JPH0632899B2 - Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel - Google Patents

Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Info

Publication number
JPH0632899B2
JPH0632899B2 JP61208513A JP20851386A JPH0632899B2 JP H0632899 B2 JPH0632899 B2 JP H0632899B2 JP 61208513 A JP61208513 A JP 61208513A JP 20851386 A JP20851386 A JP 20851386A JP H0632899 B2 JPH0632899 B2 JP H0632899B2
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
vibration
low frequency
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208513A
Other languages
Japanese (ja)
Other versions
JPS6362662A (en
Inventor
淳一郎 隈部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61208513A priority Critical patent/JPH0632899B2/en
Publication of JPS6362662A publication Critical patent/JPS6362662A/en
Publication of JPH0632899B2 publication Critical patent/JPH0632899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、従来の研削方法では困難とされているゴム及
びセラミックス等を容易に精密研削できる砥石車に超音
波振動と低周波振動を重畳させて研削する精密複合研削
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention superimposes ultrasonic vibrations and low frequency vibrations on a grinding wheel that can easily precisely grind rubber, ceramics, etc., which have been difficult with conventional grinding methods. The present invention relates to a precision compound grinding method for performing grinding by grinding.

(従来技術) 切削・研削工具によって精密加工するためには、ワーク
に与える力を少しでも軽減する方法によって加工する必
要がある。回転円板上に切刃を有限数設けた例えばフラ
イスを高速回転させて切削することによって切削力が軽
減する。回転円板上に無数に砥粒を分布させた砥石車を
高速回転させて研削することによって、砥粒1刃あたり
の切込みがさらに小さくなってワークに作用する力が激
減して精密加工できるようになる。しかし、一方、約2
000m/minに及ぶ高速研削のため多量の研削液によっ
てワークおよび砥石車を冷却しなければならない程平均
研削温度が著しく上昇することも既に周知のところであ
る。砥石車の高速回転にともなう、この著しい発熱現象
があるにもかかわらず、ワークに作用する力の激減効果
が絶大であるため砥石車による研削加工が広く常用され
ているのが現状である。従来のワークの材質は、金属が
主体で発熱があっても熱伝達効率がよく冷却効果がよい
ので適切な研削液を多量に使用することによって精密研
削を可能としていた。
(Prior Art) In order to perform precision processing with a cutting / grinding tool, it is necessary to perform processing by a method that reduces the force applied to the work as much as possible. The cutting force is reduced by, for example, rotating a milling cutter, which has a finite number of cutting blades on a rotating disk, at high speed to perform cutting. By rotating a grinding wheel in which an infinite number of abrasive grains are distributed on a rotating disk and rotating at high speed, the cutting per abrasive blade is further reduced and the force acting on the work is drastically reduced so that precision machining can be performed. become. However, on the other hand, about 2
It is already well known that the average grinding temperature rises so much that the workpiece and the grinding wheel must be cooled by a large amount of grinding fluid for high speed grinding up to 000 m / min. Despite the remarkable heat generation phenomenon that accompanies the high speed rotation of the grinding wheel, the grinding effect by the grinding wheel is widely used at present because the effect of drastically reducing the force acting on the work is great. Conventionally, the material of the work is mainly metal, and the heat transfer efficiency is good and the cooling effect is good even if heat is generated, so that precise grinding can be performed by using a large amount of an appropriate grinding fluid.

(発明が解決しようとする問題点) しかし、今日で精密加工理論、技術の有無にかかわら
ず、新素材が開発されてきており、そのなかにはゴム、
FRP,セラミックスのように熱伝達効率の悪い新素材
が多く含まれている。そして、これらにも極めて高い加
工精度が要求されてきている。
(Problems to be solved by the invention) However, today, new materials have been developed regardless of the existence of precision processing theory and technology, and among them, rubber,
It contains many new materials with poor heat transfer efficiency, such as FRP and ceramics. Further, extremely high processing accuracy is required for these as well.

これらに対する精密加工の期待に応えるためには、平均
研削温度上昇をより少なくして研削力をさらに激減させ
ることができる研削方法が必要である。ゴムのような軟
くてねばい材料、金属、セラミックスのような硬くても
ろい材料に共通な精密研削方法がないという問題点があ
った。
In order to meet the expectations of precision machining for these, a grinding method is required which can further reduce the average grinding temperature rise and drastically reduce the grinding force. There is a problem that there is no precision grinding method common to soft and sticky materials such as rubber and hard and brittle materials such as metals and ceramics.

