JPS6152088B2 - - Google Patents
Info
- Publication number
- JPS6152088B2 JPS6152088B2 JP13997279A JP13997279A JPS6152088B2 JP S6152088 B2 JPS6152088 B2 JP S6152088B2 JP 13997279 A JP13997279 A JP 13997279A JP 13997279 A JP13997279 A JP 13997279A JP S6152088 B2 JPS6152088 B2 JP S6152088B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- glass
- gas
- optical fiber
- fiber base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 25
- 239000011521 glass Substances 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- VDNSGQQAZRMTCI-UHFFFAOYSA-N sulfanylidenegermanium Chemical compound [Ge]=S VDNSGQQAZRMTCI-UHFFFAOYSA-N 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910005839 GeS 2 Inorganic materials 0.000 description 5
- 229910003902 SiCl 4 Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910020346 SiS 2 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000019086 sulfide ion homeostasis Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01853—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
- C03B2201/86—Chalcogenide glasses, i.e. S, Se or Te glasses
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
本発明は、2μm以上の長波長域において透過
率が良好な光フアイバ用母材の製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber base material that has good transmittance in a long wavelength region of 2 μm or more.
従来、光フアイバ用母材は石英系ガラスを中心
としており、SiCl4、GeCl4、BBr3、PCl3などを
出発原料として、これらをあらかじめ用意された
ガラス管内、あるいはガラス棒上で、酸化、熱分
解して、ガラス微粉末あるいは酸化物粉末を生じ
せしめ、これを付着させて光フアイバ用母材、を
製造している。 Conventionally, the base material for optical fibers has mainly been silica-based glass, and starting materials such as SiCl 4 , GeCl 4 , BBr 3 , and PCl 3 are oxidized and oxidized in a glass tube prepared in advance or on a glass rod. It is thermally decomposed to produce fine glass powder or oxide powder, which is then adhered to produce an optical fiber base material.
この塩化物を出発原料とし、これを蒸発、気化
して輸送し、所定の場所において、酸化物とす
る、いわゆるC.V.D法(Chemical Vapour
Deposition法)は高純度な酸化物ガラスを得やす
く、光フアイバ用母材を製造する方法として、数
多くの優れた点を有している。 The so-called CVD method (Chemical Vapor
Deposition method) is easy to obtain high-purity oxide glass and has many advantages as a method for manufacturing optical fiber base materials.
このようにして製造された酸化物ガラス
(SiO2系ガラス)はSi−0結合の振動に起因する
赤外吸収を有し、このため、低損失な波長領域が
2μm未満に限定される。したがつて2μm以上
の長波長において透過率の良好な光フアイバを得
るためには2μm以上の長波長領域において、低
損失域の存在する硫化物を用いるのが好ましいわ
けである。 The oxide glass (SiO 2 -based glass) produced in this way has infrared absorption due to the vibration of Si-0 bonds, and therefore the low-loss wavelength range is limited to less than 2 μm. Therefore, in order to obtain an optical fiber with good transmittance in the long wavelength region of 2 μm or more, it is preferable to use a sulfide that has a low loss region in the long wavelength region of 2 μm or more.
しかしながら、前述のC.V.D法を硫化物製造に
適用しようとする場合(たとえば、前述の塩化物
と共にS2Cl2などをガス状で輸送し、湿気、酸素
のない雰囲気下において熱分解する法が考えられ
る)、ケイ素またはゲルマニウムと硫黄の反応が
進行しにくく、効率よく硫化物を得ることは困難
であつた。 However, when applying the above-mentioned CVD method to sulfide production (for example, a method in which S 2 Cl 2 and the like are transported in gaseous form together with the chloride mentioned above and thermally decomposed in an atmosphere free of moisture and oxygen is considered). ), the reaction between silicon or germanium and sulfur was difficult to proceed, making it difficult to efficiently obtain sulfide.
本発明は前述の欠点を除去することを目的とす
る。詳しくは、透明度が高く、高純度で硫化物を
得られるC.V.D法の長所を減殺することなく、効
率よく、2μm以上の長波長域で低損失の光フア
イバ用母材を製造する方法を提供せんとするもの
である。 The present invention aims to obviate the aforementioned drawbacks. Specifically, we provide a method for efficiently manufacturing optical fiber base material with low loss in the long wavelength region of 2 μm or more without diminishing the advantages of the CVD method, which allows sulfides to be obtained with high transparency and high purity. That is.
