JPH0626789B2 - Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel - Google Patents

Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Info

Publication number
JPH0626789B2
JPH0626789B2 JP61208512A JP20851286A JPH0626789B2 JP H0626789 B2 JPH0626789 B2 JP H0626789B2 JP 61208512 A JP61208512 A JP 61208512A JP 20851286 A JP20851286 A JP 20851286A JP H0626789 B2 JPH0626789 B2 JP H0626789B2
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
vibration
low frequency
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208512A
Other languages
Japanese (ja)
Other versions
JPS6362661A (en
Inventor
淳一郎 隈部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61208512A priority Critical patent/JPH0626789B2/en
Publication of JPS6362661A publication Critical patent/JPS6362661A/en
Publication of JPH0626789B2 publication Critical patent/JPH0626789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、従来の研削方法では困難とされているゴム及
びセラミックス等を容易に精密研削できる砥石車に超音
波振動と低周波振動を重畳させて研削する精密複合研削
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention superimposes ultrasonic vibrations and low frequency vibrations on a grinding wheel that can easily precisely grind rubber, ceramics, etc., which have been difficult with conventional grinding methods. The present invention relates to a precision compound grinding method for performing grinding by grinding.

(従来技術) 切削・研削工具によって精密加工するためには、ワーク
に与える力を少しでも軽減する方法によって加工する必
要がある。回転円板上に切刃を有限数設けた例えばフラ
イスを高速回転させて切削することによって切削力が軽
減する。回転円板上に無数に砥粒を分布させた砥石車を
高速回転させて研削することによって、砥粒1刃あたり
の切込みがさらに小さくなってワークに作用する力が激
減して精密加工できるようになる。しかし、一方、約2
000m/minに及び高速研削のため多量の研削液によっ
てワークおよび砥石車を冷却しなければならない程平均
研削温度が著しく上昇することも既に周知のところであ
る。砥石車の高速回転にともなう、この著しい発熱現象
があるにもかかわらず、ワークに作用する力の激減効果
が絶大であるため砥石車による研削加工が広く常用され
ているのが現状である。従来のワークの材質は、金属が
主体で発熱があっても熱伝達効率がよく冷却効果がよい
ので適切な研削液を多量に使用することによって精密研
削を可能としていた。
(Prior Art) In order to perform precision processing with a cutting / grinding tool, it is necessary to perform processing by a method that reduces the force applied to the work as much as possible. The cutting force is reduced by, for example, rotating a milling cutter, which has a finite number of cutting blades on a rotating disk, at high speed to perform cutting. By rotating a grinding wheel with innumerable abrasive grains distributed on a rotating disk at high speed to perform grinding, the cutting depth per blade of the abrasive grains is further reduced, and the force acting on the workpiece is drastically reduced, enabling precision machining. become. However, on the other hand, about 2
It is already well known that the average grinding temperature rises so much that the workpiece and the grinding wheel must be cooled with a large amount of grinding fluid for high speed grinding up to 000 m / min. Despite the remarkable heat generation phenomenon that accompanies the high speed rotation of the grinding wheel, the grinding effect by the grinding wheel is widely used at present because the effect of drastically reducing the force acting on the work is great. Conventionally, the material of the work is mainly metal, and the heat transfer efficiency is good and the cooling effect is good even if heat is generated, so that precise grinding can be performed by using a large amount of an appropriate grinding fluid.

(発明が解決しようとする問題点) しかし、今日では精密加工理論、技術の有無にかかわら
ず、新素材が開発されてきており、そのなかにはゴム、
FRP,セラミックスのように熱伝達効率の悪い新素材
が多く含まれている。そして、これらにも極めて高い加
工精度が要求されてきている。
(Problems to be solved by the invention) However, today, new materials have been developed regardless of the existence of precision processing theory and technology, and among them, rubber,
It contains many new materials with poor heat transfer efficiency, such as FRP and ceramics. Further, extremely high processing accuracy is required for these as well.

これらに対する精密加工の期待に応えるためには、平均
研削温度上昇をより少なくして研削力をさらに激減させ
ることができる研削方法が必要である。ゴムのような軟
くてねばい材料、金属、セラミックスのような硬くても
ろい材料に共通な精密研削方法がないという問題点があ
った。
In order to meet the expectations of precision machining for these, a grinding method is required which can further reduce the average grinding temperature rise and drastically reduce the grinding force. There is a problem that there is no precision grinding method common to soft and sticky materials such as rubber and hard and brittle materials such as metals and ceramics.

