JPS6240123B2 - - Google Patents

Info

Publication number
JPS6240123B2
JPS6240123B2 JP12341283A JP12341283A JPS6240123B2 JP S6240123 B2 JPS6240123 B2 JP S6240123B2 JP 12341283 A JP12341283 A JP 12341283A JP 12341283 A JP12341283 A JP 12341283A JP S6240123 B2 JPS6240123 B2 JP S6240123B2
Authority
JP
Japan
Prior art keywords
vibration
cutting
tool
grinding
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12341283A
Other languages
Japanese (ja)
Other versions
JPS6016302A (en
Inventor
Junichiro Kumabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12341283A priority Critical patent/JPS6016302A/en
Publication of JPS6016302A publication Critical patent/JPS6016302A/en
Publication of JPS6240123B2 publication Critical patent/JPS6240123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B47/00Constructional features of components specially designed for boring or drilling machines; Accessories therefor
    • B23B47/34Arrangements for removing chips out of the holes made; Chip- breaking arrangements attached to the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/027Driving main working members reciprocating members

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明はドリル、リーマ、フライス、エンドミ
ル、研削砥石、遊離砥粒によるラツプ加工におけ
るラツプ棒のように、これを回転運動させて用い
る工具に、その工具の円周方向に低周波振動と超
音波振動とを重畳させて振動させながら切削・研
削を行う回転切削・研削加工方法及び装置に関す
るものである。
Detailed Description of the Invention (Technical Field) The present invention relates to tools that are used by rotating them, such as drills, reamers, milling cutters, end mills, grinding wheels, and lapping rods in lapping processing using free abrasive grains. The present invention relates to a rotary cutting/grinding method and apparatus for performing cutting/grinding while vibrating by superimposing low frequency vibration and ultrasonic vibration in the circumferential direction of the machine.

(従来技術) 切削工具を切削方向に振動数f、片振幅aで振
動させ、切削速度をυをυ<2πafとしてパルス
切削力波形を作用させて切削するのが振動切削で
ある。このυ<2πafの切削条件を満足させれば
振動数は100Hz程度の低い振動数でも、20KHz以
上の超音波域の高い振動数でも利用できる。
(Prior Art) Vibration cutting is a process in which a cutting tool is vibrated in the cutting direction at a frequency f and a single amplitude a, and a pulsed cutting force waveform is applied at a cutting speed where υ is less than 2πaf. If this cutting condition of υ<2πaf is satisfied, the vibration frequency can be as low as about 100 Hz, or as high as 20 KHz or higher in the ultrasonic range.

以下、100Hz程度の低い振動数の振動切削を100
Hz振動切削、20KHz程度の高い振動数の振動切削
を20KHz振動切削と呼んで説明する。この振動切
削においては、工具の振動1サイクルでの切削長
さをlTとしうると、lT=υ/fで表わされる。振動 切削では、このlTの大小が切削機構に影響し、
切削効果を左右する。lTを短くすると切りくず
厚さの薄い流れ型の切りくずとなつて振動切削効
果が向上する、lTを長くすると切りくず厚さが
厚くなつて振動切削効果が減少する。
Below, vibration cutting at a low frequency of about 100Hz is performed for 100 seconds.
Hz vibration cutting, vibration cutting with a high frequency of about 20KHz is called 20KHz vibration cutting and will be explained. In this vibration cutting, if the cutting length in one cycle of vibration of the tool is l T , it is expressed as l T =υ/f. In vibration cutting, the size of this l T affects the cutting mechanism,
Affects the cutting effect. When l T is shortened, the chip thickness becomes a flow-type chip, which improves the vibration cutting effect. When l T is made long, the chip thickness becomes thicker, and the vibration cutting effect decreases.

