JPS58161929A - Manufacture of high purity quartz glass plate - Google Patents

Manufacture of high purity quartz glass plate

Info

Publication number
JPS58161929A
JPS58161929A JP4231282A JP4231282A JPS58161929A JP S58161929 A JPS58161929 A JP S58161929A JP 4231282 A JP4231282 A JP 4231282A JP 4231282 A JP4231282 A JP 4231282A JP S58161929 A JPS58161929 A JP S58161929A
Authority
JP
Japan
Prior art keywords
quartz glass
substrate
glass plate
burner
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4231282A
Other languages
Japanese (ja)
Inventor
Toshiro Ikuma
伊熊 敏郎
Tetsuya Yamazaki
哲也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4231282A priority Critical patent/JPS58161929A/en
Publication of JPS58161929A publication Critical patent/JPS58161929A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • C03B19/1492Deposition substrates, e.g. targets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion

Abstract

PURPOSE:To continuously manufacture a high-purity quartz glass plate, by depositing fine particles of oxide forming glass on the slender quadrilateral bottom of a substrate, growing them, and heating the grown particles to a high temp. while pulling them up to successively convert a layer of the particles into transparent glass. CONSTITUTION:A burner 2 having a triple-tubed structure consisting of a nozzle 7 for SiCl4 as a gaseous starting material, a nozzle 8 for a combustion gas, and a nozzle 9 for O2 as a gaseous combustion improver is placed under the bottom of a substrate 1. The length L1 of the major side of the substrate 1 is about 1.5-2 times the width of a quartz glass plate to be manufactured, and the length L2 of the minor side is about 1.5-2 times the thickness of the plate. While moving the substrate 1 upward and the burner 2 back and forth in the direction of the major side of the substrate 1 (arrow 240), fine glass particles 4 formed by a flame decomposition reaction with a burner 2 are sprayed on the bottom of the substrate 1 and successively deposited. The resulting flat porous layer 5 is then vitrified by heating with a pair of rodlike heaters 3, 3 to manufacture a quartz glass plate 6.

Description

【発明の詳細な説明】 本発明は石英または石英系のガラス板の製造にり 際し、特に高純度蝋光学的に優れたガラス板を連続的に
製造する方法に関育るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of quartz or quartz-based glass plates, and particularly to a method for continuously producing optically excellent glass plates made of high purity wax.

石英ガラスは多成分系(主としてアルカリを含む)ガラ
スに比べて■熱膨張係数が小さいため急激な温度変化に
強い■軟化点が高いので高温で使用可能である■化学的
に安定である■不純物を除けば紫外線から赤外線まで広
い波長域にわたって光の透過率が良い等の長所を有して
おり、半導体、光学器機、光通信用素子等の分野で広く
利用されている。これらの用途の中で、石英ガラス板は
光学的な窓材やフォトマスク用基板として需要が近年増
大し、その機能を充分に発揮するためにも、従来に増し
て高精度高純度の石英ガラス板を安定に供給される種型
まれている。
Compared to multi-component glass (mainly containing alkali), quartz glass ■ Has a small coefficient of thermal expansion, so it is resistant to rapid temperature changes ■ Has a high softening point, so it can be used at high temperatures ■ It is chemically stable ■ Impurities It has advantages such as good light transmittance over a wide wavelength range from ultraviolet to infrared, and is widely used in fields such as semiconductors, optical instruments, and optical communication devices. Among these uses, the demand for quartz glass plates as optical window materials and photomask substrates has increased in recent years, and in order to fully demonstrate their functions, it is necessary to use quartz glass with higher precision and higher purity than ever before. The board is stably supplied with seed molds.

従来から石英ガラス板を製造する方法としてはまず微粉
砕された天然水晶粉を電気炉中で溶融し炉底部のダイス
周辺より石英ガラス管を引き抜いて作成し、その後前記
石英ガラス管を切り開いて板状に成型加工した後、適当
な寸法に切断することにより石英ガラス板を得る方法が
一般的である。
The conventional method for manufacturing quartz glass plates is to first melt pulverized natural quartz powder in an electric furnace, pull out a quartz glass tube from around a die at the bottom of the furnace, and then cut the quartz glass tube open to make the plate. A common method is to form a quartz glass plate into a shape and then cut it into appropriate dimensions to obtain a quartz glass plate.