(問題点を解決するための手段) 本発明は、高速回転する砥石車を回転軸方向及び砥石車
の半径方向に超音波振動させ乍ら、更に該砥石車又はワ
ークを砥石車の回転軸方向に直角な方向で、かつ、ワー
ク加工面に直角な切込み方向に低周波振動させて切りく
ずを微細に寸断する如くなした砥石車に超音波振動と低
周波振動を重畳させた精密複合研削することを特徴とす
るものである。
(Means for Solving Problems) According to the present invention, a grinding wheel that rotates at high speed is ultrasonically vibrated in a rotation axis direction and a radial direction of the grinding wheel, and further, the grinding wheel or the work is rotated in a rotation axis direction of the grinding wheel. Precision grinding that superimposes ultrasonic vibrations and low frequency vibrations on a grinding wheel that is designed to cut chips finely by vibrating at a low frequency in a cutting direction that is perpendicular to the It is characterized by that.

(実施例) 本発明による各種研削方法について説明する。回転軸方
向と半径方向に超音波振動する砥石車18による代表的
研削法を第1図によって説明する。平面研削は縦超音波
振動子によって半径方向と回転軸方向に超音波振動する
砥石車18を研削速度Vで矢印3方向に回転させ、その
主軸台即ち砥石車あるいはワークを電気油圧振動駆動装
置で図示の切込み方向に振動数F、振幅Aで低周波振動
させ、直進運動するワークに速度vを与えて精密平面研
削する。円筒研削は第2図に示す如く半径方向と回転軸
方向に超音波振動する砥石車18を研削速度Vで矢印3
方向に回転させ、その主軸台即ち砥石車あるいはワーク
を電気油圧振動駆動装置で図示の切込み方向に振動数
F、振幅Aで低周波振動させ、ワークに速度vを与えて
精密円筒切削する。内面研削は第3図に示す如く円筒研
削同様に半径方向に振動数f、振幅a、回転軸方向に
振動数f、振幅aで、超音波振動する砥石車18を矢
印方向3に回転させ、その主軸台即ち砥石車あるいはワ
ークを電気油圧振動駆動装置で図示の切込み方向に振動
数F、振幅Aで低周波振動させ、ワーク2を速度vで回
転させて精密内面研削する。
(Examples) Various grinding methods according to the present invention will be described. A typical grinding method using a grinding wheel 18 that vibrates ultrasonically in the rotational axis direction and the radial direction will be described with reference to FIG. In the surface grinding, a grinding wheel 18 which vibrates ultrasonically in a radial direction and a rotation axis direction by a longitudinal ultrasonic vibrator is rotated at a grinding speed V in the directions of three arrows, and the headstock, that is, the grinding wheel or the work is driven by an electrohydraulic vibration drive device. Precise surface grinding is performed by vibrating the workpiece that moves in a straight line at a speed v by vibrating at a low frequency with a frequency F and an amplitude A in the cutting direction shown in the drawing. In the cylindrical grinding, as shown in FIG. 2, the grinding wheel 18 that vibrates ultrasonically in the radial direction and the rotation axis direction is ground at the grinding speed V and indicated by the arrow 3
Direction, the headstock, that is, the grinding wheel or the work is vibrated at a low frequency with the frequency F and the amplitude A in the cutting direction shown by the electrohydraulic vibration drive device, and the work is subjected to the speed v to perform precision cylindrical cutting. As shown in FIG. 3, the inner surface grinding is performed by rotating the grinding wheel 18 which is ultrasonically vibrated in the arrow direction 3 with the frequency f and the amplitude a r in the radial direction and the frequency f and the amplitude a s in the rotation axis direction as in the cylindrical grinding. Then, the headstock, that is, the grinding wheel or the work is vibrated at a low frequency with the frequency F and the amplitude A in the cutting direction shown in the drawing by the electrohydraulic vibration drive device, and the work 2 is rotated at the speed v to perform precision inner surface grinding.

次に、本発明を具体的に実施するための研削盤主軸振動
系および砥石車形状を第4図によって説明する。
Next, a grinding machine spindle vibration system and a grinding wheel shape for specifically carrying out the present invention will be described with reference to FIG.

