JPH0626790B2 - Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel - Google Patents

Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Info

Publication number
JPH0626790B2
JPH0626790B2 JP20851686A JP20851686A JPH0626790B2 JP H0626790 B2 JPH0626790 B2 JP H0626790B2 JP 20851686 A JP20851686 A JP 20851686A JP 20851686 A JP20851686 A JP 20851686A JP H0626790 B2 JPH0626790 B2 JP H0626790B2
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
vibration
work
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20851686A
Other languages
Japanese (ja)
Other versions
JPS6362665A (en
Inventor
淳一郎 隈部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20851686A priority Critical patent/JPH0626790B2/en
Publication of JPS6362665A publication Critical patent/JPS6362665A/en
Publication of JPH0626790B2 publication Critical patent/JPH0626790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、従来の研削方法では困難とされているゴムお
よびセラミックス等を容易に精密研削できる超音波振動
と低周波振動を重畳させた砥石車による精密複合研削方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention provides a grindstone that superimposes ultrasonic vibrations and low-frequency vibrations, which makes it easy to precisely grind rubber, ceramics, etc., which are difficult with conventional grinding methods. The present invention relates to a precision compound grinding method using a car.

(従来技術) 切削・研削工具によって精密加工するためにはワークに
与える力を少しでも軽減する方法によって加工する必要
がある。回転円板上に切刃を有限数設けた例えばフライ
スを高速回転させて切削することによって切削力が軽減
する。回転円板上に無数に砥粒を分布させた砥石車を高
速回転させて研削することによって、砥粒1刃あたりの
切込みがさらに小さくなってワークに作用する力が激減
して精密加工できるようになる。しかし、一方、約20
00m/minに及ぶ高速研削のため多量の研削液によっ
てワークおよび砥石車を冷却しなければならない程平均
研削温度が著しく上昇することも既に周知のところであ
る。砥石車の高速回転にともなう。この著しい発熱現象
があるにもかかわらず、ワークに作用する力の激減効果
が絶大であるため砥石車による研削加工が広く常用され
ているのが現状である。従来のワークの材質は、金属が
主体であっても熱伝達効率がよく冷却効果がよいので適
切な研削液を多量に使用することによって精密研削を可
能としていた。
(Prior Art) In order to perform precision processing with a cutting / grinding tool, it is necessary to perform processing by a method that reduces the force applied to the work even a little. The cutting force is reduced by, for example, rotating a milling cutter, which has a finite number of cutting blades on a rotating disk, at high speed to perform cutting. By rotating a grinding wheel with innumerable abrasive grains distributed on a rotating disk at high speed to perform grinding, the cutting depth per blade of the abrasive grains is further reduced, and the force acting on the workpiece is drastically reduced, enabling precision machining. become. However, on the other hand, about 20
It is also well known that the average grinding temperature rises so much that the work and the grinding wheel must be cooled by a large amount of grinding fluid for high speed grinding up to 00 m / min. Accompanying the high speed rotation of the grinding wheel. In spite of this remarkable heat generation phenomenon, the effect of drastically reducing the force acting on the work is so great that grinding with a grinding wheel is widely used at present. Conventionally, the material of the work is mainly metal, but the heat transfer efficiency is good and the cooling effect is good. Therefore, precise grinding is possible by using a large amount of an appropriate grinding fluid.

(発明が解決しようとする問題点) しかし、今日では精密加工理論、技術の有無にかかわら
ず、新素材が開発されてきており、そのなかにはゴム、
FRP、セラミックスのように熱伝達効率の悪い新素材
が多く含まれている。そして、これらにも極めて高い加
工精度が要求されてきている。
(Problems to be solved by the invention) However, today, new materials have been developed regardless of the existence of precision processing theory and technology, and among them, rubber,
It contains many new materials with poor heat transfer efficiency, such as FRP and ceramics. Further, extremely high processing accuracy is required for these as well.

これらに対する精密加工の期待に応えるためには、平均
研削温度上昇をより少なくして研削力をさらに激減させ
ることができる研削方法が必要である。ゴムのような軟
くてねばい材料、金属、セラミックスのような硬くても
ろい材料に共通な精密研削方法がないという問題点があ
った。
In order to meet the expectations of precision machining for these, a grinding method is required which can further reduce the average grinding temperature rise and drastically reduce the grinding force. There is a problem that there is no precision grinding method common to soft and sticky materials such as rubber and hard and brittle materials such as metals and ceramics.