上記石英ガラス板の製造方法は原料が低価格であるが、
■天然水晶中のAlやNa等の不純物が最終製品である
石英ガラス板に残留し短波長での透台率が低下したり放
射線照射により着色したりする■溶融時や石英管作成時
に外廓からの不純物が混入しゃすい■工程が複雑である
■最終的に光学的な面を出すには両面を研究する必要が
ある。
Although the above method for producing quartz glass plates uses low-cost raw materials,
■ Impurities such as Al and Na in natural quartz remain on the final product, the quartz glass plate, reducing the transmittance at short wavelengths and causing coloration due to radiation exposure. ■The process is complicated.■It is necessary to study both sides to achieve the final optical surface.

等の問題点があり、高精度、高純度の石英ガラス板を低
コストで得ることは困難である。
Due to these problems, it is difficult to obtain a high-precision, high-purity quartz glass plate at low cost.

これらの問題点を解決する方法として原料に高純度の5
iC14を用い酸水素バーナあるいはプラグ’?)−1
−等により不純物の少ない石英ガラスのインゴットを作
成し、これを粉砕加工後、電気炉中で溶融し石英ガラス
管を引き抜く方法が考えられるが、工程が複雑であるこ
と、粉砕時に不純物が混入する等の問題点は解決できな
い。
As a way to solve these problems, high-purity 5.
Oxyhydrogen burner or plug using iC14? )-1
One possible method is to create a quartz glass ingot with few impurities, crush it, melt it in an electric furnace, and pull out the quartz glass tube, but the process is complicated and impurities get mixed in during the crushing process. Such problems cannot be solved.

また前記と同様の方法で作成した高純度の石英ガラスイ
ンゴットを直接切断加工して適当な寸法の石英ガラス板
を得る方法もあり高純度の石英ガラス板が得られ、工程
がかなり簡素化される利点もあるが、前記方法で得られ
たインゴットは通常円柱状であり、この円柱状のインゴ
ットから例えば正方形の石英ガラス板を得る場合、材料
損失が大きいこと、及び切断するだけでも材料ロスが大
きく高価なダイヤモンドカッターの使用量も増大すると
いう欠点が生じる。
There is also a method of directly cutting a high-purity quartz glass ingot created using the same method as above to obtain a quartz glass plate of appropriate dimensions.A high-purity quartz glass plate can be obtained, and the process is considerably simplified. Although there are some advantages, the ingots obtained by the above method are usually cylindrical, and when obtaining, for example, a square quartz glass plate from this cylindrical ingot, there is a large material loss, and even just cutting it causes a large material loss. This also has the disadvantage of increasing the amount of expensive diamond cutters used.

この様に従来の技術により石英ガラス板を製造する方法
は、石英ガラス管を切り開くかもしくは、インゴットを
切断する等の加工により石英ガラス板を得る方法であり
、原料から直接石英ガラス板が得られないため、どうし
ても工程が複雑になり連続生産に適しているとはいえ難
い。
As described above, the method of producing a quartz glass plate using conventional technology is to obtain a quartz glass plate by cutting a quartz glass tube or cutting an ingot, and it is possible to obtain a quartz glass plate directly from raw materials. Therefore, the process becomes complicated and it is difficult to say that it is suitable for continuous production.

本発明は上記従来技術の欠点を解決するためになされた
ものであり、高純度の石英ガラス板を比較的容易にしか
も連続的に製造する方法を提供するものである。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and provides a method for manufacturing a high-purity quartz glass plate relatively easily and continuously.

本発明に従った方法では、底面が細長い四辺形を成した
基材の前記底面に向けてガラス形成原料供給ノズル及び
バーナーを配置し、前記基材を相対的に上方に移動させ
つつ火炎加水分解反応により基材の底面上にガラス形成
酸化物微粒子を付着成長させ、その成長面より上方に設
けた加熱体で高温加熱することにより前記微粒子層を順
次透明ガラス化する。
In the method according to the present invention, a glass-forming raw material supply nozzle and a burner are arranged toward the bottom surface of a base material whose bottom surface has an elongated quadrilateral shape, and flame hydrolysis is performed while moving the base material relatively upward. Glass-forming oxide fine particles are caused to adhere and grow on the bottom surface of the substrate by reaction, and the fine particle layer is sequentially turned into transparent glass by heating at a high temperature with a heating element provided above the growth surface.

