JPH0575560B2 - - Google Patents

Info

Publication number
JPH0575560B2
JPH0575560B2 JP26622587A JP26622587A JPH0575560B2 JP H0575560 B2 JPH0575560 B2 JP H0575560B2 JP 26622587 A JP26622587 A JP 26622587A JP 26622587 A JP26622587 A JP 26622587A JP H0575560 B2 JPH0575560 B2 JP H0575560B2
Authority
JP
Japan
Prior art keywords
ceramics
vibration
core drill
ultrasonic
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26622587A
Other languages
Japanese (ja)
Other versions
JPH01109007A (en
Inventor
Junichiro Kumabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP26622587A priority Critical patent/JPH01109007A/en
Publication of JPH01109007A publication Critical patent/JPH01109007A/en
Publication of JPH0575560B2 publication Critical patent/JPH0575560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/027Driving main working members reciprocating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/047Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by ultrasonic cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は工具に超音波振動又は及び低周波振動
を与え、更にセラミツクス工作物に超音波振動を
与えてセラミツクスに精密穴加工するようにした
セラミツクスの精密穴加工用振動切削ボール盤に
関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention applies ultrasonic vibration or low frequency vibration to a tool, and further applies ultrasonic vibration to a ceramic workpiece to machine a precision hole in ceramics. This article relates to a vibration cutting drilling machine for precision hole machining in ceramics.

(従来技術) セラミツクスへの精密穴加工が従来の鉄金属ヘ
ドリルで穴加工するときのような感覚で誰でもが
容易に簡単に短時間にできるようになることが切
望されている今日である。一方、セラミツクス素
材の品質が向上し、その機械的強度も日毎に強化
されてセラミツクスはますます難削材となつてき
ている。従つてその精密穴加工技術として従来の
高速切削・研削方法のみでは対応できなくなつて
きている現状である。その対応技術としては、本
発明者はセラミツクスが引張に弱いことに着眼し
てセラミツクスを超音波振動させ、セラミツクス
内に引張強さに対して無視できない振動応力を発
生させ、見掛け上の機械的強度を低下させてセラ
ミツクスの被削性を改善する精密加工技術を提案
した。これは主として、円筒とその円筒表面への
ねじ、みぞ加工及び平面加工に対して好適であ
る。その後、加工の基本である円筒、平面、穴加
工の穴加工工具のなかのコアドリルの加工機構に
適当できるかどうかは不明のままであつた。
(Prior Art) Nowadays, there is a strong desire for anyone to be able to easily and easily drill holes in ceramics in a short time with the same feeling as drilling holes with a conventional ferrous metal head drill. On the other hand, as the quality of ceramic materials improves and their mechanical strength increases day by day, ceramics are becoming increasingly difficult to cut. Therefore, the current state of the art is that the conventional high-speed cutting and grinding methods alone are no longer suitable for precision hole machining technology. As a technique to deal with this, the present inventor focused on the fact that ceramics are weak in tensile strength, and applied ultrasonic vibrations to the ceramics to generate vibrational stress within the ceramics that cannot be ignored relative to the tensile strength. We proposed a precision machining technology that improves the machinability of ceramics by reducing the It is primarily suitable for threading, grooving and flat machining of cylinders and their cylindrical surfaces. After that, it remained unclear whether it could be applied to the core drill machining mechanism, which is one of the basic drilling tools for cylindrical, flat, and hole drilling.

一方、工具を高速回転させ、これにねじりある
いは縦超音波振動させて穴加工する技術も既に本
発明者が提案している。そして、さらに低周波振
動を重畳させた穴加工方法も本発明者によつて開
発されてその技術と効果が発表されている。
On the other hand, the present inventor has already proposed a technique for drilling a hole by rotating a tool at high speed and subjecting it to twisting or longitudinal ultrasonic vibration. Furthermore, the inventor has also developed a hole machining method in which low frequency vibration is superimposed, and the technology and effects thereof have been announced.