(問題点を解決するための手段) 本発明は、高速回転する砥石車を回転軸方向及び又は砥
石車の半径方向に超音波振動させ乍ら、更にワークを砥
石車の回転軸に直角な方向で、かつ、ワーク加工面に沿
う方向のワーク加工送り方向に低周波振動させて、該砥
石車に断続的に接触させ断続パルス研削力波形を発生さ
せて切りくずを微細に寸断する如くしたことを特徴とす
るものである。
(Means for Solving the Problems) In the present invention, a grinding wheel that rotates at a high speed is ultrasonically vibrated in the rotation axis direction and / or the radial direction of the grinding wheel, and the work is further oriented in a direction perpendicular to the rotation axis of the grinding wheel. In addition, by vibrating at a low frequency in the work feed direction, which is a direction along the work machining surface, and intermittently contacting the grinding wheel, an intermittent pulse grinding force waveform is generated to finely cut chips. It is characterized by.

(実施例) 本発明に用いる超音波振動砥石について第1図〜第3図
によって説明する。第1図は、縦超音波振動子23を主
軸24の尾部に設け、先端に砥石車19を設けてなる研
削盤主軸および砥石車振動系を示す図である。縦超音波
振動子の固有振動数を20KHzとしたとき、砥石車の直
径および幅と主軸の直径、長さには一連の関係があっ
て、例えば主軸の直径を50mmとすると、その長さは1/
2波長のときには130mm、砥石車の直径は165mm、
幅は10mmとなる。このよう形状と寸法とすることによ
って砥石車を半径方向のみに超音波振動させ半径方向超
音波振動砥石車19とすることができる。
(Example) An ultrasonic vibration grindstone used in the present invention will be described with reference to Figs. FIG. 1 is a view showing a grinder spindle and a grinding wheel vibrating system in which a longitudinal ultrasonic transducer 23 is provided at the tail of a spindle 24 and a grinding wheel 19 is provided at the tip. When the natural frequency of the longitudinal ultrasonic transducer is 20 KHz, there is a series of relationships between the diameter and width of the grinding wheel and the diameter and length of the spindle. For example, if the diameter of the spindle is 50 mm, the length is 1 /
130mm for 2 wavelengths, 165mm diameter for grinding wheel,
The width is 10 mm. With such a shape and dimensions, the grinding wheel can be ultrasonically vibrated only in the radial direction to form the radial ultrasonic vibration grinding wheel 19.

この砥石車の主軸への着脱は、砥石車あるいは主軸にも
うけたテーパ穴を利用したテーパ結合、およびめねじと
おねじによるねじ結合あるいはボルト締めによって行う
ことができ、確実に超音波振動を伝達することができ
る。
This grinding wheel can be attached to and removed from the spindle by taper coupling using a tapered hole on the grinding wheel or spindle, by screw coupling with female and male threads, or by bolting, to reliably transmit ultrasonic vibrations. be able to.

第2図は回転軸方向、半径方向重畳複合超音波振動砥石
車について説明する図である。図示のように砥石車の幅
を20mmとし、その他の形状寸法は第1図と同様にする
ことによって砥石車を回転軸方向と半径方向に超音波振
動数f、振幅a、振幅aをもって超音波振動させる
回転軸方向、半径方向重畳複合超音波振動砥石車14と
することができる。直径の小さい砥石車に対しては、縦
振動系によって回転軸方向超音波振動砥石車とする。
FIG. 2 is a diagram for explaining a composite ultrasonic vibration grinding wheel in the rotational axis direction and in the radial direction. As shown, the width of the grinding wheel is set to 20 mm, and the other geometrical dimensions are the same as those in FIG. 1, so that the grinding wheel has ultrasonic frequency f, amplitude a s , and amplitude a r in the rotational axis direction and the radial direction. The ultrasonic wave vibrating grinding wheel 14 can be a superposed ultrasonic vibrating grinding wheel in the direction of the rotation axis and in the radial direction. For a grinding wheel with a small diameter, a longitudinal vibration system is used for the ultrasonic vibration grinding wheel in the rotation axis direction.