砥石車は、砥石車中心部に設けたテーパ穴あるいはテー
パ突起部、又はねじ部を利用し、主軸にはめあわせて取
付け、取外しを行うことができる。砥石車の主軸への着
脱は容易にかつ迅速、確実に行うことができ、取付け部
での異常発振や異常発熱を伴うことなく効率よく超音波
振動を砥石車に伝達することができる。縦超音波振動子
19を主軸20の尾部に設け、先端に超音波振動砥石を
設けている。砥石車の直径および幅、主軸の直径、長さ
には一連の関係があって、幅bを20mmとすることによ
って砥石車を半径方向と同時に回転軸方向すなわち砥石
車の厚み方向に超音波振動させることができる。次に第
5図、第6図に従い本発明を実施する研削盤の一実施例
について説明する。
The grinding wheel uses a taper hole or taper projection portion or a screw portion provided at the center of the grinding wheel, and can be attached and detached while being fitted to the spindle. The grindstone can be easily and quickly attached to and detached from the spindle, and ultrasonic vibrations can be efficiently transmitted to the grindstone without causing abnormal oscillation or abnormal heat generation at the mounting portion. A vertical ultrasonic vibrator 19 is provided at the tail of the main shaft 20, and an ultrasonic vibration grindstone is provided at the tip. The diameter and width of the grinding wheel, the diameter of the main shaft, and the length have a series of relationships, and by setting the width b to 20 mm, ultrasonic vibration is generated in the radial direction of the grinding wheel at the same time as the rotational axis direction, that is, the thickness direction of the grinding wheel. Can be made. Next, one embodiment of a grinding machine for carrying out the present invention will be described with reference to FIGS.

20KHz縦超音波電わい振動子19を主軸20の尾部
に、先端には回転軸、半径方向超音波振動砥石21を取
付ける。そして、その主軸に生ずる2個の振動節にまた
がるスリーブ22を振動節の位置に銀ろう付けして固定
し、該スリーブを2個の高精度ころがり軸受23で支持
して主軸を摩擦少なく回転できるようにする。ころがり
軸受をハウジング内に固定し研削盤用主軸台24を構成
する。スリーブ22にはプーリー25およびスリップリ
ング26を取付ける。スリップリングにはブラッシュを
摩擦少なく接触させる。ブラッシュと超音波発振機27
の出力端子とを接続する。主軸台即ち砥石車には主軸回
転駆動用の三相誘導電動機28を取付け、ベルト29で
主軸に回転動力を伝達する。そして主軸を矢印30の方
向に回転させ、約2000/mminで砥石車を回転させ
る。この主軸台を研削盤ベッド31の往復台32に設け
た往復台の送り方向33の方向に摩擦少なく往復運動で
きるローラガイド33に固定する。ローラガイドの尾部
を連結棒34によって往復台上に取付けた電気油圧振動
駆動装置35と連結する。そして、油圧ユニット36を
作動させて圧油を供給し、制御装置37で制御すること
によって、砥石車を矢印38の方向に低周波振動させる
ことができる。ワーク39を研削盤のチャック40にチ
ャックして、その一端を心押台41で押して、ワークを
回転させ、往復台に送り速度Sを与えて円筒研削するこ
とによって、振動数f=20KHz〜60KHz、半径方向
振幅a、回転軸方向振幅aともに5μm〜20μm
程度で超音波振動し、かつ回転軸方向に振動数F=20
〜200Hz、振動A=0.02〜0.2mmで低周波振動
する砥石による本発明が実施され精密円筒振動研削が行
われる。砥石車の砥粒は、A砥粒、WA砥粒、GC砥
粒、D砥粒、CBN砥粒など現在使用されている砥粒す
べてが使用できる。ワーク形状には、鉄金属、非鉄金
属、ゴムなどの非金属工業材料およびセラミックスなど
のすべての工業材料に適用され画期的効果を発揮する。
A 20 KHz vertical ultrasonic wave vibrator 19 is attached to the tail of the main shaft 20, and a rotary shaft and a radial ultrasonic vibration grindstone 21 are attached to the tip. Then, the sleeve 22 that straddles the two vibrating nodes generated in the main shaft is fixed to the position of the vibrating node by silver brazing, and the sleeve is supported by the two high precision rolling bearings 23 so that the main shaft can rotate with less friction. To do so. The rolling bearing is fixed in the housing to form the headstock 24 for the grinding machine. A pulley 25 and a slip ring 26 are attached to the sleeve 22. The blush is brought into contact with the slip ring with less friction. Blush and ultrasonic oscillator 27
Connect to the output terminal of. A three-phase induction motor 28 for rotating the spindle is attached to the spindle stock, that is, a grinding wheel, and a belt 29 transmits rotational power to the spindle. Then, the main shaft is rotated in the direction of arrow 30, and the grinding wheel is rotated at about 2000 / mmin. This headstock is fixed to a roller guide 33 provided on the reciprocating table 32 of the grinding machine bed 31 and capable of reciprocating movement in the feed direction 33 of the reciprocating table with less friction. The tail of the roller guide is connected by a connecting rod 34 to an electrohydraulic vibration drive 35 mounted on the carriage. Then, by operating the hydraulic unit 36 to supply the pressure oil and controlling it by the control device 37, the grinding wheel can be vibrated at a low frequency in the direction of the arrow 38. The work 39 is chucked by the chuck 40 of the grinder, one end of the work 39 is pushed by the tailstock 41, the work is rotated, and the feed speed S is applied to the carriage to perform the cylindrical grinding, whereby the frequency f = 20 KHz to 60 KHz. radial amplitude a r, the rotation axis direction amplitude a s together 5μm~20μm
Ultrasonic vibration with a frequency of about F = 20
Precision cylindrical vibration grinding is carried out by carrying out the present invention using a grindstone that vibrates at a low frequency of ˜200 Hz and vibration A = 0.02 to 0.2 mm. As the abrasive grains of the grinding wheel, all the currently used abrasive grains such as A abrasive grains, WA abrasive grains, GC abrasive grains, D abrasive grains and CBN abrasive grains can be used. The work shape is applied to all non-metal industrial materials such as ferrous metal, non-ferrous metal and rubber, and all industrial materials such as ceramics, and exhibits a epoch-making effect.