本発明において使用する基材の底面形状は製造する石英
ガラス板の幅および厚み寸法に応じて決定されるが、火
炎加水分解反応で生成される微粒子堆積層(多孔層)を
高温加熱して透明ガラス化する過程で幅方向および厚み
方向に収縮するため、この収縮代を見込んで基材の長辺
及び短辺の長さは製造する石英ガラス板の幅および厚み
の1.5倍ないし一1O倍の範囲に選ぶことが望ましい
The bottom shape of the base material used in the present invention is determined according to the width and thickness of the quartz glass plate to be manufactured, but it is made transparent by heating the fine particle deposit layer (porous layer) produced by the flame hydrolysis reaction at high temperature. Because it shrinks in the width and thickness directions during the vitrification process, the lengths of the long and short sides of the base material should be 1.5 to 10 times the width and thickness of the quartz glass plate to be manufactured, taking into account this shrinkage. It is desirable to choose within twice the range.

また長辺と短辺の長さ比があまり小さいと成形後に厚み
方向での分割切断の必要性が生じてくるので長辺寸法を
短辺寸法の少なくとも10倍以上、好ましくは15倍に
選ぶのがよい0 また基材底面の短辺長さはあまり小さい場合には微粒子
堆積層の厚みを一定に制御することが難しくなるので1
m/rn以上とするのが望ましい。
Also, if the length ratio between the long side and the short side is too small, it will be necessary to cut the long side in the thickness direction after molding, so the long side should be selected to be at least 10 times the short side, preferably 15 times. In addition, if the length of the short side of the bottom surface of the base material is too small, it will be difficult to control the thickness of the fine particle deposit layer to a constant value.
It is desirable to set it to m/rn or more.

次に本発明の実m態様の一例を図に基づいて説明する。Next, an example of a practical aspect of the present invention will be explained based on the drawings.

第1図に示す如く液体のガラス形成用原料、例えば5i
C14j / /を満たした容器2/2内vcrlp素
あるいはアルゴン等のキャリアガス2/Jを流入し、5
IC14蒸気を含んだガスが配管210を介して三重管
構造をもつバーナーコの中心に配置された原料供給ノズ
ル7に供給される。そしてこの原料供給ノズル7の外側
に環状に配置されたバーナーノズルlrK水素・ブタン
等の燃焼用ガスコ20が、またこのノズルざのさらに外
側に環状に配置されたバーナーノズル9に助燃用酸素ガ
スコ30が供給され、火炎加水分解反応により微粒子l
が生成される。
As shown in FIG.
In the container 2/2 filled with C14j / /, a carrier gas 2/J such as vcrlp element or argon is introduced, and
Gas containing IC14 steam is supplied via piping 210 to the raw material supply nozzle 7 located at the center of the burnerco having a triple pipe structure. A burner nozzle lrK is arranged in an annular manner on the outside of this raw material supply nozzle 7, and a combustion gas 20 for hydrogen, butane, etc. is installed in the burner nozzle 9, which is arranged in an annular manner further outside this nozzle zone. is supplied, and fine particles l are produced by a flame hydrolysis reaction.
is generated.

ナオ、上記ガラス形成用原料には通常、5ic14が用
いられるが、蒸気圧の高い物質であればこれに限定され
るものではなく、水素化合物あるいは有機金属化合物等
でも何らさしつがえないことは言うまでもない。
Nao, 5ic14 is usually used as the raw material for forming glass, but it is not limited to this as long as it has a high vapor pressure, and it goes without saying that hydrogen compounds, organometallic compounds, etc. are also acceptable. stomach.

