported (S 2 Cl 2 /GeH 4 ) is plotted on the horizontal axis and the vitrification range is plotted when the heating temperature is plotted on the vertical axis. In FIG. 2, the ◯ mark indicates a vitrified state, the x mark indicates a non-vitrified state, and the △ mark indicates an insufficiently vitrified state, respectively, which are experimental values.

ガラス化の判定は、堆積したガラスの透明度、
均質度から行つたが、同時にX線回折により結晶
ピークの現われないことを確認している(第3
図)。
Vitrification is determined by the transparency of the deposited glass,
This was done based on homogeneity, but at the same time it was confirmed by X-ray diffraction that no crystal peaks appeared (3rd
figure).

比較例 1 第1図において、液体原料容器を2個用いて、
S2Cl2とGeCl4をArガスで同時にガラス管内に輸
送し、バーナで加熱することにより、透明なガラ
スが作製可能かどうかの判定を行つた。種々の流
量および流量比(S2Cl2/GeCl4)で作製を試みた
が、透明なガラス膜は形成できなかつた。光温度
計で、ガラス管表面の温度を測定して反応との対
応を観察した。
Comparative Example 1 In Fig. 1, using two liquid raw material containers,
We determined whether transparent glass could be produced by simultaneously transporting S 2 Cl 2 and GeCl 4 into a glass tube using Ar gas and heating them with a burner. Attempts were made using various flow rates and flow rate ratios (S 2 Cl 2 /GeCl 4 ), but a transparent glass film could not be formed. The temperature on the surface of the glass tube was measured using a photothermometer and the correspondence with the reaction was observed.

S2Cl2とGeCl4の組合わせでは、800℃以上で反
応が起こつた。約900℃で黄白色、約1000℃で乳
白色の不透明な付着物が発生したが、ガラス化
は、ついに起こらなかつた。これはGeCl4の反応
開始温度が800℃と高温であるので、生成したGe
−S系のS成分がたちまち揮発するためである。
In the combination of S 2 Cl 2 and GeCl 4 , the reaction occurred at temperatures above 800°C. At about 900°C, a yellowish-white and milky-white opaque deposit occurred at about 1000°C, but vitrification did not occur at all. This is because the reaction initiation temperature of GeCl 4 is as high as 800℃, so the generated Ge
This is because the S component of the -S system immediately evaporates.

実施例 2 実施例1と同様の装置を用い、S2Cl2(液体)、
GeH4(ガス)、SH3(ガス)の3種類の原料で
CVD法を行つた。流量調節器によつてS2Cl2容器
にはArガスが200ml/分(40℃)、GeH4(10%の
濃度)は100ml/分、PH3(10%濃度)は10ml/
分の割合で流れるようにした。バーナでガラス管
表面の温度が約550℃になるように加熱すること
により、薄黄色の透明ガラス膜を、ガラス管内に
生成した。PH3の代わりにPCl3を用いた場合は、
前記(比較例1)の例と同様に反応温度が約700
〜800℃と高温になる。このため生成した硫黄の
揮発が著しく、ガラスの堆積は観察されなかつ
た。
Example 2 Using the same apparatus as in Example 1, S 2 Cl 2 (liquid),
With three types of raw materials: GeH 4 (gas) and SH 3 (gas).
CVD method was performed. The flow rate regulator allows Ar gas to flow into the S 2 Cl 2 container at 200 ml/min (at 40°C), GeH 4 (10% concentration) at 100 ml/min, and PH 3 (10% concentration) at 10 ml/min.
I made it flow at a rate of 1 minute. By heating the glass tube surface with a burner to a temperature of approximately 550°C, a pale yellow transparent glass film was formed inside the glass tube. If PCl3 is used instead of PH3 ,
Similar to the example above (Comparative Example 1), the reaction temperature was about 700℃.
The temperature reaches ~800℃. Therefore, the generated sulfur volatilized significantly, and no glass deposition was observed.