20KHz振動切削にはその振動数が高いために、
Tを短くでき切削性を向上させ、その仕上表面
粗さを平滑にする長所がある。しかし、電気的振
動エネルギーを機械的振動エネルギーに変換する
ために超音波振動子を用い、その微少振幅を振幅
拡大用ホーンで拡大し、その先端に切削工具を取
り付けて、超音波振動子の固有振動数fとなるよ
うに、その切削工具振動系を製作して工具刃先の
振動方向が切削方向とと同方向ならしめて刃物台
に取り付け振動切削するのであるが、この種の超
音波振動子の出力が小さいために例えば切削面積
を大きくして切削負荷抵抗が大きくなるような重
切削、また、焼入れ鋼、セラミツクスのように工
作物の機械的性質が強いために切削負荷抵抗が大
きくなるような場合には、その振幅が激減した
り、振動が停止したりして期待する振動切削機構
とならなくなる欠点がある。
Due to the high frequency of 20KHz vibration cutting,
It has the advantage of shortening l T , improving machinability, and smoothing the finished surface roughness. However, in order to convert electrical vibration energy into mechanical vibration energy, an ultrasonic vibrator is used, and its minute amplitude is expanded with an amplitude amplifying horn, and a cutting tool is attached to the tip of the ultrasonic vibrator. The cutting tool vibration system is manufactured so that the vibration frequency is f, so that the vibration direction of the tool tip is in the same direction as the cutting direction, and the vibration cutting is performed by attaching it to the tool rest. For example, heavy cutting where the cutting area is large and the cutting load resistance increases due to the low output, or heavy cutting where the cutting load resistance is large due to the strong mechanical properties of the workpiece, such as hardened steel or ceramics. In some cases, the vibration amplitude may be drastically reduced or the vibration may stop, resulting in the disadvantage that the expected vibration cutting mechanism may not be achieved.

この20KHz振動切削に対して、機械式、電気
式、空気・油圧式、電気・油圧式装置による100
Hz振動切削には、数百Kgf及ぶ切削負荷抵抗にも
耐えうる重切削を行つても工具刃先の規則的な振
動姿態は乱されることなく振動して振動切削機構
ならしめることができる長所がある。
For this 20KHz vibration cutting, 100
Hz vibration cutting has the advantage that even during heavy cutting that can withstand cutting load resistance of several hundred kilograms, the regular vibration state of the tool edge is not disturbed and the tool vibrates to form a vibration cutting mechanism. be.

しかし、その反面、振動数が低いためにlT
長くなり、20KHz振動切削で得られるような切り
くず厚さの薄い切りくずを発生させることができ
ない。また、その表面粗さ形状は長いlTをその
間隔とする「あみだ模様」をした微少凹凸面を呈
し20KHz振動切削面と比べると表面粗さに劣る粗
い仕上面となる欠点を有していた。
However, on the other hand, since the vibration frequency is low, l T becomes long, and it is not possible to generate thin chips as can be obtained with 20KHz vibration cutting. In addition, its surface roughness exhibits a slightly uneven surface in the form of an "amida pattern" with long intervals of l T , and has the disadvantage of resulting in a rough finished surface that is inferior in surface roughness compared to a 20KHz vibration-cut surface. Ta.

(目的) 本発明は、20KHz振動切削と100Hz振動切削と
を重畳複合させて振動切削・研削機構として、両
者の長所をいかして振動切削・研削効果をさらに
向上させることを目的とするものである。
(Purpose) The purpose of the present invention is to combine 20KHz vibration cutting and 100Hz vibration cutting to create a vibration cutting/grinding mechanism that utilizes the strengths of both to further improve the vibration cutting/grinding effect. .

(実施例) 第1図はリーマ加工に本発明方法を実施する場
合の本発明装置第1実施例である。1はリーマ
で、ねじり超音波振動子2の振幅を拡大する振幅
拡大用ホーン3の先端に設ける。これをねじり超
音波振動系リーマと名付ける。この振動系に生ず
る振動節に鍔部4,5を設け、スリーブ6内面に
がたなくはめあわせて固定する。
(Embodiment) FIG. 1 shows a first embodiment of the apparatus of the present invention when the method of the present invention is implemented for reaming. Reference numeral 1 denotes a reamer, which is provided at the tip of an amplitude enlarging horn 3 for enlarging the amplitude of the torsional ultrasonic transducer 2 . This is called a torsional ultrasonic vibration reamer. Flange portions 4 and 5 are provided at vibration nodes generated in this vibration system, and are fitted and fixed to the inner surface of the sleeve 6 without play.