(問題点を解決するための手段) 本発明は、高速回転する砥石車を回転軸方向及び砥石車
の半径方向に超音波振動させ乍ら、更に該砥石車又はワ
ークを砥石車の回転軸方向に低周波振動させて切りくず
を微細に寸断する如くなしたことを特徴とするものであ
る。
(Means for Solving Problems) According to the present invention, a grinding wheel that rotates at high speed is ultrasonically vibrated in a rotation axis direction and a radial direction of the grinding wheel, and further, the grinding wheel or the work is rotated in a rotation axis direction of the grinding wheel. It is characterized in that the chips are finely shredded by vibrating at low frequency.

(実施例) そこで、研削能率が低下しないようにして上述の特徴を
生かすことのできる新しい研削方法について考えた。
(Embodiment) Therefore, a new grinding method was considered in which the above-mentioned characteristics can be utilized without reducing the grinding efficiency.

次に本発明方法を実施するための研削盤主軸振動系およ
び砥石車形状の一実施例について説明する。
Next, one example of a grinding machine spindle vibration system and a grinding wheel shape for carrying out the method of the present invention will be described.

第1図は縦超音波振動子39を主軸41の尾部に設け、
先端に半径方向および回転軸方向に超音波振動する振動
砥石40を設けてなる本発明を実施するための研削盤主
軸および砥石車振動系を示す図である。
FIG. 1 shows that a longitudinal ultrasonic transducer 39 is provided at the tail of the main shaft 41,
FIG. 3 is a diagram showing a grinder spindle and a grinding wheel vibrating system for carrying out the present invention, in which a vibrating grindstone 40 that vibrates ultrasonically in the radial direction and the rotating shaft direction is provided at the tip.

縦超音波振動子39の固有振動数を20KHzとしたと
き、主軸の直径を50mm、その長さを1波長として26
0mm、砥石車の直径を165mm、幅を10mmとすること
によって砥石車を振動数20KHzをもって半径方向と同
時に回転軸方向に超音波振動させることができる。更
に、砥石車を回転軸方向に低周波振動させる。
When the natural frequency of the longitudinal ultrasonic transducer 39 is 20 KHz, the diameter of the main shaft is 50 mm, and its length is 1 wavelength.
By setting the diameter of the grinding wheel to 0 mm, the diameter of the grinding wheel to 165 mm, and the width to 10 mm, it is possible to ultrasonically vibrate the grinding wheel at the frequency of 20 KHz in the radial direction and the rotational axis direction at the same time. Further, the grinding wheel is vibrated at a low frequency in the rotation axis direction.

次に、この砥石車を用いた本発明による各種研削方法に
ついて説明する。平面研削は第2図に示す如く、縦超音
波振動子によって半径方向と回転軸方向に超音波振動す
る振動砥石40を約2000m/min程度の研削速度Vで
矢印3方向に回転させ、その主軸台即ち砥石車を電気油
圧振動駆動装置で回転軸方向に振動数F、振幅Aで低周
波振動させ、直進運動するワークに周速度vを与えて精
密平面研削する。円筒研削は第3図に示す如く、半径方
向と回転軸方向に超音波振動する振動砥石40を約20
00m/min程度の研削速度Vで矢印3方向に回転させ、
その主軸台即ち砥石車を電気油圧振動駆動装置で回転軸
方向に振動数F、振幅Aで低周波振動させ、ワークに周
速度vを与えて精密円筒研削する。内面研削は第4図に
示す如く、円筒研削同様に半径方向に振動数f、振幅a
、軸方向に振動数f、振幅aで、超音波振動する砥
石車28を約2000m/min程度を目標にして矢印方向
3に高速回転させ、その主軸台即ち砥石車を電気油圧振
動駆動装置で回転軸方向に振動数F、振幅Aで低周波振
動させ、ワーク2を周速度vで回転させて精密内面研削
する。
Next, various grinding methods according to the present invention using this grinding wheel will be described. For surface grinding, as shown in FIG. 2, a vibrating grindstone 40 that ultrasonically vibrates in a radial direction and a rotation axis direction by a vertical ultrasonic vibrator is rotated in a direction of an arrow 3 at a grinding speed V of about 2000 m / min, and its main shaft is rotated. A table, that is, a grinding wheel is vibrated at a low frequency with a vibration frequency F and an amplitude A in a rotation axis direction by an electrohydraulic vibration drive device, and a peripheral speed v is given to a workpiece that moves in a straight line to perform precision surface grinding. For cylindrical grinding, as shown in FIG. 3, about 20 vibration grindstones 40 that vibrate ultrasonically in the radial direction and the rotation axis direction are used.
Rotate in the direction of arrow 3 at a grinding speed V of about 00 m / min,
The headstock, that is, the grinding wheel is vibrated at a low frequency with a frequency F and an amplitude A in the rotation axis direction by an electrohydraulic vibration drive device, and a peripheral speed v is applied to the work to perform precision cylindrical grinding. As shown in FIG. 4, inner surface grinding is performed in the radial direction with frequency f and amplitude a as in cylindrical grinding.
r, axially frequency f, the amplitude a s, a grinding wheel 28 of the ultrasonic vibration to the approximately 2000 m / min to the target is rotated at high speed in the direction of the arrow 3, electro-hydraulic vibration driving the headstock i.e. grinding wheel The device is vibrated at a low frequency with a frequency F and an amplitude A in the rotation axis direction, and the work 2 is rotated at a peripheral speed v to perform precision inner surface grinding.