第3図は回転軸方向超音波振動砥石車について説明する
図である。図示のように砥石車の幅を10mmとし、その
他の形状寸法は第1図と同様にすることによって砥石車
を回転軸方向のみに超音波振動数f=20KHz、振幅a
=7μmで超音波振動する回転軸方向超音波振動砥石
車21とすることができる。
FIG. 3 is a view for explaining a rotary axis direction ultrasonic vibration grinding wheel. As shown in the figure, the width of the grinding wheel is set to 10 mm, and the other geometrical dimensions are the same as those in FIG. 1, so that the grinding wheel is rotated only in the rotational axis direction with ultrasonic frequency f = 20 KHz and amplitude a.
The rotation axis direction ultrasonic vibration grinding wheel 21 that ultrasonically vibrates at s 2 = 7 μm can be used.

次に、この砥石車を用いた本発明による各種研削法につ
いて説明する。回転軸方向超音波振動砥石車14による
代表的研削法を第4図によって説明する。平面研削は、
砥石14を研削速度Vで矢印方向に回転させ、ワーク2
にステッピングモータによってワークを低周波振動させ
ながら直進運動させて加工送り速度vで送り、断続して
砥石車に接触させて得られる断続パルス研削力波形によ
って平面研削する。低周波振動の方向は加工送り方向で
あり、砥石車の回転軸に直角な方向で、かつ、ワーク加
工面に平行な方向となっている。円筒研削は、ワーク2
5をステッピングモータによって振動数F、振幅Aで低
周波振動させながら周速度vで回転運動させて、砥石車
14を研削速度Vで矢印方向に回転させて円筒研削す
る。内面研削は、円筒研削同様にワーク26をステッピ
ングモータによって振動数F、振幅Aで低周波振動させ
ながら、周速度vで回転運動させて、砥石車14を研削
速度Vで矢印方向に高速回転させて内面研削する。この
他に、この直径の小さい縦振動系軸方向振動砥石による
本発明は、溝の加工にも適用される。
Next, various grinding methods according to the present invention using this grinding wheel will be described. A typical grinding method using the rotary vibration ultrasonic wheel 14 will be described with reference to FIG. Surface grinding
The grindstone 14 is rotated at the grinding speed V in the direction of the arrow, and the work 2
Further, the work is moved linearly while being vibrated at a low frequency by the stepping motor and is fed at the processing feed speed v, and the surface is ground by the intermittent pulse grinding force waveform obtained by intermittently contacting the grinding wheel. The direction of low-frequency vibration is the machining feed direction, which is perpendicular to the rotation axis of the grinding wheel and parallel to the workpiece machining surface. Cylindrical grinding works 2
5 is rotated at a peripheral speed v while vibrating at a low frequency with a frequency F and an amplitude A by a stepping motor, and the grinding wheel 14 is rotated at a grinding speed V in the direction of the arrow to perform cylindrical grinding. In the inner surface grinding, similarly to the cylindrical grinding, the work 26 is oscillated at a peripheral speed v while vibrating the work 26 at a low frequency with a frequency F and an amplitude A by a stepping motor, and the grinding wheel 14 is rotated at a high speed in the arrow direction at the grinding speed V. Internal grinding. In addition to this, the present invention using the vertical vibration system axial vibration grindstone having a small diameter is also applied to the processing of grooves.