このスリーブ6は主軸台7の両端に設けた、こ
ろがり軸受8,9によつて円滑にかつ高精度に回
転連動できるように支持する。スリーブ6の尾部
端部には、フランジ10を設ける。主軸取付台1
3の尾部端部にはステツピングモータ固定用支柱
12を設けて、ステツピングモータ15の回転中
心軸とねじり超音波振動系リーマの中心軸とを一
致させてステツピングモータを取付ける。その回
転軸に取付けたフランジ11とスリーブ6に設け
たフランジ10とをねじ結合する。スリーブ6に
は、さらにスリツプリング16,17を設けて、
ブラツシユ18,19と摩擦少く接触し、スリツ
プリングが円滑に回転できるようにし、超音波発
振機20からの励振電流を損失なく、回転するね
じり振動子2に供給できるようにする。この装置
によつて、矢印23の方向に20KHz以上の超音波
域の高い振動数でねじり振動する。ねじり振動子
に代つて縦振動子を使用すれば、リーマは軸方向
に縦振動する。リーマ切刃逃げ角を調整すればこ
の縦振動子も利用でき本発明が実施できる。
This sleeve 6 is supported by rolling bearings 8 and 9 provided at both ends of the headstock 7 so that it can rotate smoothly and with high precision. The tail end of the sleeve 6 is provided with a flange 10. Spindle mount 1
A stepping motor fixing column 12 is provided at the tail end of the stepping motor 15, and the stepping motor is mounted so that the central axis of rotation of the stepping motor 15 coincides with the central axis of the torsional ultrasonic vibration system reamer. The flange 11 attached to the rotating shaft and the flange 10 provided on the sleeve 6 are screwed together. The sleeve 6 is further provided with slip rings 16 and 17,
The slip ring contacts brushes 18 and 19 with little friction, allows the slip ring to rotate smoothly, and enables excitation current from an ultrasonic oscillator 20 to be supplied to the rotating torsional vibrator 2 without loss. This device causes torsional vibration in the direction of arrow 23 at a high frequency in the ultrasonic range of 20 KHz or higher. If a longitudinal vibrator is used instead of a torsional vibrator, the reamer will vibrate longitudinally in the axial direction. By adjusting the clearance angle of the reamer cutting edge, this vertical vibrator can also be used and the present invention can be carried out.

ステツピングモータ15は、制御装置22およ
びドライビングユニツト21によつて駆動する。
制御装置22によつて、前進パルス11パルス,休
止パルスbパルス、後退パルス1パルス,休止パ
ルス2パルスを繰返し与えることによつて、リー
マは矢印方向24の方向に振動数140Hzで振動
し、矢印25の方向に回転数150rpmをもつて回
転する。
The stepping motor 15 is driven by a control device 22 and a driving unit 21.
By repeatedly applying 11 forward pulses, 1 resting pulse, 1 backward pulse, and 2 resting pulses by the control device 22, the reamer vibrates at a frequency of 140 Hz in the direction of the arrow 24. It rotates in the direction of 25 at a rotation speed of 150 rpm.

以上説明した装置を旋盤往復台14上にねじで
締付けて固定し、旋盤主軸のチヤツク26に工作
物27を取付けて往復台14に自動送りを与えて
重畳振動リーマ加工を行う。
The apparatus described above is fixed on the lathe carriage 14 by tightening screws, the workpiece 27 is attached to the chuck 26 of the lathe main shaft, and the carriage 14 is automatically fed to perform superimposed vibration reaming.

また、加工形状精度を向上させるために工作物
27を矢印28の方向に極低速回転させてもよ
く、又ストレートリーマに代つてセンタリーマ,
ドリル,エンドミルを振幅拡大用ホーン3の先端
に取りつければ重畳振動リーミング,重畳振動ド
リリング,重畳振動ミーリングが実施される。
Further, in order to improve the machining shape accuracy, the workpiece 27 may be rotated at an extremely low speed in the direction of the arrow 28, and a center reamer may be used instead of a straight reamer.
By attaching a drill or an end mill to the tip of the amplitude-enlarging horn 3, superimposed vibration reaming, superimposed vibration drilling, and superimposed vibration milling can be performed.