(効 果) 第5図による円筒研削による効果について説明する。ダ
イヤモンド砥石車#200を20KHz縦超音波電わい振
動子を用いてf=20KHz、a≒8μm、a≒10
μmで超音波振動させ、研削速度1200/mminとし
て、これを低周波振動数F=100Hz、振動0.2mmで
低周波振動させて、直径10mm、長さ150mmのセラミ
ックス(ジルコニア)丸棒を周速8m/minで回転させて
切込み0.1mmを与えて本発明による円筒研削をするこ
とによって異常な研削音を発生することなく、従来の研
削の約1/2〜1/5の研削力で、ワークを折損することなく
研削熱を発生させないで、表面粗さ0.7μmRmax
真円度0.5μm、円筒度120mmあたり2μmという
精度で能率よく研削できるようになって、また、直径2
0mm、長さ300mmの軟質ゴム円筒表面を本発明によっ
て従来の研削では過大な研削力のために端面がだれて正
しい円筒面に研削できなかった欠点を解消して真直度、
円筒度を向上させて正しい円筒面に加工することに成功
した。これらはいずれも本発明の研削法の特徴である研
削力が激減する効果、研削熱が発生しない効果、相乗効
果によるものである。
(Effect) The effect of the cylindrical grinding according to FIG. 5 will be described. Diamond grinding wheel # 200 using a 20 KHz vertical ultrasonic diffusive transducer, f = 20 KHz, a r ≈8 μm, a S ≈10
Ultrasonic vibration at μm, grinding speed 1200 / mmin, low frequency vibration F = 100Hz, vibration 0.2mm, low frequency vibration, ceramic (zirconia) round bar with diameter 10mm and length 150mm. By rotating at a speed of 8 m / min and giving a depth of cut of 0.1 mm to perform cylindrical grinding according to the present invention, a grinding force of about 1/2 to 1/5 that of conventional grinding is generated without generating abnormal grinding noise. , Surface roughness of 0.7 μmR max without generating grinding heat without breaking the work,
It has become possible to efficiently grind with a roundness of 0.5 μm and a cylindricity of 2 μm per 120 mm, and a diameter of 2
According to the present invention, the surface of a soft rubber cylindrical surface having a length of 0 mm and a length of 300 mm is grinded by an excessive grinding force, and the straightness is eliminated by eliminating the defect that the end surface is dull and cannot be ground into a correct cylindrical surface.
We succeeded in improving the cylindricity and processing it into a correct cylindrical surface. These are all due to the effect of drastically reducing the grinding force, the effect of not generating grinding heat, and the synergistic effect, which are the features of the grinding method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は軸方向および半径方向超音波振動砥石車によっ
て本発明を実施するときの平面研削法、第2図は円筒研
削法、第3図は内面研削法を説明する図、第4図は半径
方向超音波振動砥石車、軸方向超音波振動砥石車、軸方
向および半径方向超音波振動砥石車の形状寸法の1例を
示す図、第5図は本発明の具体的実施例の1例を示す円
筒研削盤の上面図、第6図はその側面図、である。 6……パルス研削力波形 8……断続パルス研削力波形 10……低周波振動 11……低周波振動砥石車 14……軸方向超音波振動 15……軸方向超音波振動砥石車 16……半径方向超音波振動 17……半径方向超音波振動砥石車 18……軸方向、半径方向超音波振動砥石車 19……縦超音波振動子 27……超音波発振機 36,37……電気、油圧振動駆動装置 47……軸方向、半径方向超音波振動
FIG. 1 is a surface grinding method when the present invention is carried out by an axial and radial ultrasonic vibrating grinding wheel, FIG. 2 is a cylindrical grinding method, FIG. 3 is a drawing explaining an inner surface grinding method, and FIG. The figure which shows an example of the shape dimension of a radial direction ultrasonic vibrating grinding wheel, an axial direction ultrasonic vibrating grinding wheel, an axial direction and a radial direction ultrasonic vibrating grinding wheel, and FIG. 5 is an example of the concrete Example of this invention. Is a top view of the cylindrical grinder and FIG. 6 is a side view thereof. 6 …… Pulse grinding force waveform 8 …… Intermittent pulse grinding force waveform 10 …… Low frequency vibration 11 …… Low frequency vibration Grinding wheel 14 …… Axial ultrasonic vibration 15 …… Axial ultrasonic vibration Grinding wheel 16 …… Radial ultrasonic vibration 17 …… Radial ultrasonic vibration grinding wheel 18 …… Axial and radial ultrasonic vibration grinding wheel 19 …… Vertical ultrasonic vibrator 27 …… Ultrasonic oscillator 36,37 …… Electric, Hydraulic vibration drive 47 ... axial and radial ultrasonic vibrations