(発明が解決しようとする問題点) ところで上記従来技術にあつてはセラミツクス
への精密穴加工を従来の金属への穴加工と同様な
感覚で行うことはできないという問題点があつ
た。
(Problems to be Solved by the Invention) However, the above-mentioned prior art has a problem in that precision hole machining in ceramics cannot be performed in the same way as conventional hole machining in metal.

(問題点を解決するための手段) 本発明は上記問題点を解決することを目的とす
るものである。
(Means for Solving the Problems) The present invention aims to solve the above problems.

今日のセラミツクスへの穴加工工具としてはパ
イプ状にした工具先端にダイヤモンド砥粒群を有
する所謂コアドリルが主体となる。穴加工機械に
はパイプ先端端面のダイヤモンド砥粒群が関係す
る。
Today, the main tool used for drilling holes in ceramics is the so-called core drill, which has a pipe-shaped tool tip with a group of diamond abrasive grains. Drilling machines involve diamond abrasive grains on the end face of the pipe.

セラミツクス、ゴム、金属のなかでも特にセラ
ミツクスの精密加工のためには、各ダイヤモンド
砥粒の1刃あたりの切削長さを超微細にしてその
切りくずを超微粒化することが肝要である。その
パイプ状コアドリル先端ダイヤモンド砥粒群がど
のようにしてその切削長さを微細化して切削でき
るようにするかについて考える。まず最初に分る
ことは従来技術でとられているようにコアドリル
の回転数をより高速化することである。すなわ
ち、コアドリルを高速回転させることである。
For precision machining of ceramics, rubber, and metals, especially ceramics, it is important to make the cutting length of each diamond abrasive grain ultra-fine and to make the chips ultra-fine. We will consider how the diamond abrasive grains at the tip of the pipe-shaped core drill can miniaturize the cutting length to enable cutting. The first thing to realize is to increase the rotational speed of the core drill, as is done in the prior art. That is, the core drill is rotated at high speed.

次にはコアドリルを超音波振動させて切削長さ
を細分化することである。その1つはコアドリル
をねじり超音波振動させて、その振動数f、振幅
aと切削速度vとの間にv<2πafの関係を与えて
切削長さを寸断する方法と、他の方法としてコア
ドリルを縦超音波振動させて回転させ、切削面を
微細凹凸面として、その斜面を小刻みに切削して
切削長さを寸断する方法との2通りがある。どち
らもコアドリルを超音波振動させながら回転させ
て穴あけする方法である。
Next, the core drill is vibrated ultrasonically to subdivide the cutting length. One method is to cause a core drill to vibrate torsionally with ultrasonic waves, and give the relationship v<2πaf between the frequency f, amplitude a, and cutting speed v to cut the cutting length. There are two methods: the cutting surface is rotated by vertical ultrasonic vibration, the cutting surface is made into a finely uneven surface, and the slope is cut into small pieces to cut the cutting length. Both methods involve drilling a hole by rotating a core drill while applying ultrasonic vibrations.

さらに、この主軸台をその回転主軸の軸方向に
低周波振動させて断続パルス波形として切削長さ
を大きく寸断する効果を加味して超音波振動によ
る切削長さの微細寸断効果を確実にし、規則化す
るようにする重畳振動切削機構による方法があ
る。更にセラミツクスを超音波振動させて振動応
力を付加して見掛け上の機械的強度を低下させて
セラミツクスの被削性を改善する方法がある。
Furthermore, by making this headstock vibrate at a low frequency in the axial direction of its rotating spindle and creating an intermittent pulse waveform that greatly shreds the cutting length, we ensure that the ultrasonic vibration produces a microscopic shredding effect on the cutting length. There is a method using a superimposed vibration cutting mechanism to achieve this. Furthermore, there is a method of applying ultrasonic vibration to ceramics to apply vibration stress to reduce the apparent mechanical strength and improve the machinability of ceramics.