なお、この際に、送り量が大きくなると、切削
方向を円周方向として近似できなくなるので、ス
リーブ6をころがり軸受8,9で支持せずスリー
ブ6外周におねじを設け、主軸台にもうけためね
じと螺合させ、さらに、フランジ10,11とを
ピン結合して軸方向に摺動できるようにし矢印2
4の振動方向をねじのリード角方向として、往復
台の送りによる切削方向と一致させる。また、振
動子2、および振動拡大用ホーン3および工具1
よりなる超音波振動系も縦振動とねじり振動とを
共存させて複合させてその超音波振動の方向を切
削方向と同一方向となるようにして実施する。
At this time, if the feed rate becomes large, the cutting direction cannot be approximated as the circumferential direction, so instead of supporting the sleeve 6 with rolling bearings 8 and 9, threads are provided on the outer periphery of the sleeve 6 and screws are provided on the headstock. The flanges 10 and 11 are connected with a pin so that they can slide in the axial direction.
The vibration direction of No. 4 is set as the lead angle direction of the screw, and is made to coincide with the cutting direction by the feed of the carriage. Also, a vibrator 2, a vibration amplifying horn 3, and a tool 1.
The ultrasonic vibration system is also implemented by combining longitudinal vibration and torsional vibration so that the direction of the ultrasonic vibration is the same as the cutting direction.

振幅拡大用ホーン3の先端にバイトを取りつけ
れば、重畳振動中ぐりが実施される。また、その
装置によつて、外周旋削も可能で、工作物を矢印
28の方向に回転させ、バイトは矢印23,24
の方向に振動させて旋削し、難削材の超精密旋削
加工をすることができる。
By attaching a cutting tool to the tip of the amplitude-enlarging horn 3, superimposed vibration boring can be performed. In addition, the device allows for outer circumferential turning, by rotating the workpiece in the direction of arrow 28, and using the cutting tool at arrows 23 and 24.
It is possible to perform ultra-precision turning of difficult-to-cut materials by vibrating in the direction of .

第2図は、ラツプ加工に本発明方法を実施する
場合の本発明装置第2実施例である。29はラツ
プで工作物材質に応じて黄銅,鋳鉄材とする。そ
の形状長さは、ねじり振動子の固有振動数をもつ
て1/2波長で共振する長さとする。先端はセンタ
形状と同一として、摩耗するラツプの着脱が容易
なように、他端尾部にはテーパ部を設け、ねじり
振動系ホーン3先端とテーパ結合する。
FIG. 2 shows a second embodiment of the apparatus of the present invention for carrying out the method of the present invention for lapping. 29 is a lap and is made of brass or cast iron depending on the material of the workpiece. The length of the shape is such that it resonates at 1/2 wavelength with the natural frequency of the torsional oscillator. The tip has the same shape as the center, and a tapered portion is provided at the tail portion of the other end to facilitate attachment and detachment of the lap that wears out, and is tapered and coupled to the tip of the torsional vibration system horn 3.

このラツプに矢印23および24の超音波振動
と低周波振動を与える具体的装置は第1図と同様
な装置によつて実施できる。
A specific device for applying ultrasonic vibrations and low frequency vibrations as indicated by arrows 23 and 24 to this lap can be implemented by a device similar to that shown in FIG.