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高速回転する砥石車を回転軸方向及び砥石
車の半径方向に超音波振動させ乍ら、更に該砥石車又は
ワークを砥石車の回転軸方向に直角な方向で、かつ、ワ
ーク加工面に直角な切込み方向に低周波振動させて切り
くずを微細に寸断する如くなした砥石車に超音波振動と
低周波振動を重畳させた精密複合研削方法。
1. A grindstone wheel rotating at high speed is ultrasonically vibrated in the rotational axis direction and the radial direction of the grindstone wheel, and further, the grindstone wheel or the workpiece is in a direction perpendicular to the rotational axis direction of the grindstone wheel, and A precision compound grinding method that superimposes ultrasonic vibrations and low frequency vibrations on a grinding wheel that is designed to finely cut chips by vibrating at low frequencies in the cutting direction perpendicular to the machined surface.
JP61208513A 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel Expired - Lifetime JPH0632899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208513A JPH0632899B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208513A JPH0632899B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Publications (2)

Publication Number Publication Date
JPS6362662A JPS6362662A (en) 1988-03-18
JPH0632899B2 true JPH0632899B2 (en) 1994-05-02

Family

ID=16557407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208513A Expired - Lifetime JPH0632899B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Country Status (1)

Country Link
JP (1) JPH0632899B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316600B1 (en) * 2007-03-30 2008-01-08 Rolls-Royce Corporation Metal working method to reduce thermal damage
WO2018049790A1 (en) * 2016-09-14 2018-03-22 青岛理工大学 Multi-angle two-dimensional ultrasonic vibration assisted grinding device of nano-fluid minimum quantity lubrication type

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101995A (en) * 1974-01-11 1975-08-12

Also Published As

Publication number Publication date
JPS6362662A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
Balamuth Ultrasonic assistance to conventional metal removal
JP2010042498A (en) Processing method by use of grinding wheel provided with ultrasonic vibration
JP2007216372A (en) Ultrasonic excitation unit/ultrasonic excitation table unit/ultrasonic excitation basin unit/ultrasonic excitation horn unit
Wu et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding
JPH04322901A (en) Ultrasonic vibration device
JPS62140701A (en) Superposed vibration cutting method
JPS62292306A (en) Precision vibration boring method
JPH0632899B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
KR100417643B1 (en) Automatic Polishing Apparatus for Mold using ultrasonic waves vibrating tool
JPH0626789B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
Nomura et al. Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes
JPH01109007A (en) Vibration-cut drilling machine for precise boring of ceramics
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JPH06339847A (en) Work method for circumferential groove in ceramics
JPH0451300B2 (en)
JPH09290356A (en) Surface traverse grinding device using ultrasonic vibration
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
JPS6240123B2 (en)
JPS62140703A (en) Heating/cooling type precise cutting/grinding processing method for ceramics
JP7411492B2 (en) Gear grinding equipment and gear grinding tools
Tawakoli et al. Dressing of CBN grinding wheels with ultrasonic assistance
JPS6362658A (en) Precise finishing method with complex vibration grinding wheel
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device