以上の方法を重畳・複合させて穴あけを実施す
ることによつてフアインセラミツクスの精密穴あ
け加工を可能とする。ただし、硬さの低いセラミ
ツクスに対しては、低周波振動の付加を省略して
もよい場合がある。このように工具に回転運動エ
ネルギーを、超音波振動エネルギーを工具と工作
物に与え、さらに低周波振動エネルギーを重畳し
て、与えられるエネルギーすべてを与えて切削長
さを寸断して穴あけすることによつて、回転運動
エネルギーのみでは加工できない、ダイヤモンド
に近い硬さのフアインセラミツクスの精密穴あけ
加工が可能となる。すなわち、コアドリルを電わ
いあるいは磁わい振動子を利用して超音波振動さ
せ、これを高速回転させ、その主軸台を主軸方向
に低周波振動させ、かつ一定速度で送り込めるよ
うな送り機構とし、このボール盤テーブル上には
電わいあるいは磁わい振動子で縦超音波振動する
ホーンの先端にセラミツクス工作物を取り付けた
セラミツクス工作縦振動系バイスを取り付けたボ
ール盤を構成する。このようなボール盤によつて
穴あけすることによつてフアインセラミツクスへ
の精密穴加工を実現させることができる。
Precise drilling of fine ceramics is made possible by superimposing and combining the above methods for drilling. However, for ceramics with low hardness, the application of low frequency vibration may be omitted in some cases. In this way, rotational kinetic energy is applied to the tool, ultrasonic vibration energy is applied to the tool and workpiece, and low-frequency vibration energy is further superimposed, giving all the energy to cut the cutting length and drill holes. Therefore, it becomes possible to perform precision drilling in fine ceramics, which has a hardness close to that of diamond, which cannot be processed using rotational kinetic energy alone. That is, the core drill is vibrated ultrasonically using an electric or magnetic oscillator, rotated at high speed, and its headstock is vibrated at low frequency in the direction of the spindle, and the feed mechanism is such that it can feed at a constant speed. The drilling machine is equipped with a vertical vibration system vise for ceramic machining, in which a ceramic workpiece is attached to the tip of a horn that vibrates vertically ultrasonically using an electric or magnetic oscillator, on the drilling machine table. By drilling with such a drill press, precision hole machining in fine ceramics can be realized.

次に図示した実施例に基づいて具体的に説明す
る。コアドリル1を尾部に取付けた縦電わい振動
子2によつて駆動される振動主軸3の先端にテー
パ結合して着脱が自由にできるようにして固定す
る。振動主軸3に生ずる2つの振動筋にまたがる
スリーブ4を利用して軸受5を取り付け、振動主
軸がその振動姿態に影響を与えることなく主軸台
6内で摩擦少く、揺れ少く回転できるようにす
る。
Next, a detailed description will be given based on the illustrated embodiment. A core drill 1 is taper-coupled to the tip of a vibrating main shaft 3 driven by a vertical electric strain vibrator 2 attached to the tail, and fixed so as to be freely attachable and detachable. A bearing 5 is attached using a sleeve 4 spanning two vibrating lines generated on a vibrating main shaft 3, so that the vibrating main shaft can rotate within a head stock 6 with less friction and less shaking without affecting its vibration state.