主軸台7を取付けた主軸取付台13は旋盤ベツ
ド案内面35上に設けたローラガイド34上に固
定し、摩擦少く旋盤主軸の軸方向に摺動できるよ
うにする。そして主軸取付台13には鋼線32を
取付け、鋼線の一端には滑車31を介して死荷重
33を与える。このようにしてラツプ29に加圧
力36を与えることによつて砥粒30を用いた定
荷重方式によるラツピング加工を行う。工作物2
7は旋盤主軸にもうけたチヤツク26に取付け
る。また、加工形状精度を向上させるためにも矢
印28で示す方向に回転運動を与えて本発明を実
施する場合がある。
The spindle mount 13 to which the headstock 7 is attached is fixed on a roller guide 34 provided on a lathe bed guide surface 35 so that it can slide in the axial direction of the lathe spindle with little friction. A steel wire 32 is attached to the main shaft mount 13, and a dead load 33 is applied to one end of the steel wire via a pulley 31. By applying the pressing force 36 to the lap 29 in this manner, a lapping process using the abrasive grains 30 using a constant load method is performed. Workpiece 2
7 is attached to the chuck 26 provided on the main shaft of the lathe. Further, in order to improve the accuracy of the processed shape, the present invention may be implemented by applying rotational motion in the direction shown by the arrow 28.

なお、ステツピングモータ15によつて矢印2
4の方向に振動させ、かつ矢印25の方向に回転
運動させることを説明したが、本発明は、このス
テツピングモータの外にACあるいはDCモータを
用いて、これを制御して矢印24の方向に振動さ
せ、かつ矢印25の方向に回転運動させて実施す
ることができる。
Note that arrow 2 is moved by the stepping motor 15.
Although it has been described that vibration is made in the direction of arrow 25 and rotational movement is made in the direction of arrow 25, the present invention uses an AC or DC motor in addition to this stepping motor and controls it to move in the direction of arrow 24. This can be carried out by vibrating it and rotating it in the direction of the arrow 25.

(効果) 本発明において、切削工具あるいは研削工具を
その円周方向に超音波振動領域の高い振動数でね
じり超音波振動させると同時にステツピングモー
タあるいはACあるいはDCモータを利用して同じ
く円周方向に振動させながら回転させて切削・研
削加工するようになつているので、100Hz振動切
削機構のみでは長くなる工具振動1サイクルでの
切削長さを20KHz振動切削機構を利用して短く寸
断させることができ、工具すくい面摩擦、工具逃
げ面摩擦やその他の諸摩擦抵抗を軽減し、切りく
ず厚さを薄くし、切削・研削抵抗を軽減して、工
作物の動的挙動を少くし加工精度を向上させるこ
とができる。一方、表面粗さも100Hz振動切削機
構のみでは長くなる工具振動1サイクルでの切削
長さを20KHz振動切削機構を利用して短く細分割
するために表面粗さは、振動振幅が大きい100Hz
振動切削の特徴のうちの1つである、工具振動1
サイクル中における切りくずと工具すくい面とが
離れる距離がより長いことによる切削油剤の刃先
への潤滑・冷却効果がより多く作用することが附
加されて工具刃先の運動軌跡によつて成形される
平滑な幾何学的粗さを示し、精密加工を可能とす
る。
(Effects) In the present invention, a cutting tool or a grinding tool is subjected to torsional ultrasonic vibration in the circumferential direction at a high frequency in the ultrasonic vibration range, and at the same time, a stepping motor, AC or DC motor is used to simultaneously vibrate the cutting tool or grinding tool in the circumferential direction. Since the cutting/grinding process is performed by rotating the tool while vibrating, it is possible to shorten the cutting length in one cycle of tool vibration, which would be long with a 100Hz vibration cutting mechanism alone, by using a 20KHz vibration cutting mechanism. This reduces tool rake face friction, tool flank friction, and other frictional resistance, reduces chip thickness, reduces cutting and grinding resistance, reduces dynamic behavior of the workpiece, and improves machining accuracy. can be improved. On the other hand, the surface roughness is reduced to 100Hz, which has a large vibration amplitude, because the cutting length in one cycle of tool vibration, which would be long with only a 100Hz vibration cutting mechanism, is divided into shorter lengths using a 20KHz vibration cutting mechanism.
Tool vibration 1, which is one of the characteristics of vibration cutting
In addition, the longer the distance between the chips and the tool rake face during the cycle, the greater the lubrication and cooling effect of the cutting fluid on the cutting edge. It exhibits geometric roughness and enables precision machining.