半径方向超音波振動砥石車19による代表的研削法を第
5図によって説明する。平面研削は、砥石車19は研削
速度Vで矢印方向に回転させ、ワーク2にステッピング
モータによってワークを低周波振動させながら直進運動
させて送り速度vで送り、断続して砥石車19に接触さ
せて得られる断続パルス研削力波形によって平面研削す
る。円筒研削は、ワーク25をステッピングモータによ
って振動数F、振幅Aで低周波振動させながら周速度v
で回転運動させて砥石車19を研削速度Vで矢印方向に
回転させて円筒研削する。内面研削は、円筒研削同様に
ワーク26をステッピングモータによって振動数F、振
幅Aで低周波振動させながら周速度vで回転運動させて
砥石車19を研削速度Vで矢印方向に回転させて内面研
削する。小径穴用の直径の小さい砥石車は、振動数を高
めて製作することができる。
A typical grinding method using the radial ultrasonic vibration grinding wheel 19 will be described with reference to FIG. In the surface grinding, the grinding wheel 19 is rotated in the direction of the arrow at the grinding speed V, the work 2 is moved linearly while vibrating the work at a low frequency by the stepping motor, and is fed at the feeding speed v, and intermittently brought into contact with the grinding wheel 19. Surface grinding is performed by the intermittent pulse grinding force waveform obtained as described above. In the cylindrical grinding, the peripheral speed v is obtained by vibrating the work 25 at a low frequency with a frequency F and an amplitude A by a stepping motor.
And the grinding wheel 19 is rotated in the direction of the arrow at a grinding speed V to perform cylindrical grinding. In the inner surface grinding, as in the case of the cylindrical grinding, the work 26 is rotated at a peripheral speed v while vibrating the work 26 at a low frequency with a frequency F and an amplitude A by a stepping motor to rotate the grinding wheel 19 at a grinding speed V in the direction of the arrow to perform the inner surface grinding. To do. A grinding wheel with a small diameter for small diameter holes can be manufactured by increasing the frequency.

回転軸方向、半径方向超音波振動砥石21による代表的
研削法を第6図によって説明する。平面研削は、砥石車
21を約2000m/min程度の研削速度Vで矢印方向に
回転させ、ワーク2にステッピングモータによってワー
クを低周波振動させながら直進運動させて送り速度vで
送り、断続して砥石車21に接触させて得られる断続パ
ルス研削力波形によって平面研削する。円筒研削は、ワ
ーク25をステッピングモータによって振動数F、振幅
Aで低周波振動させながら周速度vで回転運動させて砥
石車21を研削速度Vで矢印方向に回転させて円筒研削
する。内面研削は、円筒研削同様にワーク26をステッ
ピングモータによって振動数F、振幅Aで低周波振動さ
せながら周速度vで回転運動させて、砥石車21を研削
速度Vで矢印方向に回転させて内面研削する。小径穴用
の直径の小さい砥石車は、振動数を高めて製作すること
ができる。
A typical grinding method using the ultrasonic vibration grindstone 21 in the rotational axis direction and the radial direction will be described with reference to FIG. In the surface grinding, the grinding wheel 21 is rotated in the direction of the arrow at a grinding speed V of about 2000 m / min, and the work 2 is moved linearly while vibrating the work at a low frequency by a stepping motor and sent at the feed speed v, and intermittently. Surface grinding is performed by an intermittent pulse grinding force waveform obtained by contacting the grinding wheel 21. In the cylindrical grinding, the work 25 is rotated at a peripheral speed v while vibrating the work 25 at a low frequency with a frequency F and an amplitude A by a stepping motor to rotate the grinding wheel 21 at a grinding speed V in the arrow direction to perform cylindrical grinding. In the inner surface grinding, as in the case of the cylindrical grinding, the work 26 is rotated at a peripheral speed v while vibrating the work 26 at a low frequency with a frequency F and an amplitude A by a stepping motor, and the grinding wheel 21 is rotated in a direction of an arrow at a grinding speed V to form an inner surface. Grind. A grinding wheel with a small diameter for small diameter holes can be manufactured by increasing the frequency.

次に具体的研削盤を示した本発明の実施例を説明する。
第7図および第8図によって振動円筒研削盤について説
明する。
Next, an embodiment of the present invention showing a concrete grinder will be described.
The vibrating cylindrical grinding machine will be described with reference to FIGS. 7 and 8.