主軸台6には電動機7を取り付け、ベルト8に
よつてスリーブに固定したプーリーを利用して振
動主軸を矢印20の方向に回転させる。プーリー
にはスリツプリング9を取り付け、相対するブラ
ツシユ10からの励振電圧を回転する電わい振動
子2に供給する。そして、コアドリル先端を振動
数f、振幅aで矢印11の方向に超音波縦振動さ
せる。主軸台6はボール盤コラム21に設けた鋼
球で案内されるガイドローラー12上に固定す
る。そして、連結棒13によつて電気−油圧式振
動駆動装置16と結合する。この電気−油圧式振
動装置16を利用して油圧装置14からの油圧を
サーボ弁15を用いて制御装置17によつて交互
に切換えて、コアドリルを2〜200Hz程度の振動
数で矢印18の方向に振動数Fおよび振幅Aで振
動させる。制御装置には振動と同時に送りが与え
られるような指令を与えて穴あけ加工する。セラ
ミツクス工作物22を振幅拡大用ホーン23の先
端に取付ける。尾部下端に縦電わい振動子28を
取付ける。該ホーンの振動節にスリーブ24を取
付けてボール盤テーブル26上のバイパス25に
固定する。工作物超音波発振機27によつてセラ
ツミツクス工作物22を矢印26の方向に超音波
動数fwおよび振幅awで超音波振動させる。
An electric motor 7 is attached to the headstock 6, and a pulley fixed to the sleeve by a belt 8 is used to rotate the vibrating main shaft in the direction of an arrow 20. A slip ring 9 is attached to the pulley, and the excitation voltage from the opposing brush 10 is supplied to the rotating electric oscillator 2. Then, the tip of the core drill is subjected to ultrasonic longitudinal vibration in the direction of arrow 11 at frequency f and amplitude a. The headstock 6 is fixed on a guide roller 12 guided by steel balls provided on a drilling machine column 21. It is then coupled to an electro-hydraulic vibration drive device 16 via a connecting rod 13. Using this electro-hydraulic vibration device 16, the oil pressure from the hydraulic device 14 is alternately switched by the control device 17 using the servo valve 15, and the core drill is vibrated in the direction of the arrow 18 at a frequency of about 2 to 200 Hz. vibrate at frequency F and amplitude A. Drilling is performed by giving commands to the control device to apply vibration and feed at the same time. A ceramic workpiece 22 is attached to the tip of the amplitude enlarging horn 23. A vertical electric strain vibrator 28 is attached to the lower end of the tail. A sleeve 24 is attached to the vibration node of the horn and fixed to a bypass 25 on a drilling machine table 26. The workpiece ultrasonic oscillator 27 causes the ceramics workpiece 22 to ultrasonically vibrate in the direction of the arrow 26 with an ultrasonic frequency f w and an amplitude a w .

このようにして、超音波発振機19、超音波発
振機27、油圧装置14および制御装置17を作
動させ、コアドリルを超音波振動させながら回転
させ、これを低周波振動させて送りSを矢印29
の方向に与えることによつて本発明による精密穴
加工が実施できる。このとき、工作物を回転させ
る装置を付加することもできる。縦振動子2をね
じり振動子に変換し、その振動系をそのねじり振
動子の固有振動数で共振する振動系に設計製作し
て組立てることによつてコアドリルを円周方向に
振動するねじり振動系とすることができる。この
ときは速度v<2πafの回転数として縦振動系コア
ドリルの粗仕上加工に対して、このねじり振動系
コアドリルは仕上加工用として用いる。
In this way, the ultrasonic oscillator 19, the ultrasonic oscillator 27, the hydraulic device 14, and the control device 17 are operated, the core drill is rotated while being vibrated ultrasonically, and the core drill is vibrated at low frequency to move the feed S at the arrow 29.
Precision hole machining according to the present invention can be carried out by applying the force in the direction of . At this time, a device for rotating the workpiece can also be added. A torsional vibration system that vibrates the core drill in the circumferential direction by converting the vertical vibrator 2 into a torsional vibrator, designing and manufacturing the vibration system into a vibration system that resonates at the natural frequency of the torsional vibrator, and assembling it. It can be done. At this time, the rotational speed is set to v<2πaf, and the longitudinal vibration core drill is used for rough finishing, whereas the torsional vibration core drill is used for finishing.

さらに切込み、送りを小さくして超精密加工す
る場合には、その加工抵抗も小さくなるので、低
周波振動F、Aを停止して超音波振動f、aおよ
びfw、awのみで仕上加工を実施する。この他の振
動付加条件はそのときの加工精度とセラミツクス
の機械的性質によつて選択する。
Furthermore, when performing ultra-precision machining by reducing the depth of cut and feed, the machining resistance will also be reduced, so the low frequency vibrations F and A are stopped and finishing machining is performed using only the ultrasonic vibrations f, a, f w and a w . Implement. Other conditions for adding vibration are selected depending on the machining accuracy and mechanical properties of the ceramics.