次に第5図および第6図に従い振動円筒研削盤87につ
いて説明する。
Next, the vibrating cylindrical grinder 87 will be described with reference to FIGS. 5 and 6.

20KHz縦超音波電わい振動子39を主軸41の尾部
に、先端には回転軸、半径方向超音波振動砥石40を取
付ける。そして、その主軸に生ずる2個の振動節にまた
がるスリーブ42を振動節の位置に銀ろう付けして固定
し、該スリーブを2個の高精度ころがり軸受43で支持
して主軸41を摩擦少なく回転できるようにする。ころ
がり軸受43をハウジング内に固定し研削盤用主軸台4
4を構成する。スリーブ42にはプーリー45およびス
リップリング46を取付ける。スリップリング46には
ブラッシュ50を摩擦少なく接触させる。ブラッシュ5
0と超音波発振機47の出力端子とを接続する。主軸台
44には主軸回転駆動用の三相誘導電動機49を取付
け、ベルト48で主軸41に回転動力を伝達する。そし
て主軸を矢印64の方向に回転させ、砥石車を約200
0m/min回転させる。この主軸台即ち砥石車を研削盤ベ
ッド62上の往復台61に設けた往復台61の送り方向
63の方向に摩擦少なく往復運動できるローラガイド5
2に固定する。ローラガイドの尾部を連結棒53によっ
て往復台上に取付けた電気油圧振動駆動装置54と連結
する。そして、油圧ユニット56を作動させて圧油を供
給し、制御装置55で制御することによって、振動砥石
40を矢印65の方向に振動数F、振幅AをたとえばF
=100Hz、A=0.2mmで低周波振動させる。ワーク
59を研削盤のチャック60にチャックして、その一端
を心押台66で押して、ワークを回転させ、往復台に送
り速度Sを与えて円筒研削することによって、振動数f
=20KHz〜60KHz、半径方向振幅a58、回転軸
方向振幅a57ともに5μm〜20μm程度で超音波
振動し、かつ回転軸方向に振動数F=20〜200Hz、
振幅A=0.02〜0.2mmで低周波振動する砥石によ
る精密円筒振動研削が行われる。
A 20 KHz vertical ultrasonic wave vibrator 39 is attached to the tail of the main shaft 41, and a rotary shaft and a radial ultrasonic vibrating grindstone 40 are attached to the tip. Then, a sleeve 42 straddling two vibrating nodes generated on the main shaft is fixed by silver brazing at the position of the vibrating node, and the sleeve is supported by two high precision rolling bearings 43 to rotate the main shaft 41 with less friction. It can be so. The rolling bearing 43 is fixed in the housing, and the headstock 4 for the grinder is used.
Make up 4. A pulley 45 and a slip ring 46 are attached to the sleeve 42. The brush 50 is brought into contact with the slip ring 46 with less friction. Brush 5
0 and the output terminal of the ultrasonic oscillator 47 are connected. A three-phase induction motor 49 for driving the spindle to rotate is attached to the spindle stock 44, and rotational power is transmitted to the spindle 41 by a belt 48. Then, rotate the spindle in the direction of arrow 64,
Rotate at 0m / min. This headstock, that is, a grinding wheel, is provided on the reciprocating table 61 on the grinding machine bed 62. The roller guide 5 which can reciprocate in the feeding direction 63 of the reciprocating table 61 with little friction.
Fix to 2. The tail of the roller guide is connected by a connecting rod 53 to an electrohydraulic vibration drive 54 mounted on the carriage. Then, the hydraulic unit 56 is operated to supply the pressure oil, and the control device 55 controls the vibration grindstone 40 so that the vibration frequency F and the amplitude A are, for example, F in the direction of the arrow 65.
= 100Hz, A = 0.2mm, low frequency vibration. The work 59 is chucked to the chuck 60 of the grinder, one end of the work 59 is pushed by the tailstock 66, the work is rotated, and the feed speed S is applied to the carriage to perform cylindrical grinding.
= 20 KHz to 60 KHz, the radial direction amplitude a r 58, and the rotating shaft direction amplitude a s 57 are ultrasonically vibrated at about 5 μm to 20 μm, and the vibration frequency F is 20 to 200 Hz in the rotating shaft direction.
Precision cylindrical vibration grinding is performed with a grindstone that vibrates at a low frequency with an amplitude A of 0.02 to 0.2 mm.