20KHz縦超音波電わい振動子27を主軸24の尾部
に、先端には回転軸方向、半径方向超音波振動砥石車2
1を取り付ける。そして、その主軸に生ずる2個の振動
節にまたがるスリーブ28を振動節位置に銀ろう付けし
て固定し、該スリーブを2個の高精度ころがり軸受29
で支持して主軸を摩擦少なく回転できるようにする。こ
ろがり軸受29はハウジング31内に固定し、研削盤用
主軸台32を構成する。スリーブ28にはプーリ30を
取り付け、このプーリ30にはスリップリング33を取
り付ける。スリップリング33にブラッシュ35を摩擦
少なく接触させる。ブラッシュ35と超音波発振機36
の出力端子とを接続する。主軸台32には主軸回転駆動
用の三相誘導電動機37を取り付け、ベルト38で主軸
24に回転動力を伝達する。そして主軸24を矢印3の
方向に回転させ、砥石車を回転させる。この主軸台を研
削盤往復台38に取り付ける。ワーク2を研削盤のチャ
ック39に取り付け、他端をセンタ40で支持する。ワ
ークは制御装置およびパワーユニット41によって駆動
される電気ステッピングモータによって振動数F=最大
120Hz、振幅A=最大0.2mmをもって低周波振動さ
せながら回転数最大200r.p.mの速度Vをもって回転
させる。このワークに対して往復台38を送り速度Sで
矢印42の方向に送ることによって、振動数f=20K
Hz〜60KHz、半径方向振幅a、回転軸方向振幅a
ともに5μm〜20μm程度で超音波振動する重畳、複
合超音波振動砥石による本発明が実施され精密振動円筒
研削が行われる。砥石車の砥粒は、A砥粒、WA砥粒、
GC砥粒、D砥粒、CBN砥粒など現在使用されている
砥粒すべてが使用できる。ワーク材質には、鉄金属、非
鉄金属、ゴムなどの非金属工業材料およびセラミックス
などのすべての工業材料に適用されて画期的効果を発揮
する。
A 20 KHz vertical ultrasonic diffusive vibrator 27 is provided at the tail of the main shaft 24, and at the tip end thereof is a rotary ultrasonic wave vibrating grinding wheel 2
Attach 1. Then, a sleeve 28 that straddles two vibrating nodes generated on the main shaft is fixed to the vibrating node position by silver brazing, and the sleeve is fixed to two high precision rolling bearings 29.
Supported by so that the main shaft can rotate with less friction. The rolling bearing 29 is fixed in a housing 31 and constitutes a headstock 32 for a grinder. A pulley 30 is attached to the sleeve 28, and a slip ring 33 is attached to the pulley 30. The brush 35 is brought into contact with the slip ring 33 with less friction. Brush 35 and ultrasonic oscillator 36
Connect to the output terminal of. A three-phase induction motor 37 for rotating the spindle is attached to the spindle stock 32, and rotational power is transmitted to the spindle 24 by a belt 38. Then, the spindle 24 is rotated in the direction of arrow 3 to rotate the grinding wheel. This headstock is attached to the grinding machine carriage 38. The work 2 is attached to the chuck 39 of the grinder, and the other end is supported by the center 40. The work is rotated at a speed V of maximum 200 rpm by a low frequency vibration with a frequency F = maximum 120 Hz and an amplitude A = maximum 0.2 mm by an electric stepping motor driven by a controller and a power unit 41. By sending the carriage 38 to the work at the feed speed S in the direction of the arrow 42, the frequency f = 20K.
Hz to 60 KHz, radial amplitude a r , rotation axis direction amplitude a s
Precision vibration cylindrical grinding is carried out by superimposing ultrasonic vibrations of about 5 μm to 20 μm, and by carrying out the present invention using a composite ultrasonic vibration grindstone. Abrasive grains of a grinding wheel are A abrasive grains, WA abrasive grains,
All currently used abrasive grains such as GC abrasive grains, D abrasive grains, and CBN abrasive grains can be used. As a work material, it is applied to all non-metal industrial materials such as ferrous metal, non-ferrous metal and rubber, and all industrial materials such as ceramics and exerts a epoch-making effect.

次に、振動平面研削盤について第9図によって説明す
る。平面研削盤ベッド42を往復運動するテーブル43
上に鋼球で支持されて摩擦少なく、テーブルの往復運動
方向に直線運動することができる低周波振動テーブル4
4を設け、その一端を同じくテーブル43上に固定した
電気−油圧振動駆動装置45に連結棒を介して固定す
る。この電気−油圧振動駆動装置を油圧ポンプユニット
46および制御装置47をもって振動駆動する。そして
例えば、振動数F=100Hz、振幅A=0.2mmで低周
波振動させることができる。
Next, the vibrating surface grinder will be described with reference to FIG. Table 43 that reciprocates the surface grinder bed 42
A low-frequency vibration table 4 supported by steel balls on the top and capable of linear movement in the reciprocating direction of the table with little friction.
4 is provided, and one end thereof is fixed to the electro-hydraulic vibration drive device 45 also fixed on the table 43 via a connecting rod. This electro-hydraulic vibration drive device is vibration driven by the hydraulic pump unit 46 and the control device 47. Then, for example, a low frequency vibration can be performed with a frequency F = 100 Hz and an amplitude A = 0.2 mm.