実施例 3 実施例1と同様の方法で、軟化点約500〜550℃
のガラス管内にGe−S系ガラス膜を堆積した。
堆積の温度は500℃、バーナの送り速度は150mm/
分であつた。その後、温度600℃、バーナの送り
速度75mm/分で、ガラス管を堆積したGe−S系
のガラス膜とともに、棒状に中実化し、中心部に
Ge−S系ガラスを、その外側に酸化物ガラス層
を有するフアイバ用母材を作製した。中実化に用
いた温度は、Ge−S系ガラスのS成分が揮発す
る温度650℃より低く、このため、Ge−Sガラス
は透明なガラス状態のまま、酸化物ガラス中に閉
じ込められた。
Example 3 Using the same method as Example 1, the softening point was about 500 to 550°C.
A Ge-S glass film was deposited inside the glass tube.
The deposition temperature was 500℃, and the burner feed speed was 150mm/
It was hot in minutes. Then, at a temperature of 600℃ and a burner feed rate of 75mm/min, the glass tube is solidified into a rod shape along with the deposited Ge-S glass film, and the center
A fiber base material having an oxide glass layer on the outside was prepared from Ge-S glass. The temperature used for solidification was lower than 650° C., the temperature at which the S component of the Ge-S glass volatilizes, and therefore the Ge-S glass was confined in the oxide glass while remaining in a transparent glass state.

このフアイバ用母材の一部を加熱し、下に引き
出して、ボビンに巻き取ることにより、約100m
長のガラスフアイバを得ることができた。コア径
は25μm、フアイバの外径は200μmであつた。
By heating a part of this fiber base material, pulling it out, and winding it onto a bobbin, it is possible to
I was able to obtain a long glass fiber. The core diameter was 25 μm and the outer diameter of the fiber was 200 μm.

以上説明したように、Ge、Si、Pのハロゲン
化物(たとえばGeCl4、SiCl4等)をCVD法に用
いた場合、反応開始温度が高すぎて、カルコゲナ
イドガラスの成分が揮発し、ガラスの堆積が不可
能であつたが、本発明の方法のように、Ge、
Si、Pの水素化物、すなわちGeH4、SiH4、PH3
を用いることによつて、カルコゲナイドガラスの
揮発が活発化する温度以下で、CVD法によりガ
ラス薄膜をガラス管内部に堆積することができ
る。
As explained above, when halides of Ge, Si, and P (e.g., GeCl 4 , SiCl 4 , etc.) are used in the CVD method, the reaction initiation temperature is too high, and the components of chalcogenide glass volatilize, resulting in glass deposition. However, as in the method of the present invention, Ge,
Hydride of Si, P, i.e. GeH 4 , SiH 4 , PH 3
By using this method, a glass thin film can be deposited inside a glass tube by CVD at a temperature below which volatilization of chalcogenide glass becomes active.

さらに堆積したガラス膜を該ガラス管ととも
に、棒状に中実化し、ついで繊維状に線引きする
ことにより、ガラスフアイバを製造できる。
Furthermore, a glass fiber can be manufactured by solidifying the deposited glass film together with the glass tube into a rod shape and then drawing it into a fiber shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCVD法によるガラス薄膜作製装置の
構成図、第2図は輸送した原料の比(1/2S2Cl2
GeH4)と加熱温度を変数としたときのガラス化範
囲を示す図、第3図は作製したガラス膜のX線回
折スペクトルを示す図である。 1……液体原料用容器、2……原料ガスボン
ベ、3……流量調節器、4……減圧弁、5……原
料輸送用パイプ、6……回転コネクタ、7……ガ
ラス管、8……バーナ、9……平行旋盤のチヤツ
ク。
Figure 1 is a configuration diagram of a glass thin film production apparatus using the CVD method, and Figure 2 shows the ratio of transported raw materials (1/2S 2 Cl 2 /
Fig. 3 is a diagram showing the vitrification range when GeH 4 ) and heating temperature are used as variables, and Fig. 3 is a diagram showing the X-ray diffraction spectrum of the produced glass film. DESCRIPTION OF SYMBOLS 1... Liquid raw material container, 2... Raw material gas cylinder, 3... Flow rate regulator, 4... Pressure reducing valve, 5... Raw material transport pipe, 6... Rotating connector, 7... Glass tube, 8... Burner, 9... Parallel lathe chuck.