なお、砥石車の代りにワークを振動させてもよい。The work may be vibrated instead of the grinding wheel.

(効 果) 次に本発明による具体的実施効果について説明する。第
1図に示した形状寸法によるダイヤモンド砥石車#20
0を20KHz縦超音波電わい振動子を用いてf=20K
Hz、a≒8μm、a≒10μmで主軸回転軸方向と
半径方向に超音波振動させ、研削速度1200m/minと
して、これを低周波振動数F=100Hz、振幅0.2mm
で主軸回転軸方向に低周波振動させて、直径8mm、長さ
120mmのセラミックス(ジルコニア)丸棒を周速10
m/minで回転させて切込み10μmを与えて本発明に
よる円筒研削をすることによって異常な研削音を発生す
ることなく、従来の研削の約1/3〜1/5の研削力で、ワー
クを折損することなく研削熱を発生させないで、表面粗
さ0.2μmRmax、真円度0.5μm、円筒度120m
mあたり1μmという高精度に能率よく精密研削できる
ようになった。また、直径20mm、長さ300mmの軟質
ゴム円筒表面を本発明による精密研削をすることによっ
て従来の研削では過大研削力のために端面がだれて正し
い円筒面に精密研削できなかった欠点が解消されて真直
度、円筒度が零近くに向上し、超精密円筒加工を実現さ
せ得ることに成功した。これらはいずれも本発明の研削
法の特徴である研削力が激減する効果、研削熱が発生し
ない効果、仕上面が平滑になる効果の相乗効果によるも
のである。
(Effects) Next, specific effects of the present invention will be described. Diamond grinding wheel # 20 having the shape and dimensions shown in FIG.
F = 20K using a 20KHz vertical ultrasonic diffractor
Hz, a r ≒ 8 [mu] m, is ultrasonically vibrated in the spindle rotational axis direction and radial direction in a s ≒ 10 [mu] m, as a grinding speed of 1200 m / min, the low-frequency frequency F = 100 Hz this, amplitude 0.2mm
Using a low-frequency vibration in the direction of the main shaft rotation, a ceramic (zirconia) round bar with a diameter of 8 mm and a length of 120 mm is rotated at a peripheral speed of 10
By rotating at a speed of m / min to give a depth of cut of 10 μm and performing cylindrical grinding according to the present invention, an abnormal grinding noise is not generated, and the work is ground with a grinding force of about 1/3 to 1/5 that of conventional grinding. Surface roughness 0.2μmRmax, roundness 0.5μm, cylindricity 120m without generating grinding heat without breaking.
It has become possible to perform highly accurate and efficient precision grinding with a high precision of 1 μm per m. Further, by performing precision grinding according to the present invention on the surface of a soft rubber cylindrical surface having a diameter of 20 mm and a length of 300 mm, the disadvantage that the conventional grinding cannot sacrifice the end surface due to the excessive grinding force to the correct cylindrical surface can be solved. The straightness and cylindricity have been improved to near zero, and we have succeeded in realizing ultra-precision cylindrical machining. All of these are due to the synergistic effects of the effect of drastically reducing the grinding force, the effect of not generating grinding heat, and the effect of smoothing the finished surface, which are the features of the grinding method of the present invention.