研削盤コラム51上には、振動円筒研削盤の場合と同様
に20KHz縦超音波振動子27と主軸24および振動数
fで矢印14の回転軸方向に振幅a、矢印18の方向
の半径方向に振幅aで超音波振動する砥石21よりな
る振動平面研削盤用主軸台50を固定する。そしてベル
ト49で主軸を三相誘導電動機を利用して矢印3の方向
に回転し、研削速度を約2000m/minとする。
On grinding machine column 51, the amplitude a s in the rotation axis direction of the arrow 14 when the vibrating cylindrical grinder as well as 20KHz longitudinal ultrasonic transducer 27 and the spindle 24 and the frequency f, the radial direction of arrow 18 A headstock 50 for a vibrating surface grinder, which is composed of a grindstone 21 that vibrates ultrasonically with an amplitude a r , is fixed. Then, the main shaft is rotated by the belt 49 in the direction of arrow 3 using a three-phase induction motor, and the grinding speed is set to about 2000 m / min.

主軸にはスリップリング33を取り付け、ブラッシュ3
5を介して超音波発振機36からの励振電圧を回転する
振動子に与える。回転する振動子27および砥石車には
それぞれカバー48および52を取り付けて安全を計
る。
The slip ring 33 is attached to the spindle, and brush 3
The excitation voltage from the ultrasonic oscillator 36 is applied to the rotating oscillator via 5. Covers 48 and 52 are attached to the rotating oscillator 27 and the grinding wheel to ensure safety.

このようにして、第3図に示した形状寸法の砥石車21
を同一振動数f=20KHz、半径方向に振幅a≒8μ
m、軸方向の振幅a≒10μmをもって超音波振動さ
せると同時に円滑に高速回転させ、ワークには低周波振
動を加え乍ら送り平面研削することによって本発明によ
る精密平面研削が実施される。
In this way, the grinding wheel 21 having the shape and dimensions shown in FIG.
With the same frequency f = 20 KHz and an amplitude a r ≈8 μ in the radial direction.
Precision vibration surface grinding according to the present invention is carried out by ultrasonically vibrating with amplitude m s ≉10 μm in the axial direction and at the same time smoothly rotating at a high speed, and feeding low-frequency vibration to the work surface to perform feed surface grinding.

この平面研削の場合も円筒研削同様に本発明はあらゆる
砥粒、ワークに適用され、特に、ゴムやセラミックスの
ようにただ高速回転させるだけでは研削性を向上させる
ことができなかった工作物に対して画期的な精密平面研
削効果を発揮する。
In the case of this surface grinding as well, like the cylindrical grinding, the present invention is applied to all kinds of abrasive grains and workpieces, and particularly to a workpiece such as rubber or ceramics which cannot be improved in grindability by simply rotating at high speed. And exhibits an epoch-making precision surface grinding effect.