したがつて、本発明による光フアイバ母材の製
造方法はケイ素またはゲルマニウムと硫黄が結合
した化合物原料ガスの一種以上を熱分解し、生じ
たケイ素またはゲルマニウムの硫化物をガラス管
内壁、ガラス棒などに付着せしめる工程を含むこ
とを特徴とするものである。 Therefore, the method for producing an optical fiber base material according to the present invention thermally decomposes one or more compound raw material gases in which silicon or germanium and sulfur are combined, and the resulting silicon or germanium sulfide is applied to the inner wall of a glass tube, a glass rod, etc. The method is characterized in that it includes a step of adhering it to.
本発明によれば、ケイ素またはゲルマニウムと
硫黄が結合した化合物原料を用い、これを熱分解
するので、ケイ素またはゲルマニウムと硫黄との
反応を考慮する必要がなく、効率的に、良質の硫
化物を製造することができ、このため、C.V.D法
を用いて、2μm以上の波長域において低損失な
光フアイバ用母材を効率良く製造しえると言う利
点がある。 According to the present invention, a compound raw material in which silicon or germanium and sulfur are bonded is used and is thermally decomposed, so there is no need to consider the reaction between silicon or germanium and sulfur, and high-quality sulfide can be efficiently produced. Therefore, there is an advantage that an optical fiber base material with low loss in the wavelength range of 2 μm or more can be efficiently manufactured using the CVD method.
本発明を更に詳しく説明する。 The present invention will be explained in more detail.
本発明は前述のように、原料ガスとして、ケイ
素またはゲルマニウムと硫黄が結合した化合物の
一種以上を用いるほか、通常のC.V.D法とほぼ同
様である。本発明により原料ガスとして用いられ
るケイ素またはゲルマニウムと硫黄が結合した化
合物は基本的に限定されるものではなく、光フア
イバ用母材の特性などを考虜し、機能的に選択し
える。 As described above, the present invention uses one or more compounds in which silicon or germanium and sulfur are bonded as the raw material gas, and is substantially the same as the usual CVD method. The compound in which silicon or germanium and sulfur are bonded together, which is used as a raw material gas according to the present invention, is not fundamentally limited, and can be selected functionally by considering the characteristics of the optical fiber base material.
本発明による光フアイバ用母材の製造方法にお
いて、原料ガスは前記の化合物群より選択した一
種の原料ガスである必要はなく、原料ガスを二種
以上を混合したものであることができる。二種以
上混合した原料ガスを用いる場合、その混合比は
それぞれ原料ガスの性質、製造される光フアイバ
用母材の特性を考慮し機能的に定めるのがよい。 In the method for manufacturing an optical fiber base material according to the present invention, the raw material gas does not have to be one type of raw material gas selected from the above-mentioned compound group, but can be a mixture of two or more types of raw material gases. When using a mixture of two or more raw material gases, the mixing ratio is preferably determined functionally, taking into consideration the properties of each raw material gas and the properties of the optical fiber base material to be manufactured.
ケイ素またはゲルマニウムと硫黄が給合した化
合物としては、たとえば、Si(SR)4、GB
(SR)4、(式中、Rは炭化水素を示す)などをあ
げることができる。 Examples of compounds in which silicon or germanium and sulfur are bonded include Si(SR) 4 and GB.
(SR) 4 , (in the formula, R represents a hydrocarbon), and the like.
次に本発明による光フアイバ用母材の製造方法
を実施例に基づき説明する。 Next, a method for manufacturing an optical fiber base material according to the present invention will be explained based on examples.
実施例 1
第1図は、本発明による光フアイバ用母材の製
造方法を実施するための装置の概略図であつて、
1はガス導入口、2は原料容器、3はガラス旋
盤、4はガラス管、5は発熱部である。ガス導入
口1より導入される輸送用ガスとしては、He、
Ar、N2などの不活性ガス、H2ガス等を用い、50
℃〜150℃の範囲の任意の温度に保持したガラス
製原料容器2に入れた液体原料中を通過させ、ガ
ラス旋盤3にセツトし、回転状態にあるガラス管
4内に送り込んだ。輸送ガス流量は2/minと
した。Example 1 FIG. 1 is a schematic diagram of an apparatus for carrying out the method for manufacturing an optical fiber base material according to the present invention, which includes:
1 is a gas inlet, 2 is a raw material container, 3 is a glass lathe, 4 is a glass tube, and 5 is a heat generating part. The transport gas introduced from the gas inlet 1 includes He,
Using inert gas such as Ar, N2 , H2 gas, etc., 50
The liquid raw material was passed through a liquid raw material contained in a glass raw material container 2 maintained at an arbitrary temperature in the range of 150°C to 150°C, set in a glass lathe 3, and fed into a rotating glass tube 4. The transport gas flow rate was 2/min.