また、20KHz程度の高い振動数の超音波振動エ
ネルギーに100Hz程度の低い振動数の低周波振動
エネルギーが附加されて振動する回転切削・研削
工具刃先は、超音波振動エネルギーのみの場合で
はその規則的な超音波振動姿態が切削・研削抵抗
負荷によつて乱され過大な切削・研削抵抗が作用
する振動切削・研削加工には精密加工し難い欠点
があつたが、本発明の実施による強力な100Hz程
度の低い振動数の低周波振動エネルギーの附加に
よつて今までの問題点を一掃して、工作物の受け
る切削・研削抵抗を殆どゼロとし、その動的挙動
を皆無にし、加工精度を著しく向上させることが
できる。
In addition, the cutting edge of a rotary cutting/grinding tool, which vibrates by adding low-frequency vibration energy of about 100 Hz to high-frequency ultrasonic vibration energy of about 20 KHz, is not regular when only ultrasonic vibration energy is used. Vibration cutting and grinding processes have the drawback that precision machining is difficult because the ultrasonic vibration state is disturbed by the cutting/grinding resistance load and excessive cutting/grinding resistance is applied, but by implementing the present invention, powerful 100Hz By adding low-frequency vibration energy with a low frequency, the problems of the past have been eliminated, cutting and grinding resistance on the workpiece has been reduced to almost zero, its dynamic behavior has been completely eliminated, and machining accuracy has been significantly improved. can be improved.

本発明は上述したようなドリル、リーマ、フラ
イス、エンドミル、研削砥石、遊離砥粒によるラ
ツプなどの回転切削・研削工具による精密加工を
行うことができる。
The present invention can perform precision machining using rotary cutting/grinding tools such as drills, reamers, milling cutters, end mills, grinding wheels, and laps using loose abrasive grains as described above.

次に本発明の実施効果の一例を具体的に説明す
る。直径13mm,長さ40mmのS45C工作物中心にセ
ンタドリル呼び2×60によつて設けたセンタ穴を
ラツプ圧2Kg/cm2,砥粒WA#800を用い、ラ
ツプ液は軽油を用い、濃度70%wtとし、ラツプ
は鋳鉄FC20を用いて、前進パルス;2パルス、
休止パルス;1パルス、後退パルス;1パルス,
休止パルス;1パルスによつて100Hzの振動と
100rpmの回転運動これに超音波域のねじり振動
数30.2KHz,振幅3μmを重畳させて実施した本
発明による重畳振動ラツピング効果をこの装置に
おいて超音波振動を停止した従来の振動ラツピン
グと比較して本発明の特徴を説明する。加工した
センタ穴の真円度および表面粗さによつて比較す
る。センタドリルで加工したセンタ穴の真円度10
μmを従来の振動ラツピングでは5分経過しても
約8μm程度にとどまり、また、それ以上ラツピ
ングしても真円度はそれ程向上しない傾向を示す
ことに対して、本発明の実施によつて実にわずか
1分程度で真円度4μmという高精度なセンタ穴
に精密加工できる。
Next, an example of the effect of implementing the present invention will be specifically explained. A center hole was drilled in the center of an S45C workpiece with a diameter of 13 mm and a length of 40 mm using a center drill with a diameter of 2 x 60. A lap pressure of 2 Kg/cm 2 was used, abrasive grain WA#800 was used, and light oil was used as the lap liquid with a concentration of 70. %wt, the lap is cast iron FC20, forward pulse; 2 pulses,
Rest pulse; 1 pulse, backward pulse; 1 pulse,
Rest pulse: 100Hz vibration and 1 pulse
This paper compares the superimposed vibration wrapping effect of the present invention by superimposing a rotational motion of 100 rpm with a torsional vibration frequency of 30.2 KHz and an amplitude of 3 μm in the ultrasonic range with conventional vibration wrapping in which the ultrasonic vibration is stopped. The features of the invention will be explained. Comparison will be made based on the roundness and surface roughness of the machined center hole. Roundness of center hole machined with center drill 10
With conventional vibration wrapping, the roundness remains at about 8 μm even after 5 minutes, and the roundness does not tend to improve much even if wrapped more than that. A highly accurate center hole with a roundness of 4 μm can be precisely machined in just about 1 minute.