(効 果) 本発明の具体的実施効果について説明する。第7図によ
る円筒研削について説明する。第3図に示した形状寸法
によるダイヤモンド砥石#200を20KHz縦超音波電
わい振動子を用いてf=20KHz、a≒8μm、a
≒10μmで超音波振動させ、研削速度V=800m/m
inとして、直径10mm、長さ100mmのシリコンナイト
ライド丸棒をP11パルス、P6パルス、P1パ
ルス、P5パルスで制御してF=90Hzをもって低周
波振動させながらV=1.5m/minで回転させ、ワーク
の振動1サイクルあたりの切削長さを0.25mmとして
切込み10μmを与えて本発明による振動円筒研削を実
施することによって異常な研削音を発生することなく、
研削点付近に火花を発生させるような瞬間異常発熱をさ
せることなく工具寿命を永くしてワークを折損すること
なく、極めてわずかな研削抵抗で表面粗さ0.3μmR
max、真円度0.5μm、円筒度100mmあたり1μm
の精密円円筒加工に成功した。
(Effects) Specific effects of implementing the present invention will be described. The cylindrical grinding according to FIG. 7 will be described. The diamond grindstone # 200 having the shape and dimensions shown in FIG. 3 was used for f = 20 KHz, a r ≈8 μm, a s using a 20 KHz vertical ultrasonic diffusive vibrator.
Grinding speed V = 800m / m with ultrasonic vibration at ≒ 10μm
As in, a silicon nitride round bar having a diameter of 10 mm and a length of 100 mm is controlled by P F 11 pulse, P R 6 pulse, P B 1 pulse and P R 5 pulse to vibrate at a low frequency with F = 90 Hz and V = By rotating at a speed of 1.5 m / min and setting a cutting length per cycle of vibration of the work of 0.25 mm to give a depth of cut of 10 μm and performing the vibration cylindrical grinding according to the present invention, no abnormal grinding noise is generated.
Surface roughness of 0.3 μmR with extremely little grinding resistance without extending the tool life and breaking the work without causing instantaneous abnormal heat generation such as spark generation near the grinding point.
max, roundness 0.5 μm, cylindricity 1 μm per 100 mm
Succeeded in the precision circular cylinder processing.

第9図に示した平面研削においては、第3図に示した形
状寸法によるダイヤモンド砥石#200を20KHz縦超
音波電わい振動子を用いてf=20KHz、a≒8μ
m、a≒10μmで超音波振動させ、研削速度V=8
00m/minとして、直径4mmのゴム製品端面を振動数F
=100Hz、振幅A=0.2mmで低周波振動させ、切込
み0.1mmを与え、送り速度v=200mm/minで送っ
て本発明を実施することによって従来の研削では10〜
15μmも中凹みになって平坦にならなかったものが平
面度=0とすることに成功した。
In the surface grinding shown in FIG. 9, the diamond grindstone # 200 having the shape and dimensions shown in FIG. 3 was used for f = 20 KHz and a r ≈8 μ using a 20 KHz vertical ultrasonic diffusive vibrator.
m, is ultrasonically vibrated in a s10μm, grinding velocity V = 8
Frequency of F at the end surface of rubber product with a diameter of 4 mm at 00 m / min
= 100 Hz, amplitude A = 0.2 mm, low-frequency vibration is applied, a depth of cut is 0.1 mm, and the feed rate is v = 200 mm / min.
A flatness of 0 was successfully achieved for a material that was 15 μm inward and was not flat.

以上はワークに低周波振動を与えた研削盤で説明した
が、砥石車に低周波振動を与えても同様な結果が得られ
ることはいうまでもない。
The above description has been made on the grinder in which the low frequency vibration is applied to the workpiece, but it goes without saying that the same result can be obtained even when the low frequency vibration is applied to the grinding wheel.

【図面の簡単な説明】[Brief description of drawings]