本発明のボール盤はコアドリルに縦あるいはね
じり超音波振動と低周波振動を単独あるいは複合
重畳させて与えられるようにし、またセラミツク
スにも縦超音波振動を与えられるようにして、加
工能率と加工精度などのその加工目的に応じてそ
れぞれの振動姿態を選択してセラミツクスの精密
穴加工ができるような機能をすべて与えて構成し
たセラミツクス専用のボール盤であることを特徴
とするもである。
The drilling machine of the present invention is capable of applying longitudinal or torsional ultrasonic vibrations and low-frequency vibrations singly or in combination to the core drill, and is also able to apply longitudinal ultrasonic vibrations to ceramics, thereby improving machining efficiency and machining accuracy. The present invention is characterized in that it is a drilling machine exclusively for ceramics that is configured with all the functions that allow precision hole drilling in ceramics by selecting each vibration mode according to the processing purpose.

本発明は、ダイヤモンド砥粒を固定した切削・
研削工具のほかに遊離ダイヤモンド砥粒による工
具その他類似の工具に適用されるものである。
The present invention is a cutting machine with fixed diamond abrasive grains.
In addition to grinding tools, it is applicable to free diamond abrasive tools and similar tools.

(効果) 次に本発明の実施によつて得られた具体的実施
効果について説明する。直径4mmのコアドリルに
よるジルコニア、厚さ5mm、一辺の長さ5mmの角
材への穴あけに本発明を実施したときの実施効果
について説明する。
(Effects) Next, specific implementation effects obtained by implementing the present invention will be described. The effect of implementing the present invention when drilling into a square piece of zirconia with a thickness of 5 mm and a side length of 5 mm using a core drill with a diameter of 4 mm will be described.

#100/120のダイヤモンドコアドリル超音波振
動数f=20.7KHz、振幅a=18μm、低周波数動
数F=50Hz、振幅A=15μm、送りS=3μm/
rev、回転数=1000rpm、ジルコニア超音波振動
数fw=20KHz、振幅aw=17μm、乾式切削として
本発明を実施することによつて、加工能率はジル
コニアを超音波振動させ、コアドリルを超音波振
動させたときの約1.5倍、ジルコニアを超音波振
動させ、コアドリルに低周波振動のみを与えたと
きの約2.4倍、ジルコニアに超音波振動のみを与
えたときの約4.5倍となる。
#100/120 diamond core drill ultrasonic frequency f = 20.7 KHz, amplitude a = 18 μm, low frequency dynamic frequency F = 50 Hz, amplitude A = 15 μm, feed S = 3 μm/
rev, rotation speed = 1000 rpm, zirconia ultrasonic frequency f w = 20 KHz, amplitude a w = 17 μm, by implementing the present invention as dry cutting, machining efficiency can be improved by ultrasonically vibrating zirconia and This is about 1.5 times as much as when vibrating, about 2.4 times as much as when zirconia is ultrasonically vibrated and only low frequency vibrations are applied to the core drill, and about 4.5 times as much as when only ultrasonic vibrations are applied to zirconia.

静止しているジルコニア工作物にコアドリルを
回転させて送り込むのみの穴あけではコアドリル
の摩耗、損耗が激しく刃先が鈍化して穴あけする
ことができない。この現象に比べて本発明の効果
は上記の数値でわかるように画期的である。
If the core drill is simply rotated and fed into a stationary zirconia workpiece, the core drill will wear out and wear out severely, and the cutting edge will become dull, making it impossible to drill the hole. Compared to this phenomenon, the effects of the present invention are epoch-making, as can be seen from the above numerical values.