本実施例においては、ガラス製原料容器2を1
個用い、Ge(SC2H5)4を原料として、気体状にし
て輸送し、加熱部5で約250℃に加熱、粉末状の
GeS2を生じせしめ、その後850℃に加熱して溶融
し、ガラス状のGeS2を得た。 In this embodiment, the glass raw material container 2 is
For individual use, Ge(SC 2 H 5 ) 4 is used as a raw material, transported in a gaseous state, heated to approximately 250°C in the heating section 5, and turned into powder.
GeS 2 was generated and then heated to 850°C to melt it to obtain glassy GeS 2 .
第2図に得られたGeS2ガラス(0.5mm厚)の透
過率を示した。第2図より明かなように、0.4〜
17μmに透明領域があり、低損失な波長領域は1
〜6μmに存在する。 Figure 2 shows the transmittance of the GeS 2 glass (0.5 mm thick) obtained. As is clear from Figure 2, 0.4~
There is a transparent region at 17 μm, and the low loss wavelength region is 1
~6 μm.
従来、低損失が2μm以下でしか得られなかつ
たのに対し、このガラスではより長波長まで低損
失領域が拡大されている。このようにして得られ
た光フアイバ用母材を不活性ガス雰囲気下で線引
きすることにより、2μm以上の長波長で低損失
な光フアイバが得られる。 Conventionally, low loss could only be obtained at 2 μm or less, but with this glass, the low loss region has been expanded to longer wavelengths. By drawing the optical fiber base material thus obtained in an inert gas atmosphere, an optical fiber with a long wavelength of 2 μm or more and low loss can be obtained.
実施例 2
原料容器2を2個用い、一方にはGe
(SC2H5)4を他の一つにはSi(SC2H5)4を入れて、
実施列1と同様の実験を試みた。Si(SC2H5)4は
Ge(SC2H5)4より、反応温度、ガラス化温度とも
に高く、それぞれ300℃、1100℃であつた。Si
(SC2H5)4を熱分解して得られるSiS2は、空気中
の湿気に対して不安定であるため、GeS2に対し
て20モル%以上のSiS2は添加しなかつた。Example 2 Two raw material containers 2 were used, one containing Ge
(SC 2 H 5 ) 4 and Si(SC 2 H 5 ) 4 in the other one,
An experiment similar to that in Example 1 was attempted. Si( SC2H5 ) 4 is
Both the reaction temperature and the vitrification temperature were higher than that of Ge(SC 2 H 5 ) 4 , at 300°C and 1100°C, respectively. Si
Since SiS 2 obtained by thermally decomposing (SC 2 H 5 ) 4 is unstable to moisture in the air, SiS 2 of 20 mol % or more relative to GeS 2 was not added.
実施例 3
実施例1と同様の条件で、GeS2粉末を生じせ
め、石英ガラス棒の先端に付着させ、その後、
Heガスなどの不活性ガス雰囲気下で700℃〜900
℃加熱してガラス化した。実施例1、2と同様
に、薄黄色の透明ガラスが得られた。Example 3 Under the same conditions as in Example 1, GeS 2 powder was generated and attached to the tip of a quartz glass rod, and then
700℃~900℃ under inert gas atmosphere such as He gas
It was vitrified by heating at ℃. As in Examples 1 and 2, a pale yellow transparent glass was obtained.
比較例
原料供給用のガラス容器に入れたSiCl4、
GeCl4、S2Cl2を室温に保持し、これにそれぞれ
Arガス又はH2ガスを送り込み、輸送用ガスとと
もに気体状の原料を、ガラス管内に導き、あらか
じめ、設置した電気炉によつて、熱分解反応を生
じせしめた。まず単独に塩化物が存在する時の熱
分解の最低温度を明らかにするため、上記実験を
行なつた。Arガス雰囲気下では、ほとんど反応
が進行しないこと、H2ガス雰囲気下(1/mi
n)ではSiCl4、GeCl4、S2Cl2それぞれの反応温
度は約1000〜1200℃800℃、600℃であることを確
認した。その後、SiCl4(1/minH2ガス)、
S2Cl2(2/minH2ガス)を同時に輸送し、約
1000℃で反応を試み、GeCl4(0.5/minH2ガ
ス)、S2Cl2(2/minH2ガス)を同時に輸送
し、約800℃で反応を試みたが、どちらの場合
も、反応の進行が単独の場合と比較して著るしく
遅く、又、ガラス状の透明試料も得ることができ
なかつた。Comparative example SiCl 4 in a glass container for raw material supply,
GeCl 4 and S 2 Cl 2 are kept at room temperature and each
Ar gas or H 2 gas was fed, and the gaseous raw material was introduced into the glass tube along with the transportation gas, and a thermal decomposition reaction was caused in an electric furnace installed in advance. First, the above experiment was conducted to clarify the minimum temperature for thermal decomposition when chloride is present alone. Under an Ar gas atmosphere, the reaction hardly progresses, and under an H 2 gas atmosphere (1/mi
In n), it was confirmed that the reaction temperatures of SiCl 4 , GeCl 4 , and S 2 Cl 2 were approximately 1000 to 1200°C, 800°C, and 600°C, respectively. After that, SiCl 4 (1/minH 2 gas),
S 2 Cl 2 (2/minH 2 gas) is transported at the same time, and approximately
We tried the reaction at 1000℃, transported GeCl 4 (0.5/minH 2 gas) and S 2 Cl 2 (2/minH 2 gas) at the same time, and tried the reaction at about 800℃, but in both cases, the reaction slowed down. The progress was significantly slower than when using it alone, and a glassy transparent sample could not be obtained.