【図面の簡単な説明】 第1図は本発明に用いる軸方向、半径方向超音波振動砥
石の一実施例正面図、第2図は軸方向半径方向超音波振
動砥石によって本発明を実施するときの平面研削法、第
3図は同円筒研削法、第4図は同内面研削法を示す説明
図、第5図は本発明を実施する円筒研削盤の一実施例平
面図、第6図は同側面図である。 2……ワーク 39……縦超音波振動子 40……振動砥石 41……主軸 47……超音波発振機 54……電気油圧振動駆動装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of an embodiment of an axial and radial ultrasonic vibrating grindstone used in the present invention, and FIG. 2 is a case where the present invention is embodied by an axial radial radial vibrating grindstone. Surface grinding method, FIG. 3 is an explanatory view showing the same cylindrical grinding method, FIG. 4 is an explanatory drawing showing the same inner surface grinding method, FIG. 5 is a plan view of an embodiment of a cylindrical grinding machine for carrying out the present invention, and FIG. It is the same side view. 2 ... Work 39 ... Vertical ultrasonic transducer 40 ... Vibration whetstone 41 ... Spindle 47 ... Ultrasonic oscillator 54 ... Electrohydraulic vibration drive device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高速回転する砥石車を回転軸方向及び砥石
車の半径方向に超音波振動させ乍ら、更に該砥石車又は
ワークを砥石車の回転軸方向に低周波振動させて切りく
ずを微細に寸断する如くなした砥石車に超音波振動と低
周波振動を重畳させた精密複合研削方法。
1. A grinding wheel that rotates at a high speed is ultrasonically vibrated in the rotational axis direction and in the radial direction of the grinding wheel, and the grinding wheel or work is further vibrated at a low frequency in the rotational axis direction of the grinding wheel to remove chips. A precision compound grinding method that superimposes ultrasonic vibrations and low-frequency vibrations on a grinding wheel that is cut into minute pieces.
JP61208512A 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel Expired - Lifetime JPH0626789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208512A JPH0626789B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208512A JPH0626789B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Publications (2)

Publication Number Publication Date
JPS6362661A JPS6362661A (en) 1988-03-18
JPH0626789B2 true JPH0626789B2 (en) 1994-04-13

Family

ID=16557390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208512A Expired - Lifetime JPH0626789B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Country Status (1)

Country Link
JP (1) JPH0626789B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903689B2 (en) * 2011-12-22 2016-04-13 ミクロン精密株式会社 High frequency vibration internal grinding machine
CN109848640A (en) * 2019-04-09 2019-06-07 山东华云机电科技有限公司 A kind of cylindrical roller surface Hardening Treatment device and working method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101995A (en) * 1974-01-11 1975-08-12

Also Published As

Publication number Publication date
JPS6362661A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
JP3403418B2 (en) Double face polishing machine
Balamuth Ultrasonic assistance to conventional metal removal
JP2008538727A (en) Cutting or grinding equipment
JP2010042498A (en) Processing method by use of grinding wheel provided with ultrasonic vibration
JP2007216372A (en) Ultrasonic excitation unit/ultrasonic excitation table unit/ultrasonic excitation basin unit/ultrasonic excitation horn unit
JP2008155287A (en) Workpiece grinding device and workpiece grinding method
Wu et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding
JP5039957B2 (en) Grinding wheel for internal grinding device and internal grinding method
JPH0626789B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH04322901A (en) Ultrasonic vibration device
JPS62292306A (en) Precision vibration boring method
JPH0632899B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
Nomura et al. Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
KR20020072928A (en) Automatic Polishing Apparatus for Mold using ultrasonic waves vibrating tool
JPH06339847A (en) Work method for circumferential groove in ceramics
JPH0575560B2 (en)
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JPH0451300B2 (en)
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
JPH08257923A (en) Shaft-equipped grinding wheel and tool holder
JP2004025416A (en) Precision hole finishing method and device
JPS62140703A (en) Heating/cooling type precise cutting/grinding processing method for ceramics