バーナー2の上方には、例えば石英からなる板状の基材
/がほぼ垂直に配置され、この基材lは図外上方の引上
げ駆動機構を介して上方に一定速度で引き上げられる。
Above the burner 2, a plate-shaped base material 1 made of, for example, quartz is arranged substantially vertically, and this base material 1 is pulled upward at a constant speed via a pulling drive mechanism located above (not shown).

基材/の底面におけする長辺長さLlおよび短辺長さL
2は製造しようとする石英ガラス板の帽および肉厚の1
.j倍ないし2.0倍に選定しである。
Long side length Ll and short side length L at the bottom of the base material
2 is the cap and wall thickness of the quartz glass plate to be manufactured.
.. It is selected to be between j times and 2.0 times.

バーナーコは基材lの底面長辺に対し平行方向2110
に往復移動し、これにより火炎加水分解反応で生成した
ガラス微粒子qが上記基板/の底面上に順次堆積してい
き、この微粒子同志が融着して平板状の多孔層jが形成
される。
The burner is parallel to the long side of the bottom surface of the base material l at 2110 degrees.
As a result, glass particles q generated by the flame hydrolysis reaction are sequentially deposited on the bottom surface of the substrate/, and these particles are fused together to form a flat porous layer j.

ノズルコと基材lとの間には基材lの移動経路を挾むよ
うにして高温加熱用の一対の棒状ヒーター3が設けられ
ており、これらヒーター3・3で加熱されて多孔層3は
上端から順次透明ガラス化し、石英ガラス板6が連続帯
状に成形される。
A pair of rod-shaped heaters 3 for high-temperature heating are provided between the nozzle and the base material 1 so as to sandwich the movement path of the base material 1, and the porous layer 3 is heated by these heaters 3 and 3 sequentially from the upper end. The quartz glass plate 6 is made into a transparent glass and formed into a continuous band shape.

上記多孔層jの合成は火炎加水分解反応を利用している
ため初期には多くのOH基が混入してしするが、焼結時
にHe t Ar等のガス中にH2Oとして揮散してし
まうので最終的に得られる透明石英ガラス板にはOH基
がわずかに数十PPm残存してし)、るにすぎない。さ
らにこや多孔層!を焼結するとき塩素ガスあるいは塩化
チオニル等のハロゲンガスを流すことにより、ガラス中
のOH基がs S 1−OH+Ol 2→−0−5i 
−0−3i−−1−JHOJの反応により除去され、O
H基を実質的に含まない石英ガラス板を得ることも可能
である。
Since the synthesis of the above porous layer j utilizes a flame hydrolysis reaction, many OH groups are mixed in at the beginning, but they are volatilized as H2O in gases such as HetAr during sintering. In the finally obtained transparent quartz glass plate, only a few tens of ppm of OH groups remain. Even more porous layer! When sintering, by flowing chlorine gas or halogen gas such as thionyl chloride, the OH groups in the glass become s S 1-OH+Ol 2→-0-5i
-0-3i--1-JHOJ reaction, O
It is also possible to obtain a quartz glass plate substantially free of H groups.

また、ガラス形成用原料中に適量の添加物例えばTi 
t Ge + B + P + Sn t Al + 
Gar Pb等の化合物を加えることにより、得られる
ガラス板の屈折率。
In addition, an appropriate amount of additives such as Ti may be added to the glass forming raw material.
t Ge + B + P + Sn t Al +
Refractive index of a glass plate obtained by adding a compound such as Gar Pb.

膨張係数、粘性等の特性を調整することが可能である。It is possible to adjust properties such as expansion coefficient and viscosity.

こうして得られたリボン状の石英または石英系ガラス板
を適当な寸法に切断することにより所望のラス板が得ら
れる。
A desired lath plate can be obtained by cutting the thus obtained ribbon-shaped quartz or quartz-based glass plate into appropriate dimensions.

上記説明において、ガラス形成用原料の供給方法として
バーナと別の原料供給ノズルを用いてもさしつかえない
。また第一図に示すようにバーナーコを基材lの長辺方
向に間隔をおいて配列し、上記辺に平行な方向2’lO
K短周期振動を与えると大きな幅をもつ多孔層jが得や
すい。
In the above description, a burner and a separate raw material supply nozzle may be used as a method for supplying raw materials for glass formation. In addition, as shown in Figure 1, the burners are arranged at intervals in the long side direction of the base material l, and the burners are arranged at intervals in the direction parallel to the said side.
When K short-period vibration is applied, it is easy to obtain a porous layer j having a large width.