表面あらさについても、センタドリルによる15
μmRmaxの表面粗さを従来の振動ラツピングで
は5分加工しても8μmRmax程度にとどまり、
5分以上加工しても8μmRmax以上にはなしえ
ない傾向を示すことに対して、本発明の実施によ
つて、わずか1分で3μmRmax程度とし、2分
加工して2μmRmaxという平滑なセンタ穴面に
精密加工できる。
As for surface roughness, center drill 15
With conventional vibration wrapping, the surface roughness of μmRmax remains at around 8 μmRmax even after processing for 5 minutes.
In contrast to the tendency of not being able to achieve a center hole surface of 8 μmRmax or more even after 5 minutes of machining, by implementing the present invention, it is possible to achieve a center hole surface of about 3 μmRmax in just 1 minute, and a smooth center hole surface of 2 μmRmax after 2 minutes of machining. Precision processing is possible.

これは、ラツプにつきささつた砥粒が前述した
重畳振動切削による切削機構によつて切削抵抗が
激減するためで、そのために一定荷重で加圧して
いるラツピングでは単位時間あたりの加工量が増
大し、前加工での形状精度,表面粗さが短時間に
修整されて精密加工が可能となる。また、超音波
振動の附加によつて接触面の摩擦係数が動摩擦係
数である0.02〜0.03程度を示すために従来のラツ
ピングにおける各接触面の摩擦抵抗を一様に軽減
させて加工能率,加工精度を向上させる一助とな
つている。さらに、超音波振動の附加によつて振
動腹から振動節に向つて切りくずが迅速に移動す
るという切りくず集じん作用効果が活用されてい
るためである。
This is because the cutting resistance of the abrasive grains stuck to the lapping is drastically reduced by the cutting mechanism using the superimposed vibration cutting mentioned above.For this reason, when lapping is pressurized with a constant load, the amount of processing per unit time increases. Shape accuracy and surface roughness from pre-processing can be corrected in a short time, making precision processing possible. In addition, by adding ultrasonic vibration, the friction coefficient of the contact surface is about 0.02 to 0.03, which is the dynamic friction coefficient, so the friction resistance of each contact surface in conventional wrapping can be uniformly reduced, improving machining efficiency and machining accuracy. It is helping to improve the Furthermore, the addition of ultrasonic vibration makes use of the chip-collecting effect in which chips move quickly from the vibration antinode toward the vibration node.

遊離砥粒を用いてラツプなどを回転させて加工
する定荷重方式による加工に際して本発明を実施
することによつて、加工能率を画期的に向上させ
て超精密加工を可能とする効果が得られる。
By implementing the present invention during machining using a constant load method using free abrasive grains and rotating laps, it is possible to achieve the effect of dramatically improving machining efficiency and making ultra-precision machining possible. It will be done.

また、固定砥粒を用いた研削工具による加工の
場合でも同様な効果が得られる。
Further, similar effects can be obtained even in the case of machining with a grinding tool using fixed abrasive grains.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法をリーマ加工に実施する装
置の要部切断正面図、第2図は本発明方法をラツ
ピング加工に実施する装置の要部切断正面図であ
る。 1……リーマ、2……ねじり振動子、15……
電気ステツピングモータ、20……超音波発振
機、23……超音波振動方向、24……低周波振
動方向、29……ラツプ、30……砥粒。
FIG. 1 is a cutaway front view of a main part of an apparatus for carrying out the method of the present invention for reaming, and FIG. 2 is a cutaway front view of a main part of an apparatus for carrying out the method of the present invention for wrapping. 1...Reamer, 2...Torsional vibrator, 15...
Electric stepping motor, 20... Ultrasonic oscillator, 23... Ultrasonic vibration direction, 24... Low frequency vibration direction, 29... Lap, 30... Abrasive grain.