また、コアドリルの喰いつき時の刃先の弾性振
動がなくなり、喰いつき時の端面だれ、欠けが少
なくなり、真円度を10μm以下、真直度2μm以
下、表面あらさ15μm以下とし、穴の直径の拡大
しろを±0.01mm以内とすることに成功し、切り終
りのだれ、欠けを少くして能率よく穴加工するこ
とに成功した。
In addition, the elastic vibration of the cutting edge of the core drill when biting is eliminated, the edge surface sagging and chipping are reduced when biting, the roundness is less than 10 μm, the straightness is less than 2 μm, the surface roughness is less than 15 μm, and the diameter of the hole is increased. We succeeded in keeping the margin within ±0.01mm, reducing droop and chipping at the end of the cut, and successfully drilling holes efficiently.

切りくずが寸断されるので切りくずの排出が円
滑となり、コアドリルの異常な摩擦現象の発生を
防ぎ、コアドリルの寿命を延ばし、加工コストの
軽減に貢献する効果が確かめられた。
Since the chips are shredded, they can be discharged smoothly, preventing abnormal friction phenomena in the core drill, extending the life of the core drill, and contributing to reducing machining costs.

セラミツクス素材に能率よく穴あけするときの
技術として、コアドリルを超音波振動(縦超音波
振動あるいはねじり超音波振動)させ、これを回
転させ、さらに軸方向に低周波振動させ、セラミ
ツクス工作物を超音波振動させてばりばり切削し
て粗加工する方法とそのボール盤を考案して以上
のようにして説明した。
As a technique for efficiently drilling holes in ceramic materials, a core drill is vibrated ultrasonically (vertical ultrasonic vibration or torsional ultrasonic vibration), rotated, and then vibrated at low frequency in the axial direction, thereby applying ultrasonic waves to the ceramic workpiece. A method for rough machining by vibrating and cutting into pieces and a drilling machine for the same were devised and explained as above.

セラミツクスへの穴加工の場合に、能率よく切
りくずを排出してばりばり切削する切削機構で
は、加工表面に残留する微細クラツクが発生せざ
るを得ない。この微細クラツク部を削除するため
には、低周波振動を停止して、超音波振動のみを
与え、切込みを小さくしてその送り量も小さくし
て超音波振動するセラミツクスに対して仕上げ加
工する。切込み、送りが小さいのでその抵抗も小
さくなるので低周波振動エネルギーが不要とな
る。そして、精密穴加工を可能にする。例えば、
穴径の拡大しろはこの場合が最小となり、使用す
るコアドリルの直径とほぼ等しくなる効果などが
得られる。
In the case of drilling holes in ceramics, a cutting mechanism that efficiently discharges chips and cuts burrs inevitably produces microscopic cracks that remain on the machined surface. In order to remove these minute cracks, the low-frequency vibration is stopped, only ultrasonic vibration is applied, the depth of cut is made small, and the amount of feed is also made small to finish the ultrasonically vibrating ceramic. Since the depth of cut and feed are small, the resistance is also small, so low frequency vibration energy is not required. This also enables precision hole machining. for example,
In this case, the margin for expansion of the hole diameter is minimized, and the effect of making it almost equal to the diameter of the core drill used can be obtained.