この様に本発明の方法によれば、揮発性ガラス形成用原
料を用いて直接石英あるいは石英系のガラリ、しかも従
来技術に比べて工程も比較的簡素化成 されるため高精酪の石英あるいは石英系のガラス板が低
コストで得ることができる。
As described above, according to the method of the present invention, quartz or quartz-based glass can be directly formed using volatile glass forming raw materials, and the process is relatively simple compared to the conventional technology. Glass plates of this type can be obtained at low cost.

〔実施例1〕 第1図に示した装置において3!°Cに保たれた容器中
の原料5iC14をアルゴン(Ar)のキャリアガスに
よりバブリングして配管を介して石英製のバーナーに供
給した。
[Example 1] In the apparatus shown in FIG. 1, 3! The raw material 5iC14 in a container maintained at °C was bubbled with a carrier gas of argon (Ar) and supplied to a quartz burner via a pipe.

キャリアガスAr : 1ooocci分t 5xC1
4: J j 0CCZ分をバーナーの中心の原料供給
ノズル7より、燃焼ガス)12 : 5ooo00/分
をバーナーノズル!より、及び助燃用ガス02 : 9
00CCj/分を最外層ノズル9より各々供給した。引
き上げ基材lとして200 X 30 X 101fi
+の石英ガラス板を用い、底面200XIOamの長辺
方向に平行に石英バーナーを約79mm7秒の速度で検
復運動させながら火炎加水分解反応により5i0251
粒子を生成し多孔層jを成長させた。この多孔層jの断
面の大きさは約コOOx10mm、嵩密度が約O,コg
7’am”成長速度は約2.ざrnm/分であっ°た0
この多孔層を一対の棒状のグラファイト抵抗ヒーターで
約/600’CK加熱することにより幅ざ3mm厚みl
lrnm の透明な石英ガラス板が連続的に得られた。
Carrier gas Ar: 10occi mint 5xC1
4: J j 0CCZ minutes from the raw material supply nozzle 7 at the center of the burner, combustion gas) 12: 5ooo00/minute from the burner nozzle! and auxiliary combustion gas 02:9
00 CCj/min was supplied from the outermost layer nozzle 9, respectively. 200 x 30 x 101fi as pulling base material
Using a + quartz glass plate, a 5i0251
Particles were generated and a porous layer j was grown. The cross-sectional size of this porous layer j is approximately 000 x 10 mm, and the bulk density is approximately 0,000 g.
The growth rate was approximately 2.3 nm/min.
By heating this porous layer with a pair of rod-shaped graphite resistance heaters to approximately /600'CK, the width of the porous layer is 3 mm and the thickness is 1.
Transparent quartz glass plates of lrnm were obtained continuously.

なお、透明化時にはHeガスを流すことによりガラス中
のOH基含有量をl10PP程度に低減することができ
た。こうして得られた石英ガラス板はほぼ平坦な面を有
し通常の光学的な使用には特に問題はなかった。
Note that the OH group content in the glass could be reduced to about 110 PP by flowing He gas during the transparentization. The quartz glass plate thus obtained had a substantially flat surface, and there were no particular problems in ordinary optical use.

〔郵施例−〕[Postal example-]