【図面の簡単な説明】
第1図は、本発明による光フアイバ用母材の製
造方法を実施するための装置の概略図、第2図
は、本発明により得られたGeS2ガラス(0.5mm
厚)の透過特性を示すグラフである。
1……ガス導入口、2……原料容器、3……ガ
ラス施盤、4……ガラス管、5……発熱部。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram of an apparatus for carrying out the method for manufacturing an optical fiber base material according to the present invention, and FIG .
It is a graph which shows the transmission characteristic of thickness). 1... Gas inlet, 2... Raw material container, 3... Glass lathe, 4... Glass tube, 5... Heat generating part.
Claims (1)
化合物原料ガスの一種以上を熱分解し、生じたケ
イ素またはゲルマニウムの硫化物をガラス管内
壁、もしくはガラス棒などに付着せしめる工程を
含むことを特徴とする光フアイバ用母材の製造方
法。1. A light characterized by including the step of thermally decomposing one or more compound raw material gases in which silicon or germanium and sulfur are combined, and causing the resulting silicon or germanium sulfide to adhere to the inner wall of a glass tube or a glass rod, etc. Method for manufacturing fiber base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13997279A JPS5663835A (en) | 1979-10-31 | 1979-10-31 | Manufacture of optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13997279A JPS5663835A (en) | 1979-10-31 | 1979-10-31 | Manufacture of optical fiber base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5663835A JPS5663835A (en) | 1981-05-30 |
JPS6152088B2 true JPS6152088B2 (en) | 1986-11-12 |
Family
ID=15257950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13997279A Granted JPS5663835A (en) | 1979-10-31 | 1979-10-31 | Manufacture of optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5663835A (en) |
-
1979
- 1979-10-31 JP JP13997279A patent/JPS5663835A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5663835A (en) | 1981-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0529189B1 (en) | Method of making fused silica | |
US4826288A (en) | Method for fabricating optical fibers having cores with high rare earth content | |
US5043002A (en) | Method of making fused silica by decomposing siloxanes | |
SE439480B (en) | PROCEDURE FOR THE PREPARATION OF A RODFORM GLASS FOR OPTICAL FIBERS | |
JPS62501699A (en) | Multi-component optical fiber and its manufacturing method | |
JPS58125631A (en) | Manufacture of optical fiber | |
US4432781A (en) | Method for manufacturing fused quartz glass | |
US4645524A (en) | Method for making sodium-containing glass | |
JPH0459254B2 (en) | ||
US4564378A (en) | Method for producing a preform for light waveguides | |
US4388095A (en) | Method of producing a glass layer on an interior surface of a hollow body | |
US6326325B1 (en) | Method for fabricating silicon oxynitride | |
JPS6152088B2 (en) | ||
Katsuyama et al. | Fabrication of high‐purity chalcogenide glasses by chemical vapor deposition | |
US4735643A (en) | Method for producing an aerosol stream | |
JPS6117433A (en) | Manufacture of optical fiber preform | |
US4735648A (en) | Optical fibre manufacture | |
JPH0210095B2 (en) | ||
JPS6036343A (en) | Production of glass material for optical transmission | |
JPS6086039A (en) | Production of fluorine-containing silica glass | |
JPH0324415B2 (en) | ||
JPS59162143A (en) | Production of synthetic quartz | |
GB2226309A (en) | Optical fibre manufacture | |
JPS565340A (en) | Manufacture of optical transmission glass fiber | |
JPS60239339A (en) | Preparation of parent material for optical fiber |