Claims (1)

【特許請求の範囲】 1 ゲルマニウム、けい素、りんの水素化物の1
種以上と、気化した硫黄、セレン、テルルまたは
そのハロゲン化物の1種以上の組み合わせからな
るものを加熱分解することにより、気相からガラ
ス物質を形成した後、繊維状に線引きすることを
特徴とする赤外線透過ガラスフアイバの製造方
法。 2 特許請求の範囲第1項記載の赤外線透過ガラ
スフアイバの製造方法によつて、ガラス管の内側
に、ガラス膜を形成せしめ、該ガラス管とともに
棒状に中実化した繊維状に線引きすることによ
り、ガラスフアイバを製造することを特徴とする
赤外線透過ガラスフアイバの製造方法。
[Claims] 1. Hydride of germanium, silicon, and phosphorus 1
A glass material is formed from a gas phase by thermally decomposing a combination of at least one species and one or more of vaporized sulfur, selenium, tellurium, or a halide thereof, and then drawn into a fiber shape. A method for manufacturing an infrared transmitting glass fiber. 2. By forming a glass film on the inside of a glass tube by the method for manufacturing an infrared transmitting glass fiber according to claim 1, and drawing it together with the glass tube into a solid rod-like fiber. , a method for producing an infrared transmitting glass fiber, the method comprising producing a glass fiber.
JP56029628A 1981-03-02 1981-03-02 Production of glass fiber transmitting infrared rays Granted JPS57145042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56029628A JPS57145042A (en) 1981-03-02 1981-03-02 Production of glass fiber transmitting infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56029628A JPS57145042A (en) 1981-03-02 1981-03-02 Production of glass fiber transmitting infrared rays

Publications (2)

Publication Number Publication Date
JPS57145042A JPS57145042A (en) 1982-09-07
JPS6240303B2 true JPS6240303B2 (en) 1987-08-27

Family

ID=12281346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56029628A Granted JPS57145042A (en) 1981-03-02 1981-03-02 Production of glass fiber transmitting infrared rays

Country Status (1)

Country Link
JP (1) JPS57145042A (en)

Also Published As

Publication number Publication date
JPS57145042A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
US4666247A (en) Multiconstituent optical fiber
JP3233298B2 (en) Method for making non-porous objects of high purity fused silica glass
US4414012A (en) Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
US4378987A (en) Low temperature method for making optical fibers
JPH0127005B2 (en)
US4432781A (en) Method for manufacturing fused quartz glass
GB2054553A (en) Process for producing high-purity silica glass with reduced oh-content
US4645524A (en) Method for making sodium-containing glass
KR100622616B1 (en) Process for producing silica by decomposition of an organosilane
JPS59152239A (en) Manufacture of light conductive body
US6326325B1 (en) Method for fabricating silicon oxynitride
JPS6240303B2 (en)
JPS6143290B2 (en)
JP3163167B2 (en) Method for producing rare earth element doped quartz glass
US4735648A (en) Optical fibre manufacture
JP4230074B2 (en) Method for producing aluminum-added quartz porous matrix
JPH0551542B2 (en)
JPH0218295B2 (en)
JPS6150888B2 (en)
JPS5925738B2 (en) Optical glass fiber manufacturing method
AU731687C (en) Method for fabricating silicon oxynitride
JPS583981B2 (en) Method of manufacturing non-porous fused glass objects
JPS58161929A (en) Manufacture of high purity quartz glass plate
JPS6152088B2 (en)
JPH05330845A (en) Production of optical fiber preform