表面粗さを平滑にする場合には、超音波振動す
るセラミツクスに対して低周波振動のみを与え、
速い送りを与えて仕上加工する。セラミツクス表
面に残留するクラツクを極小にして仕上加工した
いときは、コアドリルに超音波振動と低周波振動
を複合重畳させて、コアドリルのみを振動させ、
セラミツクスには超音波振動を与えないで仕上加
工する。
When smoothing the surface roughness, only low-frequency vibrations are applied to ultrasonically vibrating ceramics.
Finishing is performed by applying fast feed. When you want to finish the ceramic with minimal cracks remaining on the surface of the ceramic, ultrasonic vibration and low-frequency vibration are combined and superimposed on the core drill to vibrate only the core drill.
Ceramics are finished without applying ultrasonic vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明1実施例の一部切断要部正面図
である。 1……コアドリル、2……縦電わい振動子、3
……振動主軸、6……主軸台、19,27……超
音波発振機、22……セラミツクス工作物。
FIG. 1 is a partially cutaway front view of essential parts of a first embodiment of the present invention. 1...Core drill, 2...Vertical electric distortion vibrator, 3
...Vibration spindle, 6... Headstock, 19, 27... Ultrasonic oscillator, 22... Ceramics workpiece.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツクスの穴加工用工具軸方向に超音波
域の高い振動数の超音波振動及び又はそれより低
い振動数の低周波振動を与え乍ら高速回転と送り
を与えるようにした主軸台と、セラミツクス工作
物の軸方向に超音波域の高い振動数の超音波振動
を与えるようにしたテーブルとを備えたセラミツ
クスの精密穴加工用振動切削ボール盤。
1. A headstock that provides high-speed rotation and feed while applying ultrasonic vibrations at high frequencies in the ultrasonic range and/or low-frequency vibrations at lower frequencies in the axial direction of a tool for drilling holes in ceramics, and A vibration cutting drilling machine for precision hole machining in ceramics, which is equipped with a table that applies ultrasonic vibrations at a high frequency in the ultrasonic range in the axial direction of a workpiece.
JP26622587A 1987-10-23 1987-10-23 Vibration-cut drilling machine for precise boring of ceramics Granted JPH01109007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26622587A JPH01109007A (en) 1987-10-23 1987-10-23 Vibration-cut drilling machine for precise boring of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26622587A JPH01109007A (en) 1987-10-23 1987-10-23 Vibration-cut drilling machine for precise boring of ceramics

Publications (2)

Publication Number Publication Date
JPH01109007A JPH01109007A (en) 1989-04-26
JPH0575560B2 true JPH0575560B2 (en) 1993-10-20

Family

ID=17428004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26622587A Granted JPH01109007A (en) 1987-10-23 1987-10-23 Vibration-cut drilling machine for precise boring of ceramics

Country Status (1)

Country Link
JP (1) JPH01109007A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098477A (en) * 2005-09-30 2007-04-19 Toshiba Mach Co Ltd Machining apparatus and machining method
CN103691992B (en) * 2013-12-11 2015-12-09 浙江工业大学 Integrated vibration bench drill
CN106270640B (en) * 2016-11-01 2018-03-09 河南理工大学 Plough groove type vibration drilling workbench
CN109047853B (en) * 2018-09-28 2019-07-12 盐城工学院 A kind of deep hole machine spindle-torsion complex excitation experimental provision
JP6755565B1 (en) * 2019-11-20 2020-09-16 有限会社アリューズ Processing equipment and processing method
CN111659959A (en) * 2020-06-23 2020-09-15 中国工程物理研究院激光聚变研究中心 High-low frequency composite vibration processing device and method for hard and brittle materials

Also Published As

Publication number Publication date
JPH01109007A (en) 1989-04-26

Similar Documents

Publication Publication Date Title
Nath et al. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting
KR100316003B1 (en) a micro burnishing apparatus using ultrasonic vibration
Zhang et al. The mechanism of material removal in ultrasonic drilling of engineering ceramics
Moriwaki et al. Development of a elliptical vibration milling machine
JPH0575560B2 (en)
Balamuth Ultrasonic assistance to conventional metal removal
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
JPS62140701A (en) Superposed vibration cutting method
JPS62292306A (en) Precision vibration boring method
JPS6246281B2 (en)
Nomura et al. Investigation of internal ultrasonically assisted grinding of small holes: effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel
Nomura et al. Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes
JPS62140702A (en) Precise superposed vibration hole processing method
JPH0120035B2 (en)
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JPS6362658A (en) Precise finishing method with complex vibration grinding wheel
JPS6240123B2 (en)
JPH0451306B2 (en)
RU2199419C2 (en) Apparatus for blade-abrasive working
Tawakoli et al. Dressing of CBN grinding wheels with ultrasonic assistance
Wang et al. A study on modification of endrills for finishing holes
JPH0632899B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JP2831966B2 (en) Processing method of silicon nitride ceramics
JPH0253517A (en) Thread grooving method and device by overlapping ultrasonic and low frequency vibration of interrupted pulse cutting force waveform