Claims (1)

【特許請求の範囲】 1 工具を取り付けた回転主軸にステツピングモ
ータあるいはAC,DCモータにより発生する低周
波振動数の円周方向振動と回転運動を与え、更に
該工具にねじり超音波振動を与え乍ら切削・研削
加工する重畳振動回転切削・研削加工方法。 2 電気あるいは電気―油圧ステツピングモータ
を利用して低い振動数の工具の切削方向の振動と
回転運動を与える如くなした主軸に超音波振動子
によつて工具刃先の切削方向に駆動される切削工
具あるいは研削工具振動系を該振動系に生ずる振
動節を利用して固定し、該振動系の先端振動腹付
近に設けた工具刃先に、ステツピングモータによ
つて発生する低い振動数の振動波形に超音波域の
高い振動数の振動波形を重畳した振動波形の振動
を与える如くなした重畳振動回転切削・研削加工
装置。
[Claims] 1. Applying low-frequency circumferential vibration and rotational motion generated by a stepping motor or AC or DC motor to a rotating spindle to which a tool is attached, and further applying torsional ultrasonic vibration to the tool. A superimposed vibration rotary cutting/grinding method for cutting and grinding. 2. Cutting in which an electric or electro-hydraulic stepping motor is used to give a low-frequency vibration and rotational motion of the tool in the cutting direction, and the main shaft is driven by an ultrasonic vibrator in the cutting direction of the tool tip. A tool or a grinding tool vibration system is fixed using the vibration nodes generated in the vibration system, and a low-frequency vibration waveform generated by a stepping motor at the tool cutting edge provided near the tip vibration antinode of the vibration system. A superimposed vibration rotary cutting/grinding device which gives a vibration of a vibration waveform superimposed with a vibration waveform of a high frequency in the ultrasonic range.
JP12341283A 1983-07-08 1983-07-08 Method and device for superimposed vibratory and rotatory cutting-grinding Granted JPS6016302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12341283A JPS6016302A (en) 1983-07-08 1983-07-08 Method and device for superimposed vibratory and rotatory cutting-grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12341283A JPS6016302A (en) 1983-07-08 1983-07-08 Method and device for superimposed vibratory and rotatory cutting-grinding

Publications (2)

Publication Number Publication Date
JPS6016302A JPS6016302A (en) 1985-01-28
JPS6240123B2 true JPS6240123B2 (en) 1987-08-26

Family

ID=14859912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12341283A Granted JPS6016302A (en) 1983-07-08 1983-07-08 Method and device for superimposed vibratory and rotatory cutting-grinding

Country Status (1)

Country Link
JP (1) JPS6016302A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426059B2 (en) * 2000-05-12 2010-03-03 ナブテスコ株式会社 Optical three-dimensional modeling method and apparatus
JP5716955B2 (en) * 2011-03-09 2015-05-13 埼玉県 Cutting device, vibration condition presentation device and method

Also Published As

Publication number Publication date
JPS6016302A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
TWI380876B (en) Tool unit for ultrasonically assisted rotary machining
JP2002219606A (en) Ultrasonic milling device
JP2017177250A (en) Ultrasonic tool and method for fabrication of the same
JPS62140701A (en) Superposed vibration cutting method
JPH04322901A (en) Ultrasonic vibration device
JPS6240123B2 (en)
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
Wu et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding
JPH01109007A (en) Vibration-cut drilling machine for precise boring of ceramics
JPS62292306A (en) Precision vibration boring method
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
Nomura et al. Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes
JP7016930B2 (en) Ultrasonic tool and its manufacturing method
Kumabe et al. Super-precision cylindrical machining
JP6821187B2 (en) Support structure of Langevin type ultrasonic oscillator
JP3850345B2 (en) Precision hole finishing device
JPH0632899B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPS62140702A (en) Precise superposed vibration hole processing method
JPH03161255A (en) Lapping polish of inner surface of hole drilled on work by attachement type ultrasonic process and its device
JPH0253517A (en) Thread grooving method and device by overlapping ultrasonic and low frequency vibration of interrupted pulse cutting force waveform
JPH0626789B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JP7411492B2 (en) Gear grinding equipment and gear grinding tools
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JPH0253519A (en) Thread groove cutting method and device by ultrasonic vibration of interrupted pulse-cutting force waveform