原料に5iC1+及びTiCl4を用いそれぞれキャリ
ヤガスlrによりバブリングして配管中で混合後jQ 
IIIm ピッチで並べられたj本の石英製バーナーに
均等に供給した。j本の石英製バーナーに供給した原料
の合計はキャリアガスAr : 220000 y S
iO/a  :  1000cc/分、TiCl4: 
3jCG’分で5iC14の容器をJ j”c 、 T
iCl4をSO℃に保った。また燃焼用ガスとしてH2
: 101/分、助燃用ガス02:lSl/分を各々供
給した。基材としてコ30×30xjIIIII+の石
英ガラス板を用い底面−30xjwI票の長辺方向に平
行Kj本の石英株 バーナをバーナのピッチ間隔程度に短周期体復させなが
ら上記原料の火炎加水分解反応により微粒子を生成させ
、上記基材底面上に多孔層を付着成長させた。この多孔
層の断面は約2ざO×7お1嵩密度が約0.1gg/C
l113.成長速度は2.11/分であった。この多孔
層を上方に設けられた一対の棒状のグラファイト抵抗ヒ
ータで約/100”cK油加熱ることにより約t2ox
t、smmの断面を持つ透明な石英系ガラス板が連続的
に得られた。
Using 5iC1+ and TiCl4 as raw materials, each was bubbled with carrier gas lr and mixed in a pipe, then jQ
It was evenly fed to j quartz burners arranged with a pitch of IIIm. The total amount of raw materials supplied to j quartz burners is carrier gas Ar: 220000 y S
iO/a: 1000cc/min, TiCl4:
5iC14 containers in 3jCG' minutes, T
iCl4 was kept at SO°C. In addition, H2 is used as a combustion gas.
: 101/min and auxiliary combustion gas 02:1Sl/min were supplied, respectively. A 30x30xjIII+ quartz glass plate was used as the base material, and Kj quartz stock burners parallel to the long side direction of the bottom surface were returned to the pitch interval of the burners for a short period while the above raw materials were subjected to a flame hydrolysis reaction. Fine particles were generated, and a porous layer was grown on the bottom surface of the base material. The cross section of this porous layer is approximately 2×7, and the bulk density is approximately 0.1 gg/C.
l113. The growth rate was 2.11/min. By heating this porous layer with oil of approximately 100"cK using a pair of rod-shaped graphite resistance heaters installed above, approximately t2ox
A transparent quartz-based glass plate with a cross section of t, smm was continuously obtained.

なお透明化時KHeガスとともに(,12ガスを微量混
入することによりガラス中のOH基を/ PPm以下に
低減することができた。こうして得られた石英系ガラス
板はTiO2をtitys重量邦含み、屈折率が純石英
ガラスよりも大きく、また膨張係数が石英ガラス板より
も小さいという特性を有していた。
In addition, by mixing a small amount of (12 gas) with KHe gas at the time of transparency, it was possible to reduce the OH groups in the glass to less than / PPm.The silica-based glass plate thus obtained contained TiO2, It had the characteristics that its refractive index was higher than that of pure silica glass, and its expansion coefficient was lower than that of a quartz glass plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は本発
明の他の実゛施例を示す斜視図である。 l・・・・・・・・基材  2・・・・・・・・バー 
f −3・・・・・・・・ヒーター l・・・・・・・
・ガラス微粒子3・・・・・・・・多孔層 6・・・・
・・・・石英ガラス板7・・・・・・・・ 原料供給ノ
ズル  ざ、り・・・・・・)く−ナーノズル第1図 第2図
FIG. 1 is a perspective view showing one embodiment of the invention, and FIG. 2 is a perspective view showing another embodiment of the invention. l...Base material 2...Bar
f -3・・・・・・・Heater l・・・・・・・
・Glass fine particles 3...Porous layer 6...
......Quartz glass plate 7...... Raw material supply nozzle

Claims (1)

【特許請求の範囲】[Claims] 底面が細長い四辺形を成した基材の前記底面に向けてガ
ラス形成原料供給ノズル及びバーナーを前記底面の長辺
方向に往復動可能にまたは長辺方向に間隔をおいてMI
数配置し、前記基材を相対的に上方に移動させつつ火炎
加水分解反応により基材の底面上にガラス形成−化物微
粒子を付着成長させ、その成長面より上方に設けた加熱
体で高温加熱することにより前記微粒子層を順次透明ガ
ラス化することを特徴とする高純度石英ガラス板の製造
方法。
A glass forming raw material supply nozzle and a burner are reciprocably movable in the long side direction of the bottom surface toward the bottom surface of the base material whose bottom surface has an elongated quadrilateral shape, or are arranged at intervals in the long side direction.
Glass-forming compound fine particles are deposited and grown on the bottom surface of the substrate by a flame hydrolysis reaction while moving the substrate relatively upward, and heated at high temperature with a heating element provided above the growth surface. A method for manufacturing a high-purity quartz glass plate, comprising sequentially converting the fine particle layer into transparent glass by:
JP4231282A 1982-03-17 1982-03-17 Manufacture of high purity quartz glass plate Pending JPS58161929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4231282A JPS58161929A (en) 1982-03-17 1982-03-17 Manufacture of high purity quartz glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4231282A JPS58161929A (en) 1982-03-17 1982-03-17 Manufacture of high purity quartz glass plate