第1図は半径方向超音波振動砥石の形状寸法の一実施例
正面図、第2図は回転軸方向超音波振動砥石の形状寸法
の一実施例正面図、第3図は回転軸方向、半径方向超音
波振動砥石の形状寸法の一実施例正面図、第4図は回転
軸方向超音波振動砥石によって本発明を実施するときの
平面研削法、円筒研削法、内面研削法の説明図、第5図
は半径方向超音波振動砥石によって本発明を実施すると
きの平面研削法、円筒研削法、内面研削法の説明図、第
6図は回転軸方向、半径方向超音波振動砥石によって本
発明を実施するときの平面研削法、円筒研削法、内面研
削法の説明図、第7図は本発明を実施する円筒研削盤の
一実施例平面図、第8図は同側面図、第9図は本発明を
実施する平面研削盤の一実施例正面図である。 14……回転軸方向超音波振動研削砥石車 19……半径方向超音波振動研削砥石車 21……回転軸方向、半径方向超音波振動研削砥石車 27……縦超音波振動子 36……超音波発振機 40……パルスモータ 44……低周波振動テーブル 46,47……電気油圧振動駆動装置
FIG. 1 is a front view of an example of the shape and dimensions of a radial ultrasonic vibrating grindstone, FIG. 2 is a front view of an example of the shape and dimension of a rotating axis direction ultrasonic vibrating grindstone, and FIG. Of the direction and shape of the directional ultrasonic vibration grindstone Front view, FIG. 4 is an explanatory view of a surface grinding method, a cylindrical grinding method, an inner surface grinding method when the present invention is carried out by the rotary axis direction ultrasonic vibration grinding stone, FIG. 5 is an explanatory view of a surface grinding method, a cylindrical grinding method and an inner surface grinding method when the present invention is carried out by a radial ultrasonic vibration grinding wheel, and FIG. 6 is a rotary axis direction, a radial ultrasonic vibration grinding wheel of the present invention. FIG. 7 is an explanatory view of a surface grinding method, a cylindrical grinding method, and an inner surface grinding method when carrying out the embodiment, FIG. 7 is a plan view of an embodiment of a cylindrical grinding machine for carrying out the present invention, FIG. 8 is a side view of the same, and FIG. It is a front view of an embodiment of a surface grinder for carrying out the present invention. 14 ... Rotation axis ultrasonic vibration grinding wheel 19 ... Radial ultrasonic vibration grinding wheel 21 ... Rotation axis and radial ultrasonic vibration grinding wheel 27 ... Vertical ultrasonic vibrator 36 ... Ultra Sound wave oscillator 40 ... Pulse motor 44 ... Low frequency vibration table 46,47 ... Electro-hydraulic vibration drive device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高速回転する砥石車を回転軸方向及び又は
砥石車の半径方向に超音波振動させ乍ら、更にワークを
砥石車の回転軸に直角な方向で、かつ、ワーク加工面に
沿う方向のワーク加工送り方向に低周波振動させて、該
砥石車に断続的に接触させ断続パルス研削力波形を発生
させて切りくずを微細に寸断する如くなした砥石車に超
音波振動と低周波振動を重畳させた精密複合研削方法。
1. A high-speed rotating grinding wheel is ultrasonically vibrated in the rotational axis direction and / or in the radial direction of the grinding wheel, and the work is further oriented in a direction perpendicular to the rotation axis of the grinding wheel and along the work surface. Vibration of the grinding wheel, which is made to cut the chips finely by vibrating it at a low frequency in the workpiece machining feed direction and intermittently contacting the grinding wheel to generate an intermittent pulse grinding force waveform. Precision compound grinding method with superposed vibration.
JP20851686A 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel Expired - Lifetime JPH0626790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851686A JPH0626790B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851686A JPH0626790B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Publications (2)

Publication Number Publication Date
JPS6362665A JPS6362665A (en) 1988-03-18
JPH0626790B2 true JPH0626790B2 (en) 1994-04-13

Family

ID=16557461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851686A Expired - Lifetime JPH0626790B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Country Status (1)

Country Link
JP (1) JPH0626790B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211310B (en) * 2011-05-31 2013-04-10 苏州利达铸造有限公司 Surface treatment method of cleaning air inlet
CN112658819A (en) * 2020-12-19 2021-04-16 西北工业大学 Drilling processing method of SiC fiber reinforced SiC ceramic matrix composite

Also Published As

Publication number Publication date
JPS6362665A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
CN108177261B (en) Oblique ultrasonic vibration assisted diamond wire saw cutting device and method
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
Balamuth Ultrasonic assistance to conventional metal removal
JP2010042498A (en) Processing method by use of grinding wheel provided with ultrasonic vibration
JP2007216372A (en) Ultrasonic excitation unit/ultrasonic excitation table unit/ultrasonic excitation basin unit/ultrasonic excitation horn unit
JPH04322901A (en) Ultrasonic vibration device
Wu et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPS62292306A (en) Precision vibration boring method
JPS62140701A (en) Superposed vibration cutting method
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
KR100417643B1 (en) Automatic Polishing Apparatus for Mold using ultrasonic waves vibrating tool
JPH0632899B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
Nomura et al. Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes
JPH0626789B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH01109007A (en) Vibration-cut drilling machine for precise boring of ceramics
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
JPH0451300B2 (en)
JPS62140702A (en) Precise superposed vibration hole processing method
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JPH06339847A (en) Work method for circumferential groove in ceramics
JPH03234451A (en) Polishing method utilizing torsional vibration
Tawakoli et al. Dressing of CBN grinding wheels with ultrasonic assistance
JPH0451306B2 (en)
JPS6234678Y2 (en)