Publications (1)

Publication Number Publication Date
JPS58161929A true JPS58161929A (en) 1983-09-26

Family

ID=12632501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4231282A Pending JPS58161929A (en) 1982-03-17 1982-03-17 Manufacture of high purity quartz glass plate

Country Status (1)

Country Link
JP (1) JPS58161929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159369A (en) * 2007-05-07 2014-09-04 Corning Inc Method and apparatus for producing glass sheet
US20180216227A1 (en) * 2017-01-31 2018-08-02 Ofs Fitel, Llc Parallel slit torch for making optical fiber preform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542755A (en) * 1977-06-08 1979-01-10 Nippon Telegr & Teleph Corp <Ntt> Production of soot form double glass rod
JPS5510459A (en) * 1978-07-08 1980-01-24 Nippon Telegr & Teleph Corp <Ntt> Production of fiber base material for light communication and burner for production
JPS56164028A (en) * 1980-05-23 1981-12-16 Nippon Telegr & Teleph Corp <Ntt> Production of high-purity basic material for glass
JPS57149833A (en) * 1981-03-10 1982-09-16 Shin Etsu Chem Co Ltd Manufacture of quartz glass product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542755A (en) * 1977-06-08 1979-01-10 Nippon Telegr & Teleph Corp <Ntt> Production of soot form double glass rod
JPS5510459A (en) * 1978-07-08 1980-01-24 Nippon Telegr & Teleph Corp <Ntt> Production of fiber base material for light communication and burner for production
JPS56164028A (en) * 1980-05-23 1981-12-16 Nippon Telegr & Teleph Corp <Ntt> Production of high-purity basic material for glass
JPS57149833A (en) * 1981-03-10 1982-09-16 Shin Etsu Chem Co Ltd Manufacture of quartz glass product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159369A (en) * 2007-05-07 2014-09-04 Corning Inc Method and apparatus for producing glass sheet
US20180216227A1 (en) * 2017-01-31 2018-08-02 Ofs Fitel, Llc Parallel slit torch for making optical fiber preform
US10745804B2 (en) * 2017-01-31 2020-08-18 Ofs Fitel, Llc Parallel slit torch for making optical fiber preform

Similar Documents

Publication Publication Date Title
US4224046A (en) Method for manufacturing an optical fiber preform
JP3233298B2 (en) Method for making non-porous objects of high purity fused silica glass
JP2744695B2 (en) Improved vitreous silica products
GB1500530A (en) Process for producing optical fibre preforms
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
US4042404A (en) Fused P2 O5 type glasses
US4765815A (en) Method for producing glass preform for optical fiber
JPS58161929A (en) Manufacture of high purity quartz glass plate
US4388095A (en) Method of producing a glass layer on an interior surface of a hollow body
EP0156370B1 (en) Method for producing glass preform for optical fiber
JPS6143290B2 (en)
JP2517052B2 (en) Graded Index Optical Fiber-Manufacturing Method of Base Material
JPS6253452B2 (en)
EP1332116A1 (en) Method for producing bulk fused silica
JP4230074B2 (en) Method for producing aluminum-added quartz porous matrix
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPS6036343A (en) Production of glass material for optical transmission
JPH0424292B2 (en)
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JPH053416B2 (en)
JPS603017B2 (en) Manufacturing method of glass for optical transmitters
JPS596819B2 (en) Method for manufacturing doped quartz glass rod
JPS5978943A (en) Manufacture of glass containing fluorine
JPH0383830A (en) Optical fiber base material and preparation its
Schultz Fused P2